]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
accel/tcg: Merge io_readx into do_ld_mmio_beN
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * vaddr even on 32 bit builds
78 */
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
80
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
82 */
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
85
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
87 {
88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 }
90
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
92 {
93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 }
95
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97 size_t max_entries)
98 {
99 desc->window_begin_ns = ns;
100 desc->window_max_entries = max_entries;
101 }
102
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
104 {
105 CPUJumpCache *jc = cpu->tb_jmp_cache;
106 int i, i0;
107
108 if (unlikely(!jc)) {
109 return;
110 }
111
112 i0 = tb_jmp_cache_hash_page(page_addr);
113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114 qatomic_set(&jc->array[i0 + i].tb, NULL);
115 }
116 }
117
118 /**
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
122 *
123 * Called with tlb_lock_held.
124 *
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
131 *
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
138 *
139 * To achieve near-optimal performance for all kinds of workloads, we:
140 *
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
145 *
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
151 *
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
157 */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
160 {
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
167
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
170 }
171 rate = desc->window_max_entries * 100 / old_size;
172
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
178
179 /*
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
188 */
189 if (expected_rate > 70) {
190 ceil *= 2;
191 }
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 }
194
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
198 }
199 return;
200 }
201
202 g_free(fast->table);
203 g_free(desc->fulltlb);
204
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210
211 /*
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
217 */
218 while (fast->table == NULL || desc->fulltlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
222 }
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225
226 g_free(fast->table);
227 g_free(desc->fulltlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
230 }
231 }
232
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
245 {
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
251 }
252
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
263 }
264
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267 env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272 env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274
275 void tlb_init(CPUState *cpu)
276 {
277 CPUArchState *env = cpu->env_ptr;
278 int64_t now = get_clock_realtime();
279 int i;
280
281 qemu_spin_init(&env_tlb(env)->c.lock);
282
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
285
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288 }
289 }
290
291 void tlb_destroy(CPUState *cpu)
292 {
293 CPUArchState *env = cpu->env_ptr;
294 int i;
295
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300
301 g_free(fast->table);
302 g_free(desc->fulltlb);
303 }
304 }
305
306 /* flush_all_helper: run fn across all cpus
307 *
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
312 */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
315 {
316 CPUState *cpu;
317
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
321 }
322 }
323 }
324
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327 CPUState *cpu;
328 size_t full = 0, part = 0, elide = 0;
329
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu->env_ptr;
332
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336 }
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
340 }
341
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344 CPUArchState *env = cpu->env_ptr;
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
347 int64_t now = get_clock_realtime();
348
349 assert_cpu_is_self(cpu);
350
351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352
353 qemu_spin_lock(&env_tlb(env)->c.lock);
354
355 all_dirty = env_tlb(env)->c.dirty;
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
358 env_tlb(env)->c.dirty = all_dirty;
359
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363 }
364
365 qemu_spin_unlock(&env_tlb(env)->c.lock);
366
367 tcg_flush_jmp_cache(cpu);
368
369 if (to_clean == ALL_MMUIDX_BITS) {
370 qatomic_set(&env_tlb(env)->c.full_flush_count,
371 env_tlb(env)->c.full_flush_count + 1);
372 } else {
373 qatomic_set(&env_tlb(env)->c.part_flush_count,
374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375 if (to_clean != asked) {
376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
377 env_tlb(env)->c.elide_flush_count +
378 ctpop16(asked & ~to_clean));
379 }
380 }
381 }
382
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386
387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
390 } else {
391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392 }
393 }
394
395 void tlb_flush(CPUState *cpu)
396 {
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 vaddr page, vaddr mask)
432 {
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
439 }
440
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
442 {
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445
446 /**
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
449 */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 vaddr page,
458 vaddr mask)
459 {
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
463 }
464 return false;
465 }
466
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
468 {
469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474 vaddr page,
475 vaddr mask)
476 {
477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478 int k;
479
480 assert_cpu_is_self(env_cpu(env));
481 for (k = 0; k < CPU_VTLB_SIZE; k++) {
482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483 tlb_n_used_entries_dec(env, mmu_idx);
484 }
485 }
486 }
487
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489 vaddr page)
490 {
491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493
494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
495 {
496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
498
499 /* Check if we need to flush due to large pages. */
500 if ((page & lp_mask) == lp_addr) {
501 tlb_debug("forcing full flush midx %d (%016"
502 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
503 midx, lp_addr, lp_mask);
504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
505 } else {
506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
507 tlb_n_used_entries_dec(env, midx);
508 }
509 tlb_flush_vtlb_page_locked(env, midx, page);
510 }
511 }
512
513 /**
514 * tlb_flush_page_by_mmuidx_async_0:
515 * @cpu: cpu on which to flush
516 * @addr: page of virtual address to flush
517 * @idxmap: set of mmu_idx to flush
518 *
519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
520 * at @addr from the tlbs indicated by @idxmap from @cpu.
521 */
522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
523 vaddr addr,
524 uint16_t idxmap)
525 {
526 CPUArchState *env = cpu->env_ptr;
527 int mmu_idx;
528
529 assert_cpu_is_self(cpu);
530
531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
532
533 qemu_spin_lock(&env_tlb(env)->c.lock);
534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
535 if ((idxmap >> mmu_idx) & 1) {
536 tlb_flush_page_locked(env, mmu_idx, addr);
537 }
538 }
539 qemu_spin_unlock(&env_tlb(env)->c.lock);
540
541 /*
542 * Discard jump cache entries for any tb which might potentially
543 * overlap the flushed page, which includes the previous.
544 */
545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
546 tb_jmp_cache_clear_page(cpu, addr);
547 }
548
549 /**
550 * tlb_flush_page_by_mmuidx_async_1:
551 * @cpu: cpu on which to flush
552 * @data: encoded addr + idxmap
553 *
554 * Helper for tlb_flush_page_by_mmuidx and friends, called through
555 * async_run_on_cpu. The idxmap parameter is encoded in the page
556 * offset of the target_ptr field. This limits the set of mmu_idx
557 * that can be passed via this method.
558 */
559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
560 run_on_cpu_data data)
561 {
562 vaddr addr_and_idxmap = data.target_ptr;
563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
565
566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
567 }
568
569 typedef struct {
570 vaddr addr;
571 uint16_t idxmap;
572 } TLBFlushPageByMMUIdxData;
573
574 /**
575 * tlb_flush_page_by_mmuidx_async_2:
576 * @cpu: cpu on which to flush
577 * @data: allocated addr + idxmap
578 *
579 * Helper for tlb_flush_page_by_mmuidx and friends, called through
580 * async_run_on_cpu. The addr+idxmap parameters are stored in a
581 * TLBFlushPageByMMUIdxData structure that has been allocated
582 * specifically for this helper. Free the structure when done.
583 */
584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
585 run_on_cpu_data data)
586 {
587 TLBFlushPageByMMUIdxData *d = data.host_ptr;
588
589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
590 g_free(d);
591 }
592
593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
594 {
595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
596
597 /* This should already be page aligned */
598 addr &= TARGET_PAGE_MASK;
599
600 if (qemu_cpu_is_self(cpu)) {
601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
602 } else if (idxmap < TARGET_PAGE_SIZE) {
603 /*
604 * Most targets have only a few mmu_idx. In the case where
605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
606 * allocating memory for this operation.
607 */
608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
609 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
610 } else {
611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
612
613 /* Otherwise allocate a structure, freed by the worker. */
614 d->addr = addr;
615 d->idxmap = idxmap;
616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
617 RUN_ON_CPU_HOST_PTR(d));
618 }
619 }
620
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
622 {
623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 }
625
626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
627 uint16_t idxmap)
628 {
629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
630
631 /* This should already be page aligned */
632 addr &= TARGET_PAGE_MASK;
633
634 /*
635 * Allocate memory to hold addr+idxmap only when needed.
636 * See tlb_flush_page_by_mmuidx for details.
637 */
638 if (idxmap < TARGET_PAGE_SIZE) {
639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641 } else {
642 CPUState *dst_cpu;
643
644 /* Allocate a separate data block for each destination cpu. */
645 CPU_FOREACH(dst_cpu) {
646 if (dst_cpu != src_cpu) {
647 TLBFlushPageByMMUIdxData *d
648 = g_new(TLBFlushPageByMMUIdxData, 1);
649
650 d->addr = addr;
651 d->idxmap = idxmap;
652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
653 RUN_ON_CPU_HOST_PTR(d));
654 }
655 }
656 }
657
658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
659 }
660
661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
662 {
663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
664 }
665
666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
667 vaddr addr,
668 uint16_t idxmap)
669 {
670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
671
672 /* This should already be page aligned */
673 addr &= TARGET_PAGE_MASK;
674
675 /*
676 * Allocate memory to hold addr+idxmap only when needed.
677 * See tlb_flush_page_by_mmuidx for details.
678 */
679 if (idxmap < TARGET_PAGE_SIZE) {
680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684 } else {
685 CPUState *dst_cpu;
686 TLBFlushPageByMMUIdxData *d;
687
688 /* Allocate a separate data block for each destination cpu. */
689 CPU_FOREACH(dst_cpu) {
690 if (dst_cpu != src_cpu) {
691 d = g_new(TLBFlushPageByMMUIdxData, 1);
692 d->addr = addr;
693 d->idxmap = idxmap;
694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
695 RUN_ON_CPU_HOST_PTR(d));
696 }
697 }
698
699 d = g_new(TLBFlushPageByMMUIdxData, 1);
700 d->addr = addr;
701 d->idxmap = idxmap;
702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
703 RUN_ON_CPU_HOST_PTR(d));
704 }
705 }
706
707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
708 {
709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
710 }
711
712 static void tlb_flush_range_locked(CPUArchState *env, int midx,
713 vaddr addr, vaddr len,
714 unsigned bits)
715 {
716 CPUTLBDesc *d = &env_tlb(env)->d[midx];
717 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
718 vaddr mask = MAKE_64BIT_MASK(0, bits);
719
720 /*
721 * If @bits is smaller than the tlb size, there may be multiple entries
722 * within the TLB; otherwise all addresses that match under @mask hit
723 * the same TLB entry.
724 * TODO: Perhaps allow bits to be a few bits less than the size.
