]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
Merge tag 'pull-tcg-20230523-3' of https://gitlab.com/rth7680/qemu into staging
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "exec/helper-proto.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96 size_t max_entries)
97 {
98 desc->window_begin_ns = ns;
99 desc->window_max_entries = max_entries;
100 }
101
102 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
103 {
104 CPUJumpCache *jc = cpu->tb_jmp_cache;
105 int i, i0;
106
107 if (unlikely(!jc)) {
108 return;
109 }
110
111 i0 = tb_jmp_cache_hash_page(page_addr);
112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113 qatomic_set(&jc->array[i0 + i].tb, NULL);
114 }
115 }
116
117 /**
118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119 * @desc: The CPUTLBDesc portion of the TLB
120 * @fast: The CPUTLBDescFast portion of the same TLB
121 *
122 * Called with tlb_lock_held.
123 *
124 * We have two main constraints when resizing a TLB: (1) we only resize it
125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126 * the array or unnecessarily flushing it), which means we do not control how
127 * frequently the resizing can occur; (2) we don't have access to the guest's
128 * future scheduling decisions, and therefore have to decide the magnitude of
129 * the resize based on past observations.
130 *
131 * In general, a memory-hungry process can benefit greatly from an appropriately
132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133 * we just have to make the TLB as large as possible; while an oversized TLB
134 * results in minimal TLB miss rates, it also takes longer to be flushed
135 * (flushes can be _very_ frequent), and the reduced locality can also hurt
136 * performance.
137 *
138 * To achieve near-optimal performance for all kinds of workloads, we:
139 *
140 * 1. Aggressively increase the size of the TLB when the use rate of the
141 * TLB being flushed is high, since it is likely that in the near future this
142 * memory-hungry process will execute again, and its memory hungriness will
143 * probably be similar.
144 *
145 * 2. Slowly reduce the size of the TLB as the use rate declines over a
146 * reasonably large time window. The rationale is that if in such a time window
147 * we have not observed a high TLB use rate, it is likely that we won't observe
148 * it in the near future. In that case, once a time window expires we downsize
149 * the TLB to match the maximum use rate observed in the window.
150 *
151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152 * since in that range performance is likely near-optimal. Recall that the TLB
153 * is direct mapped, so we want the use rate to be low (or at least not too
154 * high), since otherwise we are likely to have a significant amount of
155 * conflict misses.
156 */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158 int64_t now)
159 {
160 size_t old_size = tlb_n_entries(fast);
161 size_t rate;
162 size_t new_size = old_size;
163 int64_t window_len_ms = 100;
164 int64_t window_len_ns = window_len_ms * 1000 * 1000;
165 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166
167 if (desc->n_used_entries > desc->window_max_entries) {
168 desc->window_max_entries = desc->n_used_entries;
169 }
170 rate = desc->window_max_entries * 100 / old_size;
171
172 if (rate > 70) {
173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174 } else if (rate < 30 && window_expired) {
175 size_t ceil = pow2ceil(desc->window_max_entries);
176 size_t expected_rate = desc->window_max_entries * 100 / ceil;
177
178 /*
179 * Avoid undersizing when the max number of entries seen is just below
180 * a pow2. For instance, if max_entries == 1025, the expected use rate
181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183 * later. Thus, make sure that the expected use rate remains below 70%.
184 * (and since we double the size, that means the lowest rate we'd
185 * expect to get is 35%, which is still in the 30-70% range where
186 * we consider that the size is appropriate.)
187 */
188 if (expected_rate > 70) {
189 ceil *= 2;
190 }
191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192 }
193
194 if (new_size == old_size) {
195 if (window_expired) {
196 tlb_window_reset(desc, now, desc->n_used_entries);
197 }
198 return;
199 }
200
201 g_free(fast->table);
202 g_free(desc->fulltlb);
203
204 tlb_window_reset(desc, now, 0);
205 /* desc->n_used_entries is cleared by the caller */
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 fast->table = g_try_new(CPUTLBEntry, new_size);
208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209
210 /*
211 * If the allocations fail, try smaller sizes. We just freed some
212 * memory, so going back to half of new_size has a good chance of working.
213 * Increased memory pressure elsewhere in the system might cause the
214 * allocations to fail though, so we progressively reduce the allocation
215 * size, aborting if we cannot even allocate the smallest TLB we support.
216 */
217 while (fast->table == NULL || desc->fulltlb == NULL) {
218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219 error_report("%s: %s", __func__, strerror(errno));
220 abort();
221 }
222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224
225 g_free(fast->table);
226 g_free(desc->fulltlb);
227 fast->table = g_try_new(CPUTLBEntry, new_size);
228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229 }
230 }
231
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234 desc->n_used_entries = 0;
235 desc->large_page_addr = -1;
236 desc->large_page_mask = -1;
237 desc->vindex = 0;
238 memset(fast->table, -1, sizeof_tlb(fast));
239 memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243 int64_t now)
244 {
245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247
248 tlb_mmu_resize_locked(desc, fast, now);
249 tlb_mmu_flush_locked(desc, fast);
250 }
251
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255
256 tlb_window_reset(desc, now, 0);
257 desc->n_used_entries = 0;
258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259 fast->table = g_new(CPUTLBEntry, n_entries);
260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261 tlb_mmu_flush_locked(desc, fast);
262 }
263
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266 env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271 env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273
274 void tlb_init(CPUState *cpu)
275 {
276 CPUArchState *env = cpu->env_ptr;
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&env_tlb(env)->c.lock);
281
282 /* All tlbs are initialized flushed. */
283 env_tlb(env)->c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294
295 qemu_spin_destroy(&env_tlb(env)->c.lock);
296 for (i = 0; i < NB_MMU_MODES; i++) {
297 CPUTLBDesc *desc = &env_tlb(env)->d[i];
298 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299
300 g_free(fast->table);
301 g_free(desc->fulltlb);
302 }
303 }
304
305 /* flush_all_helper: run fn across all cpus
306 *
307 * If the wait flag is set then the src cpu's helper will be queued as
308 * "safe" work and the loop exited creating a synchronisation point
309 * where all queued work will be finished before execution starts
310 * again.