725 * For now, just flush the entire TLB.
726 *
727 * If @len is larger than the tlb size, then it will take longer to
728 * test all of the entries in the TLB than it will to flush it all.
729 */
730 if (mask < f->mask || len > f->mask) {
731 tlb_debug("forcing full flush midx %d ("
732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
733 midx, addr, mask, len);
734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
735 return;
736 }
737
738 /*
739 * Check if we need to flush due to large pages.
740 * Because large_page_mask contains all 1's from the msb,
741 * we only need to test the end of the range.
742 */
743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
744 tlb_debug("forcing full flush midx %d ("
745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
746 midx, d->large_page_addr, d->large_page_mask);
747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
748 return;
749 }
750
751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
752 vaddr page = addr + i;
753 CPUTLBEntry *entry = tlb_entry(env, midx, page);
754
755 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
756 tlb_n_used_entries_dec(env, midx);
757 }
758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
759 }
760 }
761
762 typedef struct {
763 vaddr addr;
764 vaddr len;
765 uint16_t idxmap;
766 uint16_t bits;
767 } TLBFlushRangeData;
768
769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
770 TLBFlushRangeData d)
771 {
772 CPUArchState *env = cpu->env_ptr;
773 int mmu_idx;
774
775 assert_cpu_is_self(cpu);
776
777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
778 d.addr, d.bits, d.len, d.idxmap);
779
780 qemu_spin_lock(&env_tlb(env)->c.lock);
781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
782 if ((d.idxmap >> mmu_idx) & 1) {
783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
784 }
785 }
786 qemu_spin_unlock(&env_tlb(env)->c.lock);
787
788 /*
789 * If the length is larger than the jump cache size, then it will take
790 * longer to clear each entry individually than it will to clear it all.
791 */
792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
793 tcg_flush_jmp_cache(cpu);
794 return;
795 }
796
797 /*
798 * Discard jump cache entries for any tb which might potentially
799 * overlap the flushed pages, which includes the previous.
800 */
801 d.addr -= TARGET_PAGE_SIZE;
802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
803 tb_jmp_cache_clear_page(cpu, d.addr);
804 d.addr += TARGET_PAGE_SIZE;
805 }
806 }
807
808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
809 run_on_cpu_data data)
810 {
811 TLBFlushRangeData *d = data.host_ptr;
812 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
813 g_free(d);
814 }
815
816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
817 vaddr len, uint16_t idxmap,
818 unsigned bits)
819 {
820 TLBFlushRangeData d;
821
822 /*
823 * If all bits are significant, and len is small,
824 * this devolves to tlb_flush_page.
825 */
826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
828 return;
829 }
830 /* If no page bits are significant, this devolves to tlb_flush. */
831 if (bits < TARGET_PAGE_BITS) {
832 tlb_flush_by_mmuidx(cpu, idxmap);
833 return;
834 }
835
836 /* This should already be page aligned */
837 d.addr = addr & TARGET_PAGE_MASK;
838 d.len = len;
839 d.idxmap = idxmap;
840 d.bits = bits;
841
842 if (qemu_cpu_is_self(cpu)) {
843 tlb_flush_range_by_mmuidx_async_0(cpu, d);
844 } else {
845 /* Otherwise allocate a structure, freed by the worker. */
846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
848 RUN_ON_CPU_HOST_PTR(p));
849 }
850 }
851
852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
853 uint16_t idxmap, unsigned bits)
854 {
855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
856 }
857
858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
859 vaddr addr, vaddr len,
860 uint16_t idxmap, unsigned bits)
861 {
862 TLBFlushRangeData d;
863 CPUState *dst_cpu;
864
865 /*
866 * If all bits are significant, and len is small,
867 * this devolves to tlb_flush_page.
868 */
869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
871 return;
872 }
873 /* If no page bits are significant, this devolves to tlb_flush. */
874 if (bits < TARGET_PAGE_BITS) {
875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
876 return;
877 }
878
879 /* This should already be page aligned */
880 d.addr = addr & TARGET_PAGE_MASK;
881 d.len = len;
882 d.idxmap = idxmap;
883 d.bits = bits;
884
885 /* Allocate a separate data block for each destination cpu. */
886 CPU_FOREACH(dst_cpu) {
887 if (dst_cpu != src_cpu) {
888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
889 async_run_on_cpu(dst_cpu,
890 tlb_flush_range_by_mmuidx_async_1,
891 RUN_ON_CPU_HOST_PTR(p));
892 }
893 }
894
895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
896 }
897
898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
899 vaddr addr, uint16_t idxmap,
900 unsigned bits)
901 {
902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
903 idxmap, bits);
904 }
905
906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
907 vaddr addr,
908 vaddr len,
909 uint16_t idxmap,
910 unsigned bits)
911 {
912 TLBFlushRangeData d, *p;
913 CPUState *dst_cpu;
914
915 /*
916 * If all bits are significant, and len is small,
917 * this devolves to tlb_flush_page.
918 */
919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
921 return;
922 }
923 /* If no page bits are significant, this devolves to tlb_flush. */
924 if (bits < TARGET_PAGE_BITS) {
925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
926 return;
927 }
928
929 /* This should already be page aligned */
930 d.addr = addr & TARGET_PAGE_MASK;
931 d.len = len;
932 d.idxmap = idxmap;
933 d.bits = bits;
934
935 /* Allocate a separate data block for each destination cpu. */
936 CPU_FOREACH(dst_cpu) {
937 if (dst_cpu != src_cpu) {
938 p = g_memdup(&d, sizeof(d));
939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
940 RUN_ON_CPU_HOST_PTR(p));
941 }
942 }
943
944 p = g_memdup(&d, sizeof(d));
945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
946 RUN_ON_CPU_HOST_PTR(p));
947 }
948
949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
950 vaddr addr,
951 uint16_t idxmap,
952 unsigned bits)
953 {
954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
955 idxmap, bits);
956 }
957
958 /* update the TLBs so that writes to code in the virtual page 'addr'
959 can be detected */
960 void tlb_protect_code(ram_addr_t ram_addr)
961 {
962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
963 TARGET_PAGE_SIZE,
964 DIRTY_MEMORY_CODE);
965 }
966
967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
968 tested for self modifying code */
969 void tlb_unprotect_code(ram_addr_t ram_addr)
970 {
971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
972 }
973
974
975 /*
976 * Dirty write flag handling
977 *
978 * When the TCG code writes to a location it looks up the address in
979 * the TLB and uses that data to compute the final address. If any of
980 * the lower bits of the address are set then the slow path is forced.
981 * There are a number of reasons to do this but for normal RAM the
982 * most usual is detecting writes to code regions which may invalidate
983 * generated code.
984 *
985 * Other vCPUs might be reading their TLBs during guest execution, so we update
986 * te->addr_write with qatomic_set. We don't need to worry about this for
987 * oversized guests as MTTCG is disabled for them.
988 *
989 * Called with tlb_c.lock held.
990 */
991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
992 uintptr_t start, uintptr_t length)
993 {
994 uintptr_t addr = tlb_entry->addr_write;
995
996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
998 addr &= TARGET_PAGE_MASK;
999 addr += tlb_entry->addend;
1000 if ((addr - start) < length) {
1001 #if TARGET_LONG_BITS == 32
1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1003 ptr_write += HOST_BIG_ENDIAN;
1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1005 #elif TCG_OVERSIZED_GUEST
1006 tlb_entry->addr_write |= TLB_NOTDIRTY;
1007 #else
1008 qatomic_set(&tlb_entry->addr_write,
1009 tlb_entry->addr_write | TLB_NOTDIRTY);
1010 #endif
1011 }
1012 }
1013 }
1014
1015 /*
1016 * Called with tlb_c.lock held.
1017 * Called only from the vCPU context, i.e. the TLB's owner thread.
1018 */
1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1020 {
1021 *d = *s;
1022 }
1023
1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1025 * the target vCPU).
1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1027 * thing actually updated is the target TLB entry ->addr_write flags.
1028 */
1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1030 {
1031 CPUArchState *env;
1032
1033 int mmu_idx;
1034
1035 env = cpu->env_ptr;
1036 qemu_spin_lock(&env_tlb(env)->c.lock);
1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1038 unsigned int i;
1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1040
1041 for (i = 0; i < n; i++) {
1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1043 start1, length);
1044 }
1045
1046 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1048 start1, length);
1049 }
1050 }
1051 qemu_spin_unlock(&env_tlb(env)->c.lock);
1052 }
1053
1054 /* Called with tlb_c.lock held */
1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1056 vaddr addr)
1057 {
1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1059 tlb_entry->addr_write = addr;
1060 }
1061 }
1062
1063 /* update the TLB corresponding to virtual page vaddr
1064 so that it is no longer dirty */
1065 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1066 {
1067 CPUArchState *env = cpu->env_ptr;
1068 int mmu_idx;
1069
1070 assert_cpu_is_self(cpu);
1071
1072 addr &= TARGET_PAGE_MASK;
1073 qemu_spin_lock(&env_tlb(env)->c.lock);
1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1076 }
1077
1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1079 int k;
1080 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1082 }
1083 }
1084 qemu_spin_unlock(&env_tlb(env)->c.lock);
1085 }
1086
1087 /* Our TLB does not support large pages, so remember the area covered by
1088 large pages and trigger a full TLB flush if these are invalidated. */
1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1090 vaddr addr, uint64_t size)
1091 {
1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1093 vaddr lp_mask = ~(size - 1);
1094
1095 if (lp_addr == (vaddr)-1) {
1096 /* No previous large page. */
1097 lp_addr = addr;
1098 } else {
1099 /* Extend the existing region to include the new page.
1100 This is a compromise between unnecessary flushes and
1101 the cost of maintaining a full variable size TLB. */
1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1103 while (((lp_addr ^ addr) & lp_mask) != 0) {
1104 lp_mask <<= 1;
1105 }
1106 }
1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1109 }
1110
1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1112 vaddr address, int flags,
1113 MMUAccessType access_type, bool enable)
1114 {
1115 if (enable) {
1116 address |= flags & TLB_FLAGS_MASK;
1117 flags &= TLB_SLOW_FLAGS_MASK;
1118 if (flags) {
1119 address |= TLB_FORCE_SLOW;
1120 }
1121 } else {
1122 address = -1;
1123 flags = 0;
1124 }
1125 ent->addr_idx[access_type] = address;
1126 full->slow_flags[access_type] = flags;
1127 }
1128
1129 /*
1130 * Add a new TLB entry. At most one entry for a given virtual address
1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1132 * supplied size is only used by tlb_flush_page.
1133 *
1134 * Called from TCG-generated code, which is under an RCU read-side
1135 * critical section.
1136 */
1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1138 vaddr addr, CPUTLBEntryFull *full)
1139 {
1140 CPUArchState *env = cpu->env_ptr;
1141 CPUTLB *tlb = env_tlb(env);
1142 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1143 MemoryRegionSection *section;
1144 unsigned int index, read_flags, write_flags;
1145 uintptr_t addend;
1146 CPUTLBEntry *te, tn;
1147 hwaddr iotlb, xlat, sz, paddr_page;
1148 vaddr addr_page;
1149 int asidx, wp_flags, prot;
1150 bool is_ram, is_romd;
1151
1152 assert_cpu_is_self(cpu);
1153
1154 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1155 sz = TARGET_PAGE_SIZE;
1156 } else {
1157 sz = (hwaddr)1 << full->lg_page_size;
1158 tlb_add_large_page(env, mmu_idx, addr, sz);
1159 }
1160 addr_page = addr & TARGET_PAGE_MASK;
1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1162
1163 prot = full->prot;
1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1166 &xlat, &sz, full->attrs, &prot);
1167 assert(sz >= TARGET_PAGE_SIZE);
1168
1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1170 " prot=%x idx=%d\n",
1171 addr, full->phys_addr, prot, mmu_idx);
1172
1173 read_flags = 0;
1174 if (full->lg_page_size < TARGET_PAGE_BITS) {
1175 /* Repeat the MMU check and TLB fill on every access. */
1176 read_flags |= TLB_INVALID_MASK;
1177 }
1178 if (full->attrs.byte_swap) {
1179 read_flags |= TLB_BSWAP;
1180 }
1181
1182 is_ram = memory_region_is_ram(section->mr);
1183 is_romd = memory_region_is_romd(section->mr);
1184
1185 if (is_ram || is_romd) {
1186 /* RAM and ROMD both have associated host memory. */
1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1188 } else {
1189 /* I/O does not; force the host address to NULL. */
1190 addend = 0;
1191 }
1192
1193 write_flags = read_flags;
1194 if (is_ram) {
1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1196 assert(!(iotlb & ~TARGET_PAGE_MASK));
1197 /*
1198 * Computing is_clean is expensive; avoid all that unless
1199 * the page is actually writable.
1200 */
1201 if (prot & PAGE_WRITE) {
1202 if (section->readonly) {
1203 write_flags |= TLB_DISCARD_WRITE;
1204 } else if (cpu_physical_memory_is_clean(iotlb)) {
1205 write_flags |= TLB_NOTDIRTY;
1206 }
1207 }
1208 } else {
1209 /* I/O or ROMD */
1210 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1211 /*
1212 * Writes to romd devices must go through MMIO to enable write.
1213 * Reads to romd devices go through the ram_ptr found above,
1214 * but of course reads to I/O must go through MMIO.
1215 */
1216 write_flags |= TLB_MMIO;
1217 if (!is_romd) {
1218 read_flags = write_flags;
1219 }
1220 }
1221
1222 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1223 TARGET_PAGE_SIZE);
1224
1225 index = tlb_index(env, mmu_idx, addr_page);
1226 te = tlb_entry(env, mmu_idx, addr_page);
1227
1228 /*
1229 * Hold the TLB lock for the rest of the function. We could acquire/release
1230 * the lock several times in the function, but it is faster to amortize the
1231 * acquisition cost by acquiring it just once. Note that this leads to
1232 * a longer critical section, but this is not a concern since the TLB lock
1233 * is unlikely to be contended.
1234 */
1235 qemu_spin_lock(&tlb->c.lock);
1236
1237 /* Note that the tlb is no longer clean. */
1238 tlb->c.dirty |= 1 << mmu_idx;
1239
1240 /* Make sure there's no cached translation for the new page. */
1241 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1242
1243 /*
1244 * Only evict the old entry to the victim tlb if it's for a
1245 * different page; otherwise just overwrite the stale data.
1246 */
1247 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1248 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1249 CPUTLBEntry *tv = &desc->vtable[vidx];
1250
1251 /* Evict the old entry into the victim tlb. */
1252 copy_tlb_helper_locked(tv, te);
1253 desc->vfulltlb[vidx] = desc->fulltlb[index];
1254 tlb_n_used_entries_dec(env, mmu_idx);
1255 }
1256
1257 /* refill the tlb */
1258 /*
1259 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1260 * aligned ram_addr_t of the page base of the target RAM.
1261 * Otherwise, iotlb contains
1262 * - a physical section number in the lower TARGET_PAGE_BITS
1263 * - the offset within section->mr of the page base (I/O, ROMD) with the
1264 * TARGET_PAGE_BITS masked off.
1265 * We subtract addr_page (which is page aligned and thus won't
1266 * disturb the low bits) to give an offset which can be added to the
1267 * (non-page-aligned) vaddr of the eventual memory access to get
1268 * the MemoryRegion offset for the access. Note that the vaddr we
1269 * subtract here is that of the page base, and not the same as the
1270 * vaddr we add back in io_prepare()/get_page_addr_code().
1271 */
1272 desc->fulltlb[index] = *full;
1273 full = &desc->fulltlb[index];
1274 full->xlat_section = iotlb - addr_page;
1275 full->phys_addr = paddr_page;
1276
1277 /* Now calculate the new entry */
1278 tn.addend = addend - addr_page;
1279
1280 tlb_set_compare(full, &tn, addr_page, read_flags,
1281 MMU_INST_FETCH, prot & PAGE_EXEC);
1282
1283 if (wp_flags & BP_MEM_READ) {
1284 read_flags |= TLB_WATCHPOINT;
1285 }
1286 tlb_set_compare(full, &tn, addr_page, read_flags,
1287 MMU_DATA_LOAD, prot & PAGE_READ);
1288
1289 if (prot & PAGE_WRITE_INV) {
1290 write_flags |= TLB_INVALID_MASK;
1291 }
1292 if (wp_flags & BP_MEM_WRITE) {
1293 write_flags |= TLB_WATCHPOINT;
1294 }
1295 tlb_set_compare(full, &tn, addr_page, write_flags,
1296 MMU_DATA_STORE, prot & PAGE_WRITE);
1297
1298 copy_tlb_helper_locked(te, &tn);
1299 tlb_n_used_entries_inc(env, mmu_idx);
1300 qemu_spin_unlock(&tlb->c.lock);
1301 }
1302
1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1304 hwaddr paddr, MemTxAttrs attrs, int prot,
1305 int mmu_idx, uint64_t size)
1306 {
1307 CPUTLBEntryFull full = {
1308 .phys_addr = paddr,
1309 .attrs = attrs,
1310 .prot = prot,
1311 .lg_page_size = ctz64(size)
1312 };
1313
1314 assert(is_power_of_2(size));
1315 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1316 }
1317
1318 void tlb_set_page(CPUState *cpu, vaddr addr,
1319 hwaddr paddr, int prot,
1320 int mmu_idx, uint64_t size)
1321 {
1322 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1323 prot, mmu_idx, size);
1324 }
1325
1326 /*
1327 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1328 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1329 * be discarded and looked up again (e.g. via tlb_entry()).
1330 */
1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1332 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1333 {
1334 bool ok;
1335
1336 /*
1337 * This is not a probe, so only valid return is success; failure
1338 * should result in exception + longjmp to the cpu loop.
1339 */
1340 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1341 access_type, mmu_idx, false, retaddr);
1342 assert(ok);
1343 }
1344
1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1346 MMUAccessType access_type,
1347 int mmu_idx, uintptr_t retaddr)
1348 {
1349 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1350 mmu_idx, retaddr);
1351 }
1352
1353 static MemoryRegionSection *
1354 io_prepare(hwaddr *out_offset, CPUArchState *env, hwaddr xlat,
1355 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1356 {
1357 CPUState *cpu = env_cpu(env);
1358 MemoryRegionSection *section;
1359 hwaddr mr_offset;
1360
1361 section = iotlb_to_section(cpu, xlat, attrs);
1362 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1363 cpu->mem_io_pc = retaddr;
1364 if (!cpu->can_do_io) {
1365 cpu_io_recompile(cpu, retaddr);
1366 }
1367
1368 *out_offset = mr_offset;
1369 return section;
1370 }
1371
1372 static void io_failed(CPUArchState *env, CPUTLBEntryFull *full, vaddr addr,
1373 unsigned size, MMUAccessType access_type, int mmu_idx,
1374 MemTxResult response, uintptr_t retaddr)
1375 {
1376 CPUState *cpu = env_cpu(env);
1377
1378 if (!cpu->ignore_memory_transaction_failures) {
1379 CPUClass *cc = CPU_GET_CLASS(cpu);
1380
1381 if (cc->tcg_ops->do_transaction_failed) {
1382 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1383
1384 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1385 access_type, mmu_idx,
1386 full->attrs, response, retaddr);
1387 }
1388 }
1389 }
1390
1391 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1392 int mmu_idx, uint64_t val, vaddr addr,
1393 uintptr_t retaddr, MemOp op)
1394 {
1395 MemoryRegionSection *section;
1396 hwaddr mr_offset;
1397 MemoryRegion *mr;
1398 MemTxResult r;
1399
1400 section = io_prepare(&mr_offset, env, full->xlat_section,
1401 full->attrs, addr, retaddr);
1402 mr = section->mr;
1403
1404 {
1405 QEMU_IOTHREAD_LOCK_GUARD();
1406 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1407 }
1408
1409 if (r != MEMTX_OK) {
1410 io_failed(env, full, addr, memop_size(op), MMU_DATA_STORE, mmu_idx,
1411 r, retaddr);
1412 }
1413 }
1414
1415 /* Return true if ADDR is present in the victim tlb, and has been copied
1416 back to the main tlb. */
1417 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1418 MMUAccessType access_type, vaddr page)
1419 {
1420 size_t vidx;
1421
1422 assert_cpu_is_self(env_cpu(env));
1423 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1424 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1425 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1426
1427 if (cmp == page) {
1428 /* Found entry in victim tlb, swap tlb and iotlb. */
1429 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1430
1431 qemu_spin_lock(&env_tlb(env)->c.lock);
1432 copy_tlb_helper_locked(&tmptlb, tlb);
1433 copy_tlb_helper_locked(tlb, vtlb);
1434 copy_tlb_helper_locked(vtlb, &tmptlb);
1435 qemu_spin_unlock(&env_tlb(env)->c.lock);
1436
1437 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1438 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1439 CPUTLBEntryFull tmpf;
1440 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1441 return true;
1442 }
1443 }
1444 return false;
1445 }
1446
1447 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1448 CPUTLBEntryFull *full, uintptr_t retaddr)
1449 {
1450 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1451
1452 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1453
1454 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1455 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1456 }
1457
1458 /*
1459 * Set both VGA and migration bits for simplicity and to remove
1460 * the notdirty callback faster.