311 */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313 run_on_cpu_data d)
314 {
315 CPUState *cpu;
316
317 CPU_FOREACH(cpu) {
318 if (cpu != src) {
319 async_run_on_cpu(cpu, fn, d);
320 }
321 }
322 }
323
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326 CPUState *cpu;
327 size_t full = 0, part = 0, elide = 0;
328
329 CPU_FOREACH(cpu) {
330 CPUArchState *env = cpu->env_ptr;
331
332 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 }
336 *pfull = full;
337 *ppart = part;
338 *pelide = elide;
339 }
340
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343 CPUArchState *env = cpu->env_ptr;
344 uint16_t asked = data.host_int;
345 uint16_t all_dirty, work, to_clean;
346 int64_t now = get_clock_realtime();
347
348 assert_cpu_is_self(cpu);
349
350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351
352 qemu_spin_lock(&env_tlb(env)->c.lock);
353
354 all_dirty = env_tlb(env)->c.dirty;
355 to_clean = asked & all_dirty;
356 all_dirty &= ~to_clean;
357 env_tlb(env)->c.dirty = all_dirty;
358
359 for (work = to_clean; work != 0; work &= work - 1) {
360 int mmu_idx = ctz32(work);
361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362 }
363
364 qemu_spin_unlock(&env_tlb(env)->c.lock);
365
366 tcg_flush_jmp_cache(cpu);
367
368 if (to_clean == ALL_MMUIDX_BITS) {
369 qatomic_set(&env_tlb(env)->c.full_flush_count,
370 env_tlb(env)->c.full_flush_count + 1);
371 } else {
372 qatomic_set(&env_tlb(env)->c.part_flush_count,
373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374 if (to_clean != asked) {
375 qatomic_set(&env_tlb(env)->c.elide_flush_count,
376 env_tlb(env)->c.elide_flush_count +
377 ctpop16(asked & ~to_clean));
378 }
379 }
380 }
381
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385
386 if (cpu->created && !qemu_cpu_is_self(cpu)) {
387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388 RUN_ON_CPU_HOST_INT(idxmap));
389 } else {
390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391 }
392 }
393
394 void tlb_flush(CPUState *cpu)
395 {
396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402
403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404
405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417
418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419
420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430 target_ulong page, target_ulong mask)
431 {
432 page &= mask;
433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434
435 return (page == (tlb_entry->addr_read & mask) ||
436 page == (tlb_addr_write(tlb_entry) & mask) ||
437 page == (tlb_entry->addr_code & mask));
438 }
439
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
441 target_ulong page)
442 {
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445
446 /**
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
449 */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 target_ulong page,
458 target_ulong mask)
459 {
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
463 }
464 return false;
465 }
466
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
468 target_ulong page)
469 {
470 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
471 }
472
473 /* Called with tlb_c.lock held */
474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
475 target_ulong page,
476 target_ulong mask)
477 {
478 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
479 int k;
480
481 assert_cpu_is_self(env_cpu(env));
482 for (k = 0; k < CPU_VTLB_SIZE; k++) {
483 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
484 tlb_n_used_entries_dec(env, mmu_idx);
485 }
486 }
487 }
488
489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
490 target_ulong page)
491 {
492 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
493 }
494
495 static void tlb_flush_page_locked(CPUArchState *env, int midx,
496 target_ulong page)
497 {
498 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
499 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
500
501 /* Check if we need to flush due to large pages. */
502 if ((page & lp_mask) == lp_addr) {
503 tlb_debug("forcing full flush midx %d ("
504 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
505 midx, lp_addr, lp_mask);
506 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
507 } else {
508 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
509 tlb_n_used_entries_dec(env, midx);
510 }
511 tlb_flush_vtlb_page_locked(env, midx, page);
512 }
513 }
514
515 /**
516 * tlb_flush_page_by_mmuidx_async_0:
517 * @cpu: cpu on which to flush
518 * @addr: page of virtual address to flush
519 * @idxmap: set of mmu_idx to flush
520 *
521 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
522 * at @addr from the tlbs indicated by @idxmap from @cpu.
523 */
524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
525 target_ulong addr,
526 uint16_t idxmap)
527 {
528 CPUArchState *env = cpu->env_ptr;
529 int mmu_idx;
530
531 assert_cpu_is_self(cpu);
532
533 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
534
535 qemu_spin_lock(&env_tlb(env)->c.lock);
536 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
537 if ((idxmap >> mmu_idx) & 1) {
538 tlb_flush_page_locked(env, mmu_idx, addr);
539 }
540 }
541 qemu_spin_unlock(&env_tlb(env)->c.lock);
542
543 /*
544 * Discard jump cache entries for any tb which might potentially
545 * overlap the flushed page, which includes the previous.
546 */
547 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
548 tb_jmp_cache_clear_page(cpu, addr);
549 }
550
551 /**
552 * tlb_flush_page_by_mmuidx_async_1:
553 * @cpu: cpu on which to flush
554 * @data: encoded addr + idxmap
555 *
556 * Helper for tlb_flush_page_by_mmuidx and friends, called through
557 * async_run_on_cpu. The idxmap parameter is encoded in the page
558 * offset of the target_ptr field. This limits the set of mmu_idx
559 * that can be passed via this method.
560 */
561 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
562 run_on_cpu_data data)
563 {
564 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
565 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
566 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
567
568 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
569 }
570
571 typedef struct {
572 target_ulong addr;
573 uint16_t idxmap;
574 } TLBFlushPageByMMUIdxData;
575
576 /**
577 * tlb_flush_page_by_mmuidx_async_2:
578 * @cpu: cpu on which to flush
579 * @data: allocated addr + idxmap
580 *
581 * Helper for tlb_flush_page_by_mmuidx and friends, called through
582 * async_run_on_cpu. The addr+idxmap parameters are stored in a
583 * TLBFlushPageByMMUIdxData structure that has been allocated
584 * specifically for this helper. Free the structure when done.