1461 */
1462 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1463
1464 /* We remove the notdirty callback only if the code has been flushed. */
1465 if (!cpu_physical_memory_is_clean(ram_addr)) {
1466 trace_memory_notdirty_set_dirty(mem_vaddr);
1467 tlb_set_dirty(cpu, mem_vaddr);
1468 }
1469 }
1470
1471 static int probe_access_internal(CPUArchState *env, vaddr addr,
1472 int fault_size, MMUAccessType access_type,
1473 int mmu_idx, bool nonfault,
1474 void **phost, CPUTLBEntryFull **pfull,
1475 uintptr_t retaddr, bool check_mem_cbs)
1476 {
1477 uintptr_t index = tlb_index(env, mmu_idx, addr);
1478 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1479 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1480 vaddr page_addr = addr & TARGET_PAGE_MASK;
1481 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1482 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1483 CPUTLBEntryFull *full;
1484
1485 if (!tlb_hit_page(tlb_addr, page_addr)) {
1486 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1487 CPUState *cs = env_cpu(env);
1488
1489 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1490 mmu_idx, nonfault, retaddr)) {
1491 /* Non-faulting page table read failed. */
1492 *phost = NULL;
1493 *pfull = NULL;
1494 return TLB_INVALID_MASK;
1495 }
1496
1497 /* TLB resize via tlb_fill may have moved the entry. */
1498 index = tlb_index(env, mmu_idx, addr);
1499 entry = tlb_entry(env, mmu_idx, addr);
1500
1501 /*
1502 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1503 * to force the next access through tlb_fill. We've just
1504 * called tlb_fill, so we know that this entry *is* valid.
1505 */
1506 flags &= ~TLB_INVALID_MASK;
1507 }
1508 tlb_addr = tlb_read_idx(entry, access_type);
1509 }
1510 flags &= tlb_addr;
1511
1512 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1513 flags |= full->slow_flags[access_type];
1514
1515 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1516 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1517 ||
1518 (access_type != MMU_INST_FETCH && force_mmio)) {
1519 *phost = NULL;
1520 return TLB_MMIO;
1521 }
1522
1523 /* Everything else is RAM. */
1524 *phost = (void *)((uintptr_t)addr + entry->addend);
1525 return flags;
1526 }
1527
1528 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1529 MMUAccessType access_type, int mmu_idx,
1530 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1531 uintptr_t retaddr)
1532 {
1533 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1534 nonfault, phost, pfull, retaddr, true);
1535
1536 /* Handle clean RAM pages. */
1537 if (unlikely(flags & TLB_NOTDIRTY)) {
1538 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1539 flags &= ~TLB_NOTDIRTY;
1540 }
1541
1542 return flags;
1543 }
1544
1545 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1546 MMUAccessType access_type, int mmu_idx,
1547 void **phost, CPUTLBEntryFull **pfull)
1548 {
1549 void *discard_phost;
1550 CPUTLBEntryFull *discard_tlb;
1551
1552 /* privately handle users that don't need full results */
1553 phost = phost ? phost : &discard_phost;
1554 pfull = pfull ? pfull : &discard_tlb;
1555
1556 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1557 true, phost, pfull, 0, false);
1558
1559 /* Handle clean RAM pages. */
1560 if (unlikely(flags & TLB_NOTDIRTY)) {
1561 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1562 flags &= ~TLB_NOTDIRTY;
1563 }
1564
1565 return flags;
1566 }
1567
1568 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1569 MMUAccessType access_type, int mmu_idx,
1570 bool nonfault, void **phost, uintptr_t retaddr)
1571 {
1572 CPUTLBEntryFull *full;
1573 int flags;
1574
1575 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1576
1577 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1578 nonfault, phost, &full, retaddr, true);
1579
1580 /* Handle clean RAM pages. */
1581 if (unlikely(flags & TLB_NOTDIRTY)) {
1582 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1583 flags &= ~TLB_NOTDIRTY;
1584 }
1585
1586 return flags;
1587 }
1588
1589 void *probe_access(CPUArchState *env, vaddr addr, int size,
1590 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1591 {
1592 CPUTLBEntryFull *full;
1593 void *host;
1594 int flags;
1595
1596 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1597
1598 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1599 false, &host, &full, retaddr, true);
1600
1601 /* Per the interface, size == 0 merely faults the access. */
1602 if (size == 0) {
1603 return NULL;
1604 }
1605
1606 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1607 /* Handle watchpoints. */
1608 if (flags & TLB_WATCHPOINT) {
1609 int wp_access = (access_type == MMU_DATA_STORE
1610 ? BP_MEM_WRITE : BP_MEM_READ);
1611 cpu_check_watchpoint(env_cpu(env), addr, size,
1612 full->attrs, wp_access, retaddr);
1613 }
1614
1615 /* Handle clean RAM pages. */
1616 if (flags & TLB_NOTDIRTY) {
1617 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1618 }
1619 }
1620
1621 return host;
1622 }
1623
1624 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1625 MMUAccessType access_type, int mmu_idx)
1626 {
1627 CPUTLBEntryFull *full;
1628 void *host;
1629 int flags;
1630
1631 flags = probe_access_internal(env, addr, 0, access_type,
1632 mmu_idx, true, &host, &full, 0, false);
1633
1634 /* No combination of flags are expected by the caller. */
1635 return flags ? NULL : host;
1636 }
1637
1638 /*
1639 * Return a ram_addr_t for the virtual address for execution.
1640 *
1641 * Return -1 if we can't translate and execute from an entire page
1642 * of RAM. This will force us to execute by loading and translating
1643 * one insn at a time, without caching.
1644 *
1645 * NOTE: This function will trigger an exception if the page is
1646 * not executable.
1647 */
1648 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1649 void **hostp)
1650 {
1651 CPUTLBEntryFull *full;
1652 void *p;
1653
1654 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1655 cpu_mmu_index(env, true), false,
1656 &p, &full, 0, false);
1657 if (p == NULL) {
1658 return -1;
1659 }
1660
1661 if (full->lg_page_size < TARGET_PAGE_BITS) {
1662 return -1;
1663 }
1664
1665 if (hostp) {
1666 *hostp = p;
1667 }
1668 return qemu_ram_addr_from_host_nofail(p);
1669 }
1670
1671 /* Load/store with atomicity primitives. */
1672 #include "ldst_atomicity.c.inc"
1673
1674 #ifdef CONFIG_PLUGIN
1675 /*
1676 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1677 * This should be a hot path as we will have just looked this path up
1678 * in the softmmu lookup code (or helper). We don't handle re-fills or
1679 * checking the victim table. This is purely informational.
1680 *
1681 * The one corner case is i/o write, which can cause changes to the
1682 * address space. Those changes, and the corresponding tlb flush,
1683 * should be delayed until the next TB, so even then this ought not fail.
1684 * But check, Just in Case.
1685 */
1686 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1687 bool is_store, struct qemu_plugin_hwaddr *data)
1688 {
1689 CPUArchState *env = cpu->env_ptr;
1690 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1691 uintptr_t index = tlb_index(env, mmu_idx, addr);
1692 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1693 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1694 CPUTLBEntryFull *full;
1695
1696 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1697 return false;
1698 }
1699
1700 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1701 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1702
1703 /* We must have an iotlb entry for MMIO */
1704 if (tlb_addr & TLB_MMIO) {
1705 MemoryRegionSection *section =
1706 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1707 full->attrs);
1708 data->is_io = true;
1709 data->mr = section->mr;
1710 } else {
1711 data->is_io = false;
1712 data->mr = NULL;
1713 }
1714 return true;
1715 }
1716 #endif
1717
1718 /*
1719 * Probe for a load/store operation.
1720 * Return the host address and into @flags.
1721 */
1722
1723 typedef struct MMULookupPageData {
1724 CPUTLBEntryFull *full;
1725 void *haddr;
1726 vaddr addr;
1727 int flags;
1728 int size;
1729 } MMULookupPageData;
1730
1731 typedef struct MMULookupLocals {
1732 MMULookupPageData page[2];
1733 MemOp memop;
1734 int mmu_idx;
1735 } MMULookupLocals;
1736
1737 /**
1738 * mmu_lookup1: translate one page
1739 * @env: cpu context
1740 * @data: lookup parameters
1741 * @mmu_idx: virtual address context
1742 * @access_type: load/store/code
1743 * @ra: return address into tcg generated code, or 0
1744 *
1745 * Resolve the translation for the one page at @data.addr, filling in
1746 * the rest of @data with the results. If the translation fails,
1747 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1748 * @mmu_idx may have resized.
1749 */
1750 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1751 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1752 {
1753 vaddr addr = data->addr;
1754 uintptr_t index = tlb_index(env, mmu_idx, addr);
1755 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1756 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1757 bool maybe_resized = false;
1758 CPUTLBEntryFull *full;
1759 int flags;
1760
1761 /* If the TLB entry is for a different page, reload and try again. */
1762 if (!tlb_hit(tlb_addr, addr)) {
1763 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1764 addr & TARGET_PAGE_MASK)) {
1765 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1766 maybe_resized = true;
1767 index = tlb_index(env, mmu_idx, addr);
1768 entry = tlb_entry(env, mmu_idx, addr);
1769 }
1770 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1771 }
1772
1773 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1774 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1775 flags |= full->slow_flags[access_type];
1776
1777 data->full = full;
1778 data->flags = flags;
1779 /* Compute haddr speculatively; depending on flags it might be invalid. */
1780 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1781
1782 return maybe_resized;
1783 }
1784
1785 /**
1786 * mmu_watch_or_dirty
1787 * @env: cpu context
1788 * @data: lookup parameters
1789 * @access_type: load/store/code
1790 * @ra: return address into tcg generated code, or 0
1791 *
1792 * Trigger watchpoints for @data.addr:@data.size;
1793 * record writes to protected clean pages.
1794 */
1795 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1796 MMUAccessType access_type, uintptr_t ra)
1797 {
1798 CPUTLBEntryFull *full = data->full;
1799 vaddr addr = data->addr;
1800 int flags = data->flags;
1801 int size = data->size;
1802
1803 /* On watchpoint hit, this will longjmp out. */
1804 if (flags & TLB_WATCHPOINT) {
1805 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1806 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1807 flags &= ~TLB_WATCHPOINT;
1808 }
1809
1810 /* Note that notdirty is only set for writes. */
1811 if (flags & TLB_NOTDIRTY) {
1812 notdirty_write(env_cpu(env), addr, size, full, ra);
1813 flags &= ~TLB_NOTDIRTY;
1814 }
1815 data->flags = flags;
1816 }
1817
1818 /**
1819 * mmu_lookup: translate page(s)
1820 * @env: cpu context
1821 * @addr: virtual address
1822 * @oi: combined mmu_idx and MemOp
1823 * @ra: return address into tcg generated code, or 0
1824 * @access_type: load/store/code
1825 * @l: output result
1826 *
1827 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1828 * bytes. Return true if the lookup crosses a page boundary.
1829 */
1830 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1831 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1832 {
1833 unsigned a_bits;
1834 bool crosspage;
1835 int flags;
1836
1837 l->memop = get_memop(oi);
1838 l->mmu_idx = get_mmuidx(oi);
1839
1840 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1841
1842 /* Handle CPU specific unaligned behaviour */
1843 a_bits = get_alignment_bits(l->memop);
1844 if (addr & ((1 << a_bits) - 1)) {
1845 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1846 }
1847
1848 l->page[0].addr = addr;
1849 l->page[0].size = memop_size(l->memop);
1850 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1851 l->page[1].size = 0;
1852 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1853
1854 if (likely(!crosspage)) {
1855 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1856
1857 flags = l->page[0].flags;
1858 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1859 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1860 }
1861 if (unlikely(flags & TLB_BSWAP)) {
1862 l->memop ^= MO_BSWAP;
1863 }
1864 } else {
1865 /* Finish compute of page crossing. */
1866 int size0 = l->page[1].addr - addr;
1867 l->page[1].size = l->page[0].size - size0;
1868 l->page[0].size = size0;
1869
1870 /*
1871 * Lookup both pages, recognizing exceptions from either. If the
1872 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1873 */
1874 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1875 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1876 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1877 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1878 }
1879
1880 flags = l->page[0].flags | l->page[1].flags;
1881 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1882 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1883 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1884 }
1885
1886 /*
1887 * Since target/sparc is the only user of TLB_BSWAP, and all
1888 * Sparc accesses are aligned, any treatment across two pages
1889 * would be arbitrary. Refuse it until there's a use.
1890 */
1891 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1892 }
1893
1894 return crosspage;
1895 }
1896
1897 /*
1898 * Probe for an atomic operation. Do not allow unaligned operations,
1899 * or io operations to proceed. Return the host address.
1900 */
1901 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1902 int size, uintptr_t retaddr)
1903 {
1904 uintptr_t mmu_idx = get_mmuidx(oi);
1905 MemOp mop = get_memop(oi);
1906 int a_bits = get_alignment_bits(mop);
1907 uintptr_t index;
1908 CPUTLBEntry *tlbe;
1909 vaddr tlb_addr;
1910 void *hostaddr;
1911 CPUTLBEntryFull *full;
1912
1913 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1914
1915 /* Adjust the given return address. */
1916 retaddr -= GETPC_ADJ;
1917
1918 /* Enforce guest required alignment. */
1919 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1920 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1921 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1922 mmu_idx, retaddr);
1923 }
1924
1925 /* Enforce qemu required alignment. */
1926 if (unlikely(addr & (size - 1))) {
1927 /* We get here if guest alignment was not requested,
1928 or was not enforced by cpu_unaligned_access above.
1929 We might widen the access and emulate, but for now
1930 mark an exception and exit the cpu loop. */
1931 goto stop_the_world;
1932 }
1933
1934 index = tlb_index(env, mmu_idx, addr);
1935 tlbe = tlb_entry(env, mmu_idx, addr);
1936
1937 /* Check TLB entry and enforce page permissions. */
1938 tlb_addr = tlb_addr_write(tlbe);
1939 if (!tlb_hit(tlb_addr, addr)) {
1940 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1941 addr & TARGET_PAGE_MASK)) {
1942 tlb_fill(env_cpu(env), addr, size,
1943 MMU_DATA_STORE, mmu_idx, retaddr);
1944 index = tlb_index(env, mmu_idx, addr);
1945 tlbe = tlb_entry(env, mmu_idx, addr);
1946 }
1947 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1948 }
1949
1950 /*
1951 * Let the guest notice RMW on a write-only page.
1952 * We have just verified that the page is writable.
1953 * Subpage lookups may have left TLB_INVALID_MASK set,
1954 * but addr_read will only be -1 if PAGE_READ was unset.
1955 */
1956 if (unlikely(tlbe->addr_read == -1)) {
1957 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1958 /*
1959 * Since we don't support reads and writes to different
1960 * addresses, and we do have the proper page loaded for
1961 * write, this shouldn't ever return. But just in case,
1962 * handle via stop-the-world.
1963 */
1964 goto stop_the_world;
1965 }
1966 /* Collect tlb flags for read. */
1967 tlb_addr |= tlbe->addr_read;
1968
1969 /* Notice an IO access or a needs-MMU-lookup access */
1970 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1971 /* There's really nothing that can be done to
1972 support this apart from stop-the-world. */
1973 goto stop_the_world;
1974 }
1975
1976 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1977 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1978
1979 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1980 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1981 }
1982
1983 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1984 int wp_flags = 0;
1985
1986 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1987 wp_flags |= BP_MEM_WRITE;
1988 }
1989 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1990 wp_flags |= BP_MEM_READ;
1991 }
1992 if (wp_flags) {
1993 cpu_check_watchpoint(env_cpu(env), addr, size,
1994 full->attrs, wp_flags, retaddr);
1995 }
1996 }
1997
1998 return hostaddr;
1999
2000 stop_the_world:
2001 cpu_loop_exit_atomic(env_cpu(env), retaddr);
2002 }
2003
2004 /*
2005 * Load Helpers
2006 *
2007 * We support two different access types. SOFTMMU_CODE_ACCESS is
2008 * specifically for reading instructions from system memory. It is
2009 * called by the translation loop and in some helpers where the code
2010 * is disassembled. It shouldn't be called directly by guest code.
2011 *
2012 * For the benefit of TCG generated code, we want to avoid the
2013 * complication of ABI-specific return type promotion and always
2014 * return a value extended to the register size of the host. This is
2015 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2016 * data, and for that we always have uint64_t.
2017 *
2018 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2019 */
2020
2021 /**
2022 * do_ld_mmio_beN:
2023 * @env: cpu context
2024 * @full: page parameters
2025 * @ret_be: accumulated data
2026 * @addr: virtual address
2027 * @size: number of bytes
2028 * @mmu_idx: virtual address context
2029 * @ra: return address into tcg generated code, or 0
2030 * Context: iothread lock held
2031 *
2032 * Load @size bytes from @addr, which is memory-mapped i/o.
2033 * The bytes are concatenated in big-endian order with @ret_be.
2034 */
2035 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2036 uint64_t ret_be, vaddr addr, int size,
2037 int mmu_idx, MMUAccessType type, uintptr_t ra)
2038 {
2039 MemoryRegionSection *section;
2040 hwaddr mr_offset;
2041 MemoryRegion *mr;
2042 MemTxAttrs attrs;
2043
2044 tcg_debug_assert(size > 0 && size <= 8);
2045
2046 attrs = full->attrs;
2047 section = io_prepare(&mr_offset, env, full->xlat_section, attrs, addr, ra);
2048 mr = section->mr;
2049
2050 do {
2051 MemOp this_mop;
2052 unsigned this_size;
2053 uint64_t val;
2054 MemTxResult r;
2055
2056 /* Read aligned pieces up to 8 bytes. */
2057 this_mop = ctz32(size | (int)addr | 8);
2058 this_size = 1 << this_mop;
2059 this_mop |= MO_BE;
2060
2061 r = memory_region_dispatch_read(mr, mr_offset, &val, this_mop, attrs);
2062 if (unlikely(r != MEMTX_OK)) {
2063 io_failed(env, full, addr, this_size, type, mmu_idx, r, ra);
2064 }
2065 if (this_size == 8) {
2066 return val;
2067 }
2068
2069 ret_be = (ret_be << (this_size * 8)) | val;
2070 addr += this_size;
2071 mr_offset += this_size;
2072 size -= this_size;
2073 } while (size);
2074
2075 return ret_be;
2076 }
2077
2078 /**
2079 * do_ld_bytes_beN
2080 * @p: translation parameters
2081 * @ret_be: accumulated data
2082 *
2083 * Load @p->size bytes from @p->haddr, which is RAM.
2084 * The bytes to concatenated in big-endian order with @ret_be.
2085 */
2086 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2087 {
2088 uint8_t *haddr = p->haddr;
2089 int i, size = p->size;
2090
2091 for (i = 0; i < size; i++) {
2092 ret_be = (ret_be << 8) | haddr[i];
2093 }
2094 return ret_be;
2095 }
2096
2097 /**
2098 * do_ld_parts_beN
2099 * @p: translation parameters
2100 * @ret_be: accumulated data
2101 *
2102 * As do_ld_bytes_beN, but atomically on each aligned part.