585 */
586 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
587 run_on_cpu_data data)
588 {
589 TLBFlushPageByMMUIdxData *d = data.host_ptr;
590
591 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
592 g_free(d);
593 }
594
595 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
596 {
597 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
598
599 /* This should already be page aligned */
600 addr &= TARGET_PAGE_MASK;
601
602 if (qemu_cpu_is_self(cpu)) {
603 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
604 } else if (idxmap < TARGET_PAGE_SIZE) {
605 /*
606 * Most targets have only a few mmu_idx. In the case where
607 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
608 * allocating memory for this operation.
609 */
610 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
611 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
612 } else {
613 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
614
615 /* Otherwise allocate a structure, freed by the worker. */
616 d->addr = addr;
617 d->idxmap = idxmap;
618 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
619 RUN_ON_CPU_HOST_PTR(d));
620 }
621 }
622
623 void tlb_flush_page(CPUState *cpu, target_ulong addr)
624 {
625 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
626 }
627
628 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
629 uint16_t idxmap)
630 {
631 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
632
633 /* This should already be page aligned */
634 addr &= TARGET_PAGE_MASK;
635
636 /*
637 * Allocate memory to hold addr+idxmap only when needed.
638 * See tlb_flush_page_by_mmuidx for details.
639 */
640 if (idxmap < TARGET_PAGE_SIZE) {
641 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
642 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
643 } else {
644 CPUState *dst_cpu;
645
646 /* Allocate a separate data block for each destination cpu. */
647 CPU_FOREACH(dst_cpu) {
648 if (dst_cpu != src_cpu) {
649 TLBFlushPageByMMUIdxData *d
650 = g_new(TLBFlushPageByMMUIdxData, 1);
651
652 d->addr = addr;
653 d->idxmap = idxmap;
654 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
655 RUN_ON_CPU_HOST_PTR(d));
656 }
657 }
658 }
659
660 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
661 }
662
663 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
664 {
665 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
666 }
667
668 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
669 target_ulong addr,
670 uint16_t idxmap)
671 {
672 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
673
674 /* This should already be page aligned */
675 addr &= TARGET_PAGE_MASK;
676
677 /*
678 * Allocate memory to hold addr+idxmap only when needed.
679 * See tlb_flush_page_by_mmuidx for details.
680 */
681 if (idxmap < TARGET_PAGE_SIZE) {
682 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
685 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
686 } else {
687 CPUState *dst_cpu;
688 TLBFlushPageByMMUIdxData *d;
689
690 /* Allocate a separate data block for each destination cpu. */
691 CPU_FOREACH(dst_cpu) {
692 if (dst_cpu != src_cpu) {
693 d = g_new(TLBFlushPageByMMUIdxData, 1);
694 d->addr = addr;
695 d->idxmap = idxmap;
696 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
697 RUN_ON_CPU_HOST_PTR(d));
698 }
699 }
700
701 d = g_new(TLBFlushPageByMMUIdxData, 1);
702 d->addr = addr;
703 d->idxmap = idxmap;
704 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
705 RUN_ON_CPU_HOST_PTR(d));
706 }
707 }
708
709 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
710 {
711 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
712 }
713
714 static void tlb_flush_range_locked(CPUArchState *env, int midx,
715 target_ulong addr, target_ulong len,
716 unsigned bits)
717 {
718 CPUTLBDesc *d = &env_tlb(env)->d[midx];
719 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
720 target_ulong mask = MAKE_64BIT_MASK(0, bits);
721
722 /*
723 * If @bits is smaller than the tlb size, there may be multiple entries
724 * within the TLB; otherwise all addresses that match under @mask hit
725 * the same TLB entry.
726 * TODO: Perhaps allow bits to be a few bits less than the size.
727 * For now, just flush the entire TLB.
728 *
729 * If @len is larger than the tlb size, then it will take longer to
730 * test all of the entries in the TLB than it will to flush it all.
731 */
732 if (mask < f->mask || len > f->mask) {
733 tlb_debug("forcing full flush midx %d ("
734 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
735 midx, addr, mask, len);
736 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
737 return;
738 }
739
740 /*
741 * Check if we need to flush due to large pages.
742 * Because large_page_mask contains all 1's from the msb,
743 * we only need to test the end of the range.
744 */
745 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
746 tlb_debug("forcing full flush midx %d ("
747 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
748 midx, d->large_page_addr, d->large_page_mask);
749 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
750 return;
751 }
752
753 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
754 target_ulong page = addr + i;
755 CPUTLBEntry *entry = tlb_entry(env, midx, page);
756
757 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
758 tlb_n_used_entries_dec(env, midx);
759 }
760 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
761 }
762 }
763
764 typedef struct {
765 target_ulong addr;
766 target_ulong len;
767 uint16_t idxmap;
768 uint16_t bits;
769 } TLBFlushRangeData;
770
771 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
772 TLBFlushRangeData d)
773 {
774 CPUArchState *env = cpu->env_ptr;
775 int mmu_idx;
776
777 assert_cpu_is_self(cpu);
778
779 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
780 d.addr, d.bits, d.len, d.idxmap);
781
782 qemu_spin_lock(&env_tlb(env)->c.lock);
783 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
784 if ((d.idxmap >> mmu_idx) & 1) {
785 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
786 }
787 }
788 qemu_spin_unlock(&env_tlb(env)->c.lock);
789
790 /*
791 * If the length is larger than the jump cache size, then it will take
792 * longer to clear each entry individually than it will to clear it all.
793 */
794 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
795 tcg_flush_jmp_cache(cpu);
796 return;
797 }
798
799 /*
800 * Discard jump cache entries for any tb which might potentially
801 * overlap the flushed pages, which includes the previous.
802 */
803 d.addr -= TARGET_PAGE_SIZE;
804 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
805 tb_jmp_cache_clear_page(cpu, d.addr);
806 d.addr += TARGET_PAGE_SIZE;
807 }
808 }
809
810 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
811 run_on_cpu_data data)
812 {
813 TLBFlushRangeData *d = data.host_ptr;
814 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
815 g_free(d);
816 }
817
818 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
819 target_ulong len, uint16_t idxmap,
820 unsigned bits)
821 {
822 TLBFlushRangeData d;
823
824 /*
825 * If all bits are significant, and len is small,
826 * this devolves to tlb_flush_page.