2103 */
2104 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2105 {
2106 void *haddr = p->haddr;
2107 int size = p->size;
2108
2109 do {
2110 uint64_t x;
2111 int n;
2112
2113 /*
2114 * Find minimum of alignment and size.
2115 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2116 * would have only checked the low bits of addr|size once at the start,
2117 * but is just as easy.
2118 */
2119 switch (((uintptr_t)haddr | size) & 7) {
2120 case 4:
2121 x = cpu_to_be32(load_atomic4(haddr));
2122 ret_be = (ret_be << 32) | x;
2123 n = 4;
2124 break;
2125 case 2:
2126 case 6:
2127 x = cpu_to_be16(load_atomic2(haddr));
2128 ret_be = (ret_be << 16) | x;
2129 n = 2;
2130 break;
2131 default:
2132 x = *(uint8_t *)haddr;
2133 ret_be = (ret_be << 8) | x;
2134 n = 1;
2135 break;
2136 case 0:
2137 g_assert_not_reached();
2138 }
2139 haddr += n;
2140 size -= n;
2141 } while (size != 0);
2142 return ret_be;
2143 }
2144
2145 /**
2146 * do_ld_parts_be4
2147 * @p: translation parameters
2148 * @ret_be: accumulated data
2149 *
2150 * As do_ld_bytes_beN, but with one atomic load.
2151 * Four aligned bytes are guaranteed to cover the load.
2152 */
2153 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2154 {
2155 int o = p->addr & 3;
2156 uint32_t x = load_atomic4(p->haddr - o);
2157
2158 x = cpu_to_be32(x);
2159 x <<= o * 8;
2160 x >>= (4 - p->size) * 8;
2161 return (ret_be << (p->size * 8)) | x;
2162 }
2163
2164 /**
2165 * do_ld_parts_be8
2166 * @p: translation parameters
2167 * @ret_be: accumulated data
2168 *
2169 * As do_ld_bytes_beN, but with one atomic load.
2170 * Eight aligned bytes are guaranteed to cover the load.
2171 */
2172 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2173 MMULookupPageData *p, uint64_t ret_be)
2174 {
2175 int o = p->addr & 7;
2176 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2177
2178 x = cpu_to_be64(x);
2179 x <<= o * 8;
2180 x >>= (8 - p->size) * 8;
2181 return (ret_be << (p->size * 8)) | x;
2182 }
2183
2184 /**
2185 * do_ld_parts_be16
2186 * @p: translation parameters
2187 * @ret_be: accumulated data
2188 *
2189 * As do_ld_bytes_beN, but with one atomic load.
2190 * 16 aligned bytes are guaranteed to cover the load.
2191 */
2192 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2193 MMULookupPageData *p, uint64_t ret_be)
2194 {
2195 int o = p->addr & 15;
2196 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2197 int size = p->size;
2198
2199 if (!HOST_BIG_ENDIAN) {
2200 y = bswap128(y);
2201 }
2202 y = int128_lshift(y, o * 8);
2203 y = int128_urshift(y, (16 - size) * 8);
2204 x = int128_make64(ret_be);
2205 x = int128_lshift(x, size * 8);
2206 return int128_or(x, y);
2207 }
2208
2209 /*
2210 * Wrapper for the above.
2211 */
2212 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2213 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2214 MemOp mop, uintptr_t ra)
2215 {
2216 MemOp atom;
2217 unsigned tmp, half_size;
2218
2219 if (unlikely(p->flags & TLB_MMIO)) {
2220 QEMU_IOTHREAD_LOCK_GUARD();
2221 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2222 mmu_idx, type, ra);
2223 }
2224
2225 /*
2226 * It is a given that we cross a page and therefore there is no
2227 * atomicity for the load as a whole, but subobjects may need attention.
2228 */
2229 atom = mop & MO_ATOM_MASK;
2230 switch (atom) {
2231 case MO_ATOM_SUBALIGN:
2232 return do_ld_parts_beN(p, ret_be);
2233
2234 case MO_ATOM_IFALIGN_PAIR:
2235 case MO_ATOM_WITHIN16_PAIR:
2236 tmp = mop & MO_SIZE;
2237 tmp = tmp ? tmp - 1 : 0;
2238 half_size = 1 << tmp;
2239 if (atom == MO_ATOM_IFALIGN_PAIR
2240 ? p->size == half_size
2241 : p->size >= half_size) {
2242 if (!HAVE_al8_fast && p->size < 4) {
2243 return do_ld_whole_be4(p, ret_be);
2244 } else {
2245 return do_ld_whole_be8(env, ra, p, ret_be);
2246 }
2247 }
2248 /* fall through */
2249
2250 case MO_ATOM_IFALIGN:
2251 case MO_ATOM_WITHIN16:
2252 case MO_ATOM_NONE:
2253 return do_ld_bytes_beN(p, ret_be);
2254
2255 default:
2256 g_assert_not_reached();
2257 }
2258 }
2259
2260 /*
2261 * Wrapper for the above, for 8 < size < 16.
2262 */
2263 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2264 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2265 {
2266 int size = p->size;
2267 uint64_t b;
2268 MemOp atom;
2269
2270 if (unlikely(p->flags & TLB_MMIO)) {
2271 QEMU_IOTHREAD_LOCK_GUARD();
2272 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8,
2273 mmu_idx, MMU_DATA_LOAD, ra);
2274 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8,
2275 mmu_idx, MMU_DATA_LOAD, ra);
2276 return int128_make128(b, a);
2277 }
2278
2279 /*
2280 * It is a given that we cross a page and therefore there is no
2281 * atomicity for the load as a whole, but subobjects may need attention.
2282 */
2283 atom = mop & MO_ATOM_MASK;
2284 switch (atom) {
2285 case MO_ATOM_SUBALIGN:
2286 p->size = size - 8;
2287 a = do_ld_parts_beN(p, a);
2288 p->haddr += size - 8;
2289 p->size = 8;
2290 b = do_ld_parts_beN(p, 0);
2291 break;
2292
2293 case MO_ATOM_WITHIN16_PAIR:
2294 /* Since size > 8, this is the half that must be atomic. */
2295 return do_ld_whole_be16(env, ra, p, a);
2296
2297 case MO_ATOM_IFALIGN_PAIR:
2298 /*
2299 * Since size > 8, both halves are misaligned,
2300 * and so neither is atomic.
2301 */
2302 case MO_ATOM_IFALIGN:
2303 case MO_ATOM_WITHIN16:
2304 case MO_ATOM_NONE:
2305 p->size = size - 8;
2306 a = do_ld_bytes_beN(p, a);
2307 b = ldq_be_p(p->haddr + size - 8);
2308 break;
2309
2310 default:
2311 g_assert_not_reached();
2312 }
2313
2314 return int128_make128(b, a);
2315 }
2316
2317 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2318 MMUAccessType type, uintptr_t ra)
2319 {
2320 if (unlikely(p->flags & TLB_MMIO)) {
2321 QEMU_IOTHREAD_LOCK_GUARD();
2322 return do_ld_mmio_beN(env, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2323 } else {
2324 return *(uint8_t *)p->haddr;
2325 }
2326 }
2327
2328 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2329 MMUAccessType type, MemOp memop, uintptr_t ra)
2330 {
2331 uint16_t ret;
2332
2333 if (unlikely(p->flags & TLB_MMIO)) {
2334 QEMU_IOTHREAD_LOCK_GUARD();
2335 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2336 if ((memop & MO_BSWAP) == MO_LE) {
2337 ret = bswap16(ret);
2338 }
2339 } else {
2340 /* Perform the load host endian, then swap if necessary. */
2341 ret = load_atom_2(env, ra, p->haddr, memop);
2342 if (memop & MO_BSWAP) {
2343 ret = bswap16(ret);
2344 }
2345 }
2346 return ret;
2347 }
2348
2349 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2350 MMUAccessType type, MemOp memop, uintptr_t ra)
2351 {
2352 uint32_t ret;
2353
2354 if (unlikely(p->flags & TLB_MMIO)) {
2355 QEMU_IOTHREAD_LOCK_GUARD();
2356 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2357 if ((memop & MO_BSWAP) == MO_LE) {
2358 ret = bswap32(ret);
2359 }
2360 } else {
2361 /* Perform the load host endian. */
2362 ret = load_atom_4(env, ra, p->haddr, memop);
2363 if (memop & MO_BSWAP) {
2364 ret = bswap32(ret);
2365 }
2366 }
2367 return ret;
2368 }
2369
2370 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2371 MMUAccessType type, MemOp memop, uintptr_t ra)
2372 {
2373 uint64_t ret;
2374
2375 if (unlikely(p->flags & TLB_MMIO)) {
2376 QEMU_IOTHREAD_LOCK_GUARD();
2377 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2378 if ((memop & MO_BSWAP) == MO_LE) {
2379 ret = bswap64(ret);
2380 }
2381 } else {
2382 /* Perform the load host endian. */
2383 ret = load_atom_8(env, ra, p->haddr, memop);
2384 if (memop & MO_BSWAP) {
2385 ret = bswap64(ret);
2386 }
2387 }
2388 return ret;
2389 }
2390
2391 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2392 uintptr_t ra, MMUAccessType access_type)
2393 {
2394 MMULookupLocals l;
2395 bool crosspage;
2396
2397 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2398 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2399 tcg_debug_assert(!crosspage);
2400
2401 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2402 }
2403
2404 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2405 MemOpIdx oi, uintptr_t retaddr)
2406 {
2407 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2408 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2409 }
2410
2411 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2412 uintptr_t ra, MMUAccessType access_type)
2413 {
2414 MMULookupLocals l;
2415 bool crosspage;
2416 uint16_t ret;
2417 uint8_t a, b;
2418
2419 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2420 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2421 if (likely(!crosspage)) {
2422 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2423 }
2424
2425 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2426 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2427
2428 if ((l.memop & MO_BSWAP) == MO_LE) {
2429 ret = a | (b << 8);
2430 } else {
2431 ret = b | (a << 8);
2432 }
2433 return ret;
2434 }
2435
2436 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2437 MemOpIdx oi, uintptr_t retaddr)
2438 {
2439 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2440 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2441 }
2442
2443 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2444 uintptr_t ra, MMUAccessType access_type)
2445 {
2446 MMULookupLocals l;
2447 bool crosspage;
2448 uint32_t ret;
2449
2450 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2451 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2452 if (likely(!crosspage)) {
2453 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2454 }
2455
2456 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2457 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2458 if ((l.memop & MO_BSWAP) == MO_LE) {
2459 ret = bswap32(ret);
2460 }
2461 return ret;
2462 }
2463
2464 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2465 MemOpIdx oi, uintptr_t retaddr)
2466 {
2467 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2468 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2469 }
2470
2471 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2472 uintptr_t ra, MMUAccessType access_type)
2473 {
2474 MMULookupLocals l;
2475 bool crosspage;
2476 uint64_t ret;
2477
2478 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2479 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2480 if (likely(!crosspage)) {
2481 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2482 }
2483
2484 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2485 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2486 if ((l.memop & MO_BSWAP) == MO_LE) {
2487 ret = bswap64(ret);
2488 }
2489 return ret;
2490 }
2491
2492 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2493 MemOpIdx oi, uintptr_t retaddr)
2494 {
2495 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2496 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2497 }
2498
2499 /*
2500 * Provide signed versions of the load routines as well. We can of course
2501 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2502 */
2503
2504 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2505 MemOpIdx oi, uintptr_t retaddr)
2506 {
2507 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2508 }
2509
2510 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2511 MemOpIdx oi, uintptr_t retaddr)
2512 {
2513 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2514 }
2515
2516 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2517 MemOpIdx oi, uintptr_t retaddr)
2518 {
2519 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2520 }
2521
2522 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2523 MemOpIdx oi, uintptr_t ra)
2524 {
2525 MMULookupLocals l;
2526 bool crosspage;
2527 uint64_t a, b;
2528 Int128 ret;
2529 int first;
2530
2531 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2532 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2533 if (likely(!crosspage)) {
2534 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2535 QEMU_IOTHREAD_LOCK_GUARD();
2536 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8,
2537 l.mmu_idx, MMU_DATA_LOAD, ra);
2538 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8,
2539 l.mmu_idx, MMU_DATA_LOAD, ra);
2540 ret = int128_make128(b, a);
2541 if ((l.memop & MO_BSWAP) == MO_LE) {
2542 ret = bswap128(ret);
2543 }
2544 } else {
2545 /* Perform the load host endian. */
2546 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2547 if (l.memop & MO_BSWAP) {
2548 ret = bswap128(ret);
2549 }
2550 }
2551 return ret;
2552 }
2553
2554 first = l.page[0].size;
2555 if (first == 8) {
2556 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2557
2558 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2559 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2560 if ((mop8 & MO_BSWAP) == MO_LE) {
2561 ret = int128_make128(a, b);
2562 } else {
2563 ret = int128_make128(b, a);
2564 }
2565 return ret;
2566 }
2567
2568 if (first < 8) {
2569 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2570 MMU_DATA_LOAD, l.memop, ra);
2571 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2572 } else {
2573 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2574 b = int128_getlo(ret);
2575 ret = int128_lshift(ret, l.page[1].size * 8);
2576 a = int128_gethi(ret);
2577 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2578 MMU_DATA_LOAD, l.memop, ra);
2579 ret = int128_make128(b, a);
2580 }
2581 if ((l.memop & MO_BSWAP) == MO_LE) {
2582 ret = bswap128(ret);
2583 }
2584 return ret;
2585 }
2586
2587 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2588 uint32_t oi, uintptr_t retaddr)
2589 {
2590 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2591 return do_ld16_mmu(env, addr, oi, retaddr);
2592 }
2593
2594 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2595 {
2596 return helper_ld16_mmu(env, addr, oi, GETPC());
2597 }
2598
2599 /*
2600 * Load helpers for cpu_ldst.h.
2601 */
2602
2603 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2604 {
2605 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2606 }
2607
2608 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2609 {
2610 uint8_t ret;
2611
2612 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2613 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2614 plugin_load_cb(env, addr, oi);
2615 return ret;
2616 }
2617
2618 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2619 MemOpIdx oi, uintptr_t ra)
2620 {
2621 uint16_t ret;
2622
2623 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2624 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2625 plugin_load_cb(env, addr, oi);
2626 return ret;
2627 }
2628
2629 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2630 MemOpIdx oi, uintptr_t ra)
2631 {
2632 uint32_t ret;
2633
2634 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2635 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2636 plugin_load_cb(env, addr, oi);
2637 return ret;
2638 }
2639
2640 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2641 MemOpIdx oi, uintptr_t ra)
2642 {
2643 uint64_t ret;
2644
2645 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2646 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2647 plugin_load_cb(env, addr, oi);
2648 return ret;
2649 }
2650
2651 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2652 MemOpIdx oi, uintptr_t ra)
2653 {
2654 Int128 ret;
2655
2656 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2657 ret = do_ld16_mmu(env, addr, oi, ra);
2658 plugin_load_cb(env, addr, oi);
2659 return ret;
2660 }
2661
2662 /*
2663 * Store Helpers
2664 */
2665
2666 /**
2667 * do_st_mmio_leN:
2668 * @env: cpu context
2669 * @full: page parameters
2670 * @val_le: data to store
2671 * @addr: virtual address
2672 * @size: number of bytes
2673 * @mmu_idx: virtual address context
2674 * @ra: return address into tcg generated code, or 0
2675 * Context: iothread lock held
2676 *
2677 * Store @size bytes at @addr, which is memory-mapped i/o.
2678 * The bytes to store are extracted in little-endian order from @val_le;
2679 * return the bytes of @val_le beyond @p->size that have not been stored.
2680 */
2681 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2682 uint64_t val_le, vaddr addr, int size,
2683 int mmu_idx, uintptr_t ra)
2684 {
2685 tcg_debug_assert(size > 0 && size <= 8);
2686
2687 do {
2688 /* Store aligned pieces up to 8 bytes. */
2689 switch ((size | (int)addr) & 7) {
2690 case 1:
2691 case 3:
2692 case 5:
2693 case 7:
2694 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB);
2695 val_le >>= 8;
2696 size -= 1;
2697 addr += 1;
2698 break;
2699 case 2:
2700 case 6:
2701 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW);
2702 val_le >>= 16;
2703 size -= 2;
2704 addr += 2;
2705 break;
2706 case 4:
2707 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL);
2708 val_le >>= 32;
2709 size -= 4;
2710 addr += 4;
2711 break;
2712 case 0:
2713 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ);
2714 return 0;
2715 default:
2716 qemu_build_not_reached();
2717 }
2718 } while (size);
2719
2720 return val_le;
2721 }
2722
2723 /*
2724 * Wrapper for the above.
2725 */
2726 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2727 uint64_t val_le, int mmu_idx,
2728 MemOp mop, uintptr_t ra)
2729 {
2730 MemOp atom;
2731 unsigned tmp, half_size;
2732
2733 if (unlikely(p->flags & TLB_MMIO)) {
2734 QEMU_IOTHREAD_LOCK_GUARD();
2735 return do_st_mmio_leN(env, p->full, val_le, p->addr,
2736 p->size, mmu_idx, ra);
2737 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2738 return val_le >> (p->size * 8);
2739 }
2740
2741 /*
2742 * It is a given that we cross a page and therefore there is no atomicity
2743 * for the store as a whole, but subobjects may need attention.
2744 */
2745 atom = mop & MO_ATOM_MASK;
2746 switch (atom) {
2747 case MO_ATOM_SUBALIGN:
2748 return store_parts_leN(p->haddr, p->size, val_le);
2749
2750 case MO_ATOM_IFALIGN_PAIR:
2751 case MO_ATOM_WITHIN16_PAIR:
2752 tmp = mop & MO_SIZE;
2753 tmp = tmp ? tmp - 1 : 0;
2754 half_size = 1 << tmp;
2755 if (atom == MO_ATOM_IFALIGN_PAIR
2756 ? p->size == half_size
2757 : p->size >= half_size) {
2758 if (!HAVE_al8_fast && p->size <= 4) {
2759 return store_whole_le4(p->haddr, p->size, val_le);
2760 } else if (HAVE_al8) {
2761 return store_whole_le8(p->haddr, p->size, val_le);
2762 } else {
2763 cpu_loop_exit_atomic(env_cpu(env), ra);
2764 }
2765 }
2766 /* fall through */
2767
2768 case MO_ATOM_IFALIGN:
2769 case MO_ATOM_WITHIN16:
2770 case MO_ATOM_NONE:
2771 return store_bytes_leN(p->haddr, p->size, val_le);
2772
2773 default:
2774 g_assert_not_reached();
2775 }
2776 }
2777
2778 /*
2779 * Wrapper for the above, for 8 < size < 16.
2780 */
2781 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2782 Int128 val_le, int mmu_idx,
2783 MemOp mop, uintptr_t ra)
2784 {
2785 int size = p->size;
2786 MemOp atom;
2787
2788 if (unlikely(p->flags & TLB_MMIO)) {
2789 QEMU_IOTHREAD_LOCK_GUARD();
2790 do_st_mmio_leN(env, p->full, int128_getlo(val_le),
2791 p->addr, 8, mmu_idx, ra);
2792 return do_st_mmio_leN(env, p->full, int128_gethi(val_le),
2793 p->addr + 8, size - 8, mmu_idx, ra);
2794 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2795 return int128_gethi(val_le) >> ((size - 8) * 8);
2796 }
2797
2798 /*
2799 * It is a given that we cross a page and therefore there is no atomicity
2800 * for the store as a whole, but subobjects may need attention.
2801 */
2802 atom = mop & MO_ATOM_MASK;
2803 switch (atom) {
2804 case MO_ATOM_SUBALIGN:
2805 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2806 return store_parts_leN(p->haddr + 8, p->size - 8,
2807 int128_gethi(val_le));
2808
2809 case MO_ATOM_WITHIN16_PAIR:
2810 /* Since size > 8, this is the half that must be atomic. */
2811 if (!HAVE_ATOMIC128_RW) {
2812 cpu_loop_exit_atomic(env_cpu(env), ra);
2813 }
2814 return store_whole_le16(p->haddr, p->size, val_le);
2815
2816 case MO_ATOM_IFALIGN_PAIR:
2817 /*
2818 * Since size > 8, both halves are misaligned,
2819 * and so neither is atomic.