827 */
828 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
829 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
830 return;
831 }
832 /* If no page bits are significant, this devolves to tlb_flush. */
833 if (bits < TARGET_PAGE_BITS) {
834 tlb_flush_by_mmuidx(cpu, idxmap);
835 return;
836 }
837
838 /* This should already be page aligned */
839 d.addr = addr & TARGET_PAGE_MASK;
840 d.len = len;
841 d.idxmap = idxmap;
842 d.bits = bits;
843
844 if (qemu_cpu_is_self(cpu)) {
845 tlb_flush_range_by_mmuidx_async_0(cpu, d);
846 } else {
847 /* Otherwise allocate a structure, freed by the worker. */
848 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
849 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
850 RUN_ON_CPU_HOST_PTR(p));
851 }
852 }
853
854 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
855 uint16_t idxmap, unsigned bits)
856 {
857 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
858 }
859
860 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
861 target_ulong addr, target_ulong len,
862 uint16_t idxmap, unsigned bits)
863 {
864 TLBFlushRangeData d;
865 CPUState *dst_cpu;
866
867 /*
868 * If all bits are significant, and len is small,
869 * this devolves to tlb_flush_page.
870 */
871 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
872 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
873 return;
874 }
875 /* If no page bits are significant, this devolves to tlb_flush. */
876 if (bits < TARGET_PAGE_BITS) {
877 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
878 return;
879 }
880
881 /* This should already be page aligned */
882 d.addr = addr & TARGET_PAGE_MASK;
883 d.len = len;
884 d.idxmap = idxmap;
885 d.bits = bits;
886
887 /* Allocate a separate data block for each destination cpu. */
888 CPU_FOREACH(dst_cpu) {
889 if (dst_cpu != src_cpu) {
890 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
891 async_run_on_cpu(dst_cpu,
892 tlb_flush_range_by_mmuidx_async_1,
893 RUN_ON_CPU_HOST_PTR(p));
894 }
895 }
896
897 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
898 }
899
900 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
901 target_ulong addr,
902 uint16_t idxmap, unsigned bits)
903 {
904 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
905 idxmap, bits);
906 }
907
908 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
909 target_ulong addr,
910 target_ulong len,
911 uint16_t idxmap,
912 unsigned bits)
913 {
914 TLBFlushRangeData d, *p;
915 CPUState *dst_cpu;
916
917 /*
918 * If all bits are significant, and len is small,
919 * this devolves to tlb_flush_page.
920 */
921 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
922 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
923 return;
924 }
925 /* If no page bits are significant, this devolves to tlb_flush. */
926 if (bits < TARGET_PAGE_BITS) {
927 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
928 return;
929 }
930
931 /* This should already be page aligned */
932 d.addr = addr & TARGET_PAGE_MASK;
933 d.len = len;
934 d.idxmap = idxmap;
935 d.bits = bits;
936
937 /* Allocate a separate data block for each destination cpu. */
938 CPU_FOREACH(dst_cpu) {
939 if (dst_cpu != src_cpu) {
940 p = g_memdup(&d, sizeof(d));
941 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
942 RUN_ON_CPU_HOST_PTR(p));
943 }
944 }
945
946 p = g_memdup(&d, sizeof(d));
947 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
948 RUN_ON_CPU_HOST_PTR(p));
949 }
950
951 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
952 target_ulong addr,
953 uint16_t idxmap,
954 unsigned bits)
955 {
956 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
957 idxmap, bits);
958 }
959
960 /* update the TLBs so that writes to code in the virtual page 'addr'
961 can be detected */
962 void tlb_protect_code(ram_addr_t ram_addr)
963 {
964 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
965 TARGET_PAGE_SIZE,
966 DIRTY_MEMORY_CODE);
967 }
968
969 /* update the TLB so that writes in physical page 'phys_addr' are no longer
970 tested for self modifying code */
971 void tlb_unprotect_code(ram_addr_t ram_addr)
972 {
973 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
974 }
975
976
977 /*
978 * Dirty write flag handling
979 *
980 * When the TCG code writes to a location it looks up the address in
981 * the TLB and uses that data to compute the final address. If any of
982 * the lower bits of the address are set then the slow path is forced.
983 * There are a number of reasons to do this but for normal RAM the
984 * most usual is detecting writes to code regions which may invalidate
985 * generated code.
986 *
987 * Other vCPUs might be reading their TLBs during guest execution, so we update
988 * te->addr_write with qatomic_set. We don't need to worry about this for
989 * oversized guests as MTTCG is disabled for them.
990 *
991 * Called with tlb_c.lock held.
992 */
993 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
994 uintptr_t start, uintptr_t length)
995 {
996 uintptr_t addr = tlb_entry->addr_write;
997
998 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
999 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
1000 addr &= TARGET_PAGE_MASK;
1001 addr += tlb_entry->addend;
1002 if ((addr - start) < length) {
1003 #if TCG_OVERSIZED_GUEST
1004 tlb_entry->addr_write |= TLB_NOTDIRTY;
1005 #else
1006 qatomic_set(&tlb_entry->addr_write,
1007 tlb_entry->addr_write | TLB_NOTDIRTY);
1008 #endif
1009 }
1010 }
1011 }
1012
1013 /*
1014 * Called with tlb_c.lock held.
1015 * Called only from the vCPU context, i.e. the TLB's owner thread.
1016 */
1017 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1018 {
1019 *d = *s;
1020 }
1021
1022 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1023 * the target vCPU).
1024 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1025 * thing actually updated is the target TLB entry ->addr_write flags.