2820 */
2821 case MO_ATOM_IFALIGN:
2822 case MO_ATOM_WITHIN16:
2823 case MO_ATOM_NONE:
2824 stq_le_p(p->haddr, int128_getlo(val_le));
2825 return store_bytes_leN(p->haddr + 8, p->size - 8,
2826 int128_gethi(val_le));
2827
2828 default:
2829 g_assert_not_reached();
2830 }
2831 }
2832
2833 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2834 int mmu_idx, uintptr_t ra)
2835 {
2836 if (unlikely(p->flags & TLB_MMIO)) {
2837 QEMU_IOTHREAD_LOCK_GUARD();
2838 do_st_mmio_leN(env, p->full, val, p->addr, 1, mmu_idx, ra);
2839 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2840 /* nothing */
2841 } else {
2842 *(uint8_t *)p->haddr = val;
2843 }
2844 }
2845
2846 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2847 int mmu_idx, MemOp memop, uintptr_t ra)
2848 {
2849 if (unlikely(p->flags & TLB_MMIO)) {
2850 if ((memop & MO_BSWAP) != MO_LE) {
2851 val = bswap16(val);
2852 }
2853 QEMU_IOTHREAD_LOCK_GUARD();
2854 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2855 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2856 /* nothing */
2857 } else {
2858 /* Swap to host endian if necessary, then store. */
2859 if (memop & MO_BSWAP) {
2860 val = bswap16(val);
2861 }
2862 store_atom_2(env, ra, p->haddr, memop, val);
2863 }
2864 }
2865
2866 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2867 int mmu_idx, MemOp memop, uintptr_t ra)
2868 {
2869 if (unlikely(p->flags & TLB_MMIO)) {
2870 if ((memop & MO_BSWAP) != MO_LE) {
2871 val = bswap32(val);
2872 }
2873 QEMU_IOTHREAD_LOCK_GUARD();
2874 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2875 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2876 /* nothing */
2877 } else {
2878 /* Swap to host endian if necessary, then store. */
2879 if (memop & MO_BSWAP) {
2880 val = bswap32(val);
2881 }
2882 store_atom_4(env, ra, p->haddr, memop, val);
2883 }
2884 }
2885
2886 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2887 int mmu_idx, MemOp memop, uintptr_t ra)
2888 {
2889 if (unlikely(p->flags & TLB_MMIO)) {
2890 if ((memop & MO_BSWAP) != MO_LE) {
2891 val = bswap64(val);
2892 }
2893 QEMU_IOTHREAD_LOCK_GUARD();
2894 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2895 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2896 /* nothing */
2897 } else {
2898 /* Swap to host endian if necessary, then store. */
2899 if (memop & MO_BSWAP) {
2900 val = bswap64(val);
2901 }
2902 store_atom_8(env, ra, p->haddr, memop, val);
2903 }
2904 }
2905
2906 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2907 MemOpIdx oi, uintptr_t ra)
2908 {
2909 MMULookupLocals l;
2910 bool crosspage;
2911
2912 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2913 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2914 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2915 tcg_debug_assert(!crosspage);
2916
2917 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2918 }
2919
2920 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2921 MemOpIdx oi, uintptr_t ra)
2922 {
2923 MMULookupLocals l;
2924 bool crosspage;
2925 uint8_t a, b;
2926
2927 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2928 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2929 if (likely(!crosspage)) {
2930 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2931 return;
2932 }
2933
2934 if ((l.memop & MO_BSWAP) == MO_LE) {
2935 a = val, b = val >> 8;
2936 } else {
2937 b = val, a = val >> 8;
2938 }
2939 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2940 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2941 }
2942
2943 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2944 MemOpIdx oi, uintptr_t retaddr)
2945 {
2946 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2947 do_st2_mmu(env, addr, val, oi, retaddr);
2948 }
2949
2950 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2951 MemOpIdx oi, uintptr_t ra)
2952 {
2953 MMULookupLocals l;
2954 bool crosspage;
2955
2956 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2957 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2958 if (likely(!crosspage)) {
2959 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2960 return;
2961 }
2962
2963 /* Swap to little endian for simplicity, then store by bytes. */
2964 if ((l.memop & MO_BSWAP) != MO_LE) {
2965 val = bswap32(val);
2966 }
2967 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2968 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2969 }
2970
2971 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2972 MemOpIdx oi, uintptr_t retaddr)
2973 {
2974 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2975 do_st4_mmu(env, addr, val, oi, retaddr);
2976 }
2977
2978 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
2979 MemOpIdx oi, uintptr_t ra)
2980 {
2981 MMULookupLocals l;
2982 bool crosspage;
2983
2984 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2985 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2986 if (likely(!crosspage)) {
2987 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2988 return;
2989 }
2990
2991 /* Swap to little endian for simplicity, then store by bytes. */
2992 if ((l.memop & MO_BSWAP) != MO_LE) {
2993 val = bswap64(val);
2994 }
2995 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2996 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2997 }
2998
2999 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3000 MemOpIdx oi, uintptr_t retaddr)
3001 {
3002 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3003 do_st8_mmu(env, addr, val, oi, retaddr);
3004 }
3005
3006 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3007 MemOpIdx oi, uintptr_t ra)
3008 {
3009 MMULookupLocals l;
3010 bool crosspage;
3011 uint64_t a, b;
3012 int first;
3013
3014 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3015 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3016 if (likely(!crosspage)) {
3017 if (unlikely(l.page[0].flags & TLB_MMIO)) {
3018 if ((l.memop & MO_BSWAP) != MO_LE) {
3019 val = bswap128(val);
3020 }
3021 a = int128_getlo(val);
3022 b = int128_gethi(val);
3023 QEMU_IOTHREAD_LOCK_GUARD();
3024 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra);
3025 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra);
3026 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3027 /* nothing */
3028 } else {
3029 /* Swap to host endian if necessary, then store. */
3030 if (l.memop & MO_BSWAP) {
3031 val = bswap128(val);
3032 }
3033 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3034 }
3035 return;
3036 }
3037
3038 first = l.page[0].size;
3039 if (first == 8) {
3040 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3041
3042 if (l.memop & MO_BSWAP) {
3043 val = bswap128(val);
3044 }
3045 if (HOST_BIG_ENDIAN) {
3046 b = int128_getlo(val), a = int128_gethi(val);
3047 } else {
3048 a = int128_getlo(val), b = int128_gethi(val);
3049 }
3050 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3051 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3052 return;
3053 }
3054
3055 if ((l.memop & MO_BSWAP) != MO_LE) {
3056 val = bswap128(val);
3057 }
3058 if (first < 8) {
3059 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3060 val = int128_urshift(val, first * 8);
3061 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3062 } else {
3063 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3064 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3065 }
3066 }
3067
3068 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3069 MemOpIdx oi, uintptr_t retaddr)
3070 {
3071 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3072 do_st16_mmu(env, addr, val, oi, retaddr);
3073 }
3074
3075 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3076 {
3077 helper_st16_mmu(env, addr, val, oi, GETPC());
3078 }
3079
3080 /*
3081 * Store Helpers for cpu_ldst.h
3082 */
3083
3084 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3085 {
3086 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3087 }
3088
3089 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3090 MemOpIdx oi, uintptr_t retaddr)
3091 {
3092 helper_stb_mmu(env, addr, val, oi, retaddr);
3093 plugin_store_cb(env, addr, oi);
3094 }
3095
3096 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3097 MemOpIdx oi, uintptr_t retaddr)
3098 {
3099 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3100 do_st2_mmu(env, addr, val, oi, retaddr);
3101 plugin_store_cb(env, addr, oi);
3102 }
3103
3104 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3105 MemOpIdx oi, uintptr_t retaddr)
3106 {
3107 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3108 do_st4_mmu(env, addr, val, oi, retaddr);
3109 plugin_store_cb(env, addr, oi);
3110 }
3111
3112 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3113 MemOpIdx oi, uintptr_t retaddr)
3114 {
3115 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3116 do_st8_mmu(env, addr, val, oi, retaddr);
3117 plugin_store_cb(env, addr, oi);
3118 }
3119
3120 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3121 MemOpIdx oi, uintptr_t retaddr)
3122 {
3123 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3124 do_st16_mmu(env, addr, val, oi, retaddr);
3125 plugin_store_cb(env, addr, oi);
3126 }
3127
3128 #include "ldst_common.c.inc"
3129
3130 /*
3131 * First set of functions passes in OI and RETADDR.
3132 * This makes them callable from other helpers.
3133 */
3134
3135 #define ATOMIC_NAME(X) \
3136 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3137
3138 #define ATOMIC_MMU_CLEANUP
3139
3140 #include "atomic_common.c.inc"
3141
3142 #define DATA_SIZE 1
3143 #include "atomic_template.h"
3144
3145 #define DATA_SIZE 2
3146 #include "atomic_template.h"
3147
3148 #define DATA_SIZE 4
3149 #include "atomic_template.h"
3150
3151 #ifdef CONFIG_ATOMIC64
3152 #define DATA_SIZE 8
3153 #include "atomic_template.h"
3154 #endif
3155
3156 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3157 #define DATA_SIZE 16
3158 #include "atomic_template.h"
3159 #endif
3160
3161 /* Code access functions. */
3162
3163 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3164 {
3165 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3166 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3167 }
3168
3169 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3170 {
3171 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3172 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3173 }
3174
3175 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3176 {
3177 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3178 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3179 }
3180
3181 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3182 {
3183 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3184 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3185 }
3186
3187 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3188 MemOpIdx oi, uintptr_t retaddr)
3189 {
3190 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3191 }
3192
3193 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3194 MemOpIdx oi, uintptr_t retaddr)
3195 {
3196 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3197 }
3198
3199 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3200 MemOpIdx oi, uintptr_t retaddr)
3201 {
3202 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3203 }
3204
3205 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3206 MemOpIdx oi, uintptr_t retaddr)
3207 {
3208 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3209 }