1026 */
1027 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1028 {
1029 CPUArchState *env;
1030
1031 int mmu_idx;
1032
1033 env = cpu->env_ptr;
1034 qemu_spin_lock(&env_tlb(env)->c.lock);
1035 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1036 unsigned int i;
1037 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1038
1039 for (i = 0; i < n; i++) {
1040 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1041 start1, length);
1042 }
1043
1044 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1045 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1046 start1, length);
1047 }
1048 }
1049 qemu_spin_unlock(&env_tlb(env)->c.lock);
1050 }
1051
1052 /* Called with tlb_c.lock held */
1053 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1054 target_ulong vaddr)
1055 {
1056 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1057 tlb_entry->addr_write = vaddr;
1058 }
1059 }
1060
1061 /* update the TLB corresponding to virtual page vaddr
1062 so that it is no longer dirty */
1063 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1064 {
1065 CPUArchState *env = cpu->env_ptr;
1066 int mmu_idx;
1067
1068 assert_cpu_is_self(cpu);
1069
1070 vaddr &= TARGET_PAGE_MASK;
1071 qemu_spin_lock(&env_tlb(env)->c.lock);
1072 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1073 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1074 }
1075
1076 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1077 int k;
1078 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1079 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1080 }
1081 }
1082 qemu_spin_unlock(&env_tlb(env)->c.lock);
1083 }
1084
1085 /* Our TLB does not support large pages, so remember the area covered by
1086 large pages and trigger a full TLB flush if these are invalidated. */
1087 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1088 target_ulong vaddr, target_ulong size)
1089 {
1090 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1091 target_ulong lp_mask = ~(size - 1);
1092
1093 if (lp_addr == (target_ulong)-1) {
1094 /* No previous large page. */
1095 lp_addr = vaddr;
1096 } else {
1097 /* Extend the existing region to include the new page.
1098 This is a compromise between unnecessary flushes and
1099 the cost of maintaining a full variable size TLB. */
1100 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1101 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1102 lp_mask <<= 1;
1103 }
1104 }
1105 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1106 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1107 }
1108
1109 /*
1110 * Add a new TLB entry. At most one entry for a given virtual address
1111 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1112 * supplied size is only used by tlb_flush_page.
1113 *
1114 * Called from TCG-generated code, which is under an RCU read-side
1115 * critical section.
1116 */
1117 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1118 target_ulong vaddr, CPUTLBEntryFull *full)
1119 {
1120 CPUArchState *env = cpu->env_ptr;
1121 CPUTLB *tlb = env_tlb(env);
1122 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1123 MemoryRegionSection *section;
1124 unsigned int index;
1125 target_ulong address;
1126 target_ulong write_address;
1127 uintptr_t addend;
1128 CPUTLBEntry *te, tn;
1129 hwaddr iotlb, xlat, sz, paddr_page;
1130 target_ulong vaddr_page;
1131 int asidx, wp_flags, prot;
1132 bool is_ram, is_romd;
1133
1134 assert_cpu_is_self(cpu);
1135
1136 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1137 sz = TARGET_PAGE_SIZE;
1138 } else {
1139 sz = (hwaddr)1 << full->lg_page_size;
1140 tlb_add_large_page(env, mmu_idx, vaddr, sz);
1141 }
1142 vaddr_page = vaddr & TARGET_PAGE_MASK;
1143 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1144
1145 prot = full->prot;
1146 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1147 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1148 &xlat, &sz, full->attrs, &prot);
1149 assert(sz >= TARGET_PAGE_SIZE);
1150
1151 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1152 " prot=%x idx=%d\n",
1153 vaddr, full->phys_addr, prot, mmu_idx);
1154
1155 address = vaddr_page;
1156 if (full->lg_page_size < TARGET_PAGE_BITS) {
1157 /* Repeat the MMU check and TLB fill on every access. */
1158 address |= TLB_INVALID_MASK;
1159 }
1160 if (full->attrs.byte_swap) {
1161 address |= TLB_BSWAP;
1162 }
1163
1164 is_ram = memory_region_is_ram(section->mr);
1165 is_romd = memory_region_is_romd(section->mr);
1166
1167 if (is_ram || is_romd) {
1168 /* RAM and ROMD both have associated host memory. */
1169 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1170 } else {
1171 /* I/O does not; force the host address to NULL. */
1172 addend = 0;
1173 }
1174
1175 write_address = address;
1176 if (is_ram) {
1177 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1178 /*
1179 * Computing is_clean is expensive; avoid all that unless
1180 * the page is actually writable.
1181 */
1182 if (prot & PAGE_WRITE) {
1183 if (section->readonly) {
1184 write_address |= TLB_DISCARD_WRITE;
1185 } else if (cpu_physical_memory_is_clean(iotlb)) {
1186 write_address |= TLB_NOTDIRTY;
1187 }
1188 }
1189 } else {
1190 /* I/O or ROMD */
1191 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1192 /*
1193 * Writes to romd devices must go through MMIO to enable write.
1194 * Reads to romd devices go through the ram_ptr found above,
1195 * but of course reads to I/O must go through MMIO.
1196 */
1197 write_address |= TLB_MMIO;
1198 if (!is_romd) {
1199 address = write_address;
1200 }
1201 }
1202
1203 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1204 TARGET_PAGE_SIZE);
1205
1206 index = tlb_index(env, mmu_idx, vaddr_page);
1207 te = tlb_entry(env, mmu_idx, vaddr_page);
1208
1209 /*
1210 * Hold the TLB lock for the rest of the function. We could acquire/release
1211 * the lock several times in the function, but it is faster to amortize the
1212 * acquisition cost by acquiring it just once. Note that this leads to
1213 * a longer critical section, but this is not a concern since the TLB lock
1214 * is unlikely to be contended.
1215 */
1216 qemu_spin_lock(&tlb->c.lock);
1217
1218 /* Note that the tlb is no longer clean. */
1219 tlb->c.dirty |= 1 << mmu_idx;
1220
1221 /* Make sure there's no cached translation for the new page. */
1222 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1223
1224 /*
1225 * Only evict the old entry to the victim tlb if it's for a
1226 * different page; otherwise just overwrite the stale data.
1227 */
1228 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1229 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1230 CPUTLBEntry *tv = &desc->vtable[vidx];
1231
1232 /* Evict the old entry into the victim tlb. */
1233 copy_tlb_helper_locked(tv, te);
1234 desc->vfulltlb[vidx] = desc->fulltlb[index];
1235 tlb_n_used_entries_dec(env, mmu_idx);
1236 }
1237
1238 /* refill the tlb */
1239 /*
1240 * At this point iotlb contains a physical section number in the lower
1241 * TARGET_PAGE_BITS, and either
1242 * + the ram_addr_t of the page base of the target RAM (RAM)
1243 * + the offset within section->mr of the page base (I/O, ROMD)
1244 * We subtract the vaddr_page (which is page aligned and thus won't
1245 * disturb the low bits) to give an offset which can be added to the
1246 * (non-page-aligned) vaddr of the eventual memory access to get
1247 * the MemoryRegion offset for the access. Note that the vaddr we
1248 * subtract here is that of the page base, and not the same as the
1249 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1250 */
1251 desc->fulltlb[index] = *full;
1252 desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1253 desc->fulltlb[index].phys_addr = paddr_page;
1254
1255 /* Now calculate the new entry */
1256 tn.addend = addend - vaddr_page;
1257 if (prot & PAGE_READ) {
1258 tn.addr_read = address;
1259 if (wp_flags & BP_MEM_READ) {
1260 tn.addr_read |= TLB_WATCHPOINT;
1261 }
1262 } else {
1263 tn.addr_read = -1;
1264 }
1265
1266 if (prot & PAGE_EXEC) {
1267 tn.addr_code = address;
1268 } else {
1269 tn.addr_code = -1;
1270 }
1271
1272 tn.addr_write = -1;
1273 if (prot & PAGE_WRITE) {
1274 tn.addr_write = write_address;
1275 if (prot & PAGE_WRITE_INV) {
1276 tn.addr_write |= TLB_INVALID_MASK;
1277 }
1278 if (wp_flags & BP_MEM_WRITE) {
1279 tn.addr_write |= TLB_WATCHPOINT;
1280 }
1281 }
1282
1283 copy_tlb_helper_locked(te, &tn);
1284 tlb_n_used_entries_inc(env, mmu_idx);
1285 qemu_spin_unlock(&tlb->c.lock);
1286 }
1287
1288 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1289 hwaddr paddr, MemTxAttrs attrs, int prot,
1290 int mmu_idx, target_ulong size)
1291 {
1292 CPUTLBEntryFull full = {
1293 .phys_addr = paddr,
1294 .attrs = attrs,
1295 .prot = prot,
1296 .lg_page_size = ctz64(size)
1297 };
1298
1299 assert(is_power_of_2(size));
1300 tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1301 }
1302
1303 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1304 hwaddr paddr, int prot,
1305 int mmu_idx, target_ulong size)
1306 {
1307 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1308 prot, mmu_idx, size);
1309 }
1310
1311 /*
1312 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1313 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1314 * be discarded and looked up again (e.g. via tlb_entry()).
1315 */
1316 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1317 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1318 {
1319 bool ok;
1320
1321 /*
1322 * This is not a probe, so only valid return is success; failure
1323 * should result in exception + longjmp to the cpu loop.
1324 */
1325 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1326 access_type, mmu_idx, false, retaddr);
1327 assert(ok);
1328 }
1329
1330 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1331 MMUAccessType access_type,
1332 int mmu_idx, uintptr_t retaddr)
1333 {
1334 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1335 mmu_idx, retaddr);
1336 }
1337
1338 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1339 vaddr addr, unsigned size,
1340 MMUAccessType access_type,
1341 int mmu_idx, MemTxAttrs attrs,
1342 MemTxResult response,
1343 uintptr_t retaddr)
1344 {
1345 CPUClass *cc = CPU_GET_CLASS(cpu);
1346
1347 if (!cpu->ignore_memory_transaction_failures &&
1348 cc->tcg_ops->do_transaction_failed) {
1349 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1350 access_type, mmu_idx, attrs,
1351 response, retaddr);
1352 }
1353 }
1354
1355 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1356 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1357 MMUAccessType access_type, MemOp op)
1358 {
1359 CPUState *cpu = env_cpu(env);
1360 hwaddr mr_offset;
1361 MemoryRegionSection *section;
1362 MemoryRegion *mr;
1363 uint64_t val;
1364 MemTxResult r;
1365
1366 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1367 mr = section->mr;
1368 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1369 cpu->mem_io_pc = retaddr;
1370 if (!cpu->can_do_io) {
1371 cpu_io_recompile(cpu, retaddr);
1372 }
1373
1374 {
1375 QEMU_IOTHREAD_LOCK_GUARD();
1376 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1377 }
1378
1379 if (r != MEMTX_OK) {
1380 hwaddr physaddr = mr_offset +
1381 section->offset_within_address_space -
1382 section->offset_within_region;
1383
1384 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1385 mmu_idx, full->attrs, r, retaddr);
1386 }
1387 return val;
1388 }
1389
1390 /*
1391 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1392 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1393 * because of the side effect of io_writex changing memory layout.
1394 */
1395 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1396 hwaddr mr_offset)
1397 {
1398 #ifdef CONFIG_PLUGIN
1399 SavedIOTLB *saved = &cs->saved_iotlb;
1400 saved->section = section;
1401 saved->mr_offset = mr_offset;
1402 #endif
1403 }
1404
1405 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1406 int mmu_idx, uint64_t val, target_ulong addr,
1407 uintptr_t retaddr, MemOp op)
1408 {
1409 CPUState *cpu = env_cpu(env);
1410 hwaddr mr_offset;
1411 MemoryRegionSection *section;
1412 MemoryRegion *mr;
1413 MemTxResult r;
1414
1415 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1416 mr = section->mr;
1417 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1418 if (!cpu->can_do_io) {
1419 cpu_io_recompile(cpu, retaddr);
1420 }
1421 cpu->mem_io_pc = retaddr;
1422
1423 /*
1424 * The memory_region_dispatch may trigger a flush/resize
1425 * so for plugins we save the iotlb_data just in case.
1426 */
1427 save_iotlb_data(cpu, section, mr_offset);
1428
1429 {
1430 QEMU_IOTHREAD_LOCK_GUARD();
1431 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1432 }
1433
1434 if (r != MEMTX_OK) {
1435 hwaddr physaddr = mr_offset +
1436 section->offset_within_address_space -
1437 section->offset_within_region;
1438
1439 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1440 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1441 retaddr);
1442 }
1443 }
1444
1445 /* Return true if ADDR is present in the victim tlb, and has been copied
1446 back to the main tlb. */
1447 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1448 MMUAccessType access_type, target_ulong page)
1449 {
1450 size_t vidx;
1451
1452 assert_cpu_is_self(env_cpu(env));
1453 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1454 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1455 target_ulong cmp = tlb_read_idx(vtlb, access_type);
1456
1457 if (cmp == page) {
1458 /* Found entry in victim tlb, swap tlb and iotlb. */
1459 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1460
1461 qemu_spin_lock(&env_tlb(env)->c.lock);
1462 copy_tlb_helper_locked(&tmptlb, tlb);
1463 copy_tlb_helper_locked(tlb, vtlb);
1464 copy_tlb_helper_locked(vtlb, &tmptlb);
1465 qemu_spin_unlock(&env_tlb(env)->c.lock);
1466
1467 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1468 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1469 CPUTLBEntryFull tmpf;
1470 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1471 return true;
1472 }
1473 }
1474 return false;
1475 }
1476
1477 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1478 CPUTLBEntryFull *full, uintptr_t retaddr)
1479 {
1480 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1481
1482 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1483
1484 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1485 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1486 }
1487
1488 /*
1489 * Set both VGA and migration bits for simplicity and to remove
1490 * the notdirty callback faster.
1491 */
1492 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1493
1494 /* We remove the notdirty callback only if the code has been flushed. */
1495 if (!cpu_physical_memory_is_clean(ram_addr)) {
1496 trace_memory_notdirty_set_dirty(mem_vaddr);
1497 tlb_set_dirty(cpu, mem_vaddr);
1498 }
1499 }
1500
1501 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1502 int fault_size, MMUAccessType access_type,
1503 int mmu_idx, bool nonfault,
1504 void **phost, CPUTLBEntryFull **pfull,
1505 uintptr_t retaddr)
1506 {
1507 uintptr_t index = tlb_index(env, mmu_idx, addr);
1508 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1509 target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1510 target_ulong page_addr = addr & TARGET_PAGE_MASK;
1511 int flags = TLB_FLAGS_MASK;
1512
1513 if (!tlb_hit_page(tlb_addr, page_addr)) {
1514 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1515 CPUState *cs = env_cpu(env);
1516
1517 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1518 mmu_idx, nonfault, retaddr)) {
1519 /* Non-faulting page table read failed. */
1520 *phost = NULL;
1521 *pfull = NULL;
1522 return TLB_INVALID_MASK;
1523 }
1524
1525 /* TLB resize via tlb_fill may have moved the entry. */
1526 index = tlb_index(env, mmu_idx, addr);
1527 entry = tlb_entry(env, mmu_idx, addr);
1528
1529 /*
1530 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1531 * to force the next access through tlb_fill. We've just
1532 * called tlb_fill, so we know that this entry *is* valid.
1533 */
1534 flags &= ~TLB_INVALID_MASK;
1535 }
1536 tlb_addr = tlb_read_idx(entry, access_type);
1537 }
1538 flags &= tlb_addr;
1539
1540 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1541
1542 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1543 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1544 *phost = NULL;
1545 return TLB_MMIO;
1546 }
1547
1548 /* Everything else is RAM. */
1549 *phost = (void *)((uintptr_t)addr + entry->addend);
1550 return flags;
1551 }
1552
1553 int probe_access_full(CPUArchState *env, target_ulong addr, int size,
1554 MMUAccessType access_type, int mmu_idx,
1555 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1556 uintptr_t retaddr)
1557 {
1558 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1559 nonfault, phost, pfull, retaddr);
1560
1561 /* Handle clean RAM pages. */
1562 if (unlikely(flags & TLB_NOTDIRTY)) {
1563 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1564 flags &= ~TLB_NOTDIRTY;
1565 }
1566
1567 return flags;
1568 }
1569
1570 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
1571 MMUAccessType access_type, int mmu_idx,
1572 bool nonfault, void **phost, uintptr_t retaddr)
1573 {
1574 CPUTLBEntryFull *full;
1575 int flags;
1576
1577 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1578
1579 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1580 nonfault, phost, &full, retaddr);
1581
1582 /* Handle clean RAM pages. */
1583 if (unlikely(flags & TLB_NOTDIRTY)) {
1584 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1585 flags &= ~TLB_NOTDIRTY;
1586 }
1587
1588 return flags;
1589 }
1590
1591 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1592 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1593 {
1594 CPUTLBEntryFull *full;
1595 void *host;
1596 int flags;
1597
1598 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1599
1600 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1601 false, &host, &full, retaddr);
1602
1603 /* Per the interface, size == 0 merely faults the access. */
1604 if (size == 0) {
1605 return NULL;
1606 }
1607
1608 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1609 /* Handle watchpoints. */
1610 if (flags & TLB_WATCHPOINT) {
1611 int wp_access = (access_type == MMU_DATA_STORE
1612 ? BP_MEM_WRITE : BP_MEM_READ);
1613 cpu_check_watchpoint(env_cpu(env), addr, size,
1614 full->attrs, wp_access, retaddr);
1615 }
1616
1617 /* Handle clean RAM pages. */
1618 if (flags & TLB_NOTDIRTY) {
1619 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1620 }
1621 }
1622
1623 return host;
1624 }
1625
1626 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1627 MMUAccessType access_type, int mmu_idx)
1628 {
1629 CPUTLBEntryFull *full;
1630 void *host;
1631 int flags;
1632
1633 flags = probe_access_internal(env, addr, 0, access_type,
1634 mmu_idx, true, &host, &full, 0);
1635
1636 /* No combination of flags are expected by the caller. */
1637 return flags ? NULL : host;
1638 }
1639
1640 /*
1641 * Return a ram_addr_t for the virtual address for execution.
1642 *
1643 * Return -1 if we can't translate and execute from an entire page
1644 * of RAM. This will force us to execute by loading and translating
1645 * one insn at a time, without caching.
1646 *
1647 * NOTE: This function will trigger an exception if the page is
1648 * not executable.
1649 */
1650 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1651 void **hostp)
1652 {
1653 CPUTLBEntryFull *full;
1654 void *p;
1655
1656 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1657 cpu_mmu_index(env, true), false, &p, &full, 0);
1658 if (p == NULL) {
1659 return -1;
1660 }
1661
1662 if (full->lg_page_size < TARGET_PAGE_BITS) {
1663 return -1;
1664 }
1665
1666 if (hostp) {
1667 *hostp = p;
1668 }
1669 return qemu_ram_addr_from_host_nofail(p);
1670 }
1671
1672 /* Load/store with atomicity primitives. */
1673 #include "ldst_atomicity.c.inc"
1674
1675 #ifdef CONFIG_PLUGIN
1676 /*
1677 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1678 * This should be a hot path as we will have just looked this path up
1679 * in the softmmu lookup code (or helper). We don't handle re-fills or
1680 * checking the victim table. This is purely informational.
1681 *
1682 * This almost never fails as the memory access being instrumented
1683 * should have just filled the TLB. The one corner case is io_writex
1684 * which can cause TLB flushes and potential resizing of the TLBs
1685 * losing the information we need. In those cases we need to recover
1686 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1687 * from the same thread (which a mem callback will be) this is safe.
1688 */
1689
1690 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1691 bool is_store, struct qemu_plugin_hwaddr *data)
1692 {
1693 CPUArchState *env = cpu->env_ptr;
1694 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1695 uintptr_t index = tlb_index(env, mmu_idx, addr);
1696 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1697
1698 if (likely(tlb_hit(tlb_addr, addr))) {
1699 /* We must have an iotlb entry for MMIO */
1700 if (tlb_addr & TLB_MMIO) {
1701 CPUTLBEntryFull *full;
1702 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1703 data->is_io = true;
1704 data->v.io.section =
1705 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1706 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1707 } else {
1708 data->is_io = false;
1709 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1710 }
1711 return true;
1712 } else {
1713 SavedIOTLB *saved = &cpu->saved_iotlb;
1714 data->is_io = true;
1715 data->v.io.section = saved->section;
1716 data->v.io.offset = saved->mr_offset;
1717 return true;
1718 }
1719 }
1720
1721 #endif
1722
1723 /*
1724 * Probe for a load/store operation.
1725 * Return the host address and into @flags.
1726 */
1727
1728 typedef struct MMULookupPageData {
1729 CPUTLBEntryFull *full;
1730 void *haddr;
1731 target_ulong addr;
1732 int flags;
1733 int size;
1734 } MMULookupPageData;
1735
1736 typedef struct MMULookupLocals {
1737 MMULookupPageData page[2];
1738 MemOp memop;
1739 int mmu_idx;
1740 } MMULookupLocals;
1741
1742 /**
1743 * mmu_lookup1: translate one page
1744 * @env: cpu context
1745 * @data: lookup parameters
1746 * @mmu_idx: virtual address context
1747 * @access_type: load/store/code
1748 * @ra: return address into tcg generated code, or 0
1749 *
1750 * Resolve the translation for the one page at @data.addr, filling in
1751 * the rest of @data with the results. If the translation fails,
1752 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1753 * @mmu_idx may have resized.
1754 */
1755 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1756 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1757 {
1758 target_ulong addr = data->addr;
1759 uintptr_t index = tlb_index(env, mmu_idx, addr);
1760 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1761 target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1762 bool maybe_resized = false;
1763
1764 /* If the TLB entry is for a different page, reload and try again. */
1765 if (!tlb_hit(tlb_addr, addr)) {
1766 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1767 addr & TARGET_PAGE_MASK)) {
1768 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1769 maybe_resized = true;
1770 index = tlb_index(env, mmu_idx, addr);
1771 entry = tlb_entry(env, mmu_idx, addr);
1772 }
1773 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1774 }
1775
1776 data->flags = tlb_addr & TLB_FLAGS_MASK;
1777 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1778 /* Compute haddr speculatively; depending on flags it might be invalid. */
1779 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1780
1781 return maybe_resized;
1782 }
1783
1784 /**
1785 * mmu_watch_or_dirty
1786 * @env: cpu context
1787 * @data: lookup parameters
1788 * @access_type: load/store/code
1789 * @ra: return address into tcg generated code, or 0
1790 *
1791 * Trigger watchpoints for @data.addr:@data.size;
1792 * record writes to protected clean pages.
1793 */
1794 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1795 MMUAccessType access_type, uintptr_t ra)
1796 {
1797 CPUTLBEntryFull *full = data->full;
1798 target_ulong addr = data->addr;
1799 int flags = data->flags;
1800 int size = data->size;
1801
1802 /* On watchpoint hit, this will longjmp out. */
1803 if (flags & TLB_WATCHPOINT) {
1804 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1805 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1806 flags &= ~TLB_WATCHPOINT;
1807 }
1808
1809 /* Note that notdirty is only set for writes. */
1810 if (flags & TLB_NOTDIRTY) {
1811 notdirty_write(env_cpu(env), addr, size, full, ra);
1812 flags &= ~TLB_NOTDIRTY;
1813 }
1814 data->flags = flags;
1815 }
1816
1817 /**
1818 * mmu_lookup: translate page(s)
1819 * @env: cpu context
1820 * @addr: virtual address
1821 * @oi: combined mmu_idx and MemOp
1822 * @ra: return address into tcg generated code, or 0
1823 * @access_type: load/store/code
1824 * @l: output result
1825 *
1826 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1827 * bytes. Return true if the lookup crosses a page boundary.
1828 */
1829 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1830 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1831 {
1832 unsigned a_bits;
1833 bool crosspage;
1834 int flags;
1835
1836 l->memop = get_memop(oi);
1837 l->mmu_idx = get_mmuidx(oi);
1838
1839 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1840
1841 /* Handle CPU specific unaligned behaviour */
1842 a_bits = get_alignment_bits(l->memop);
1843 if (addr & ((1 << a_bits) - 1)) {
1844 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1845 }
1846
1847 l->page[0].addr = addr;
1848 l->page[0].size = memop_size(l->memop);
1849 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1850 l->page[1].size = 0;
1851 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1852
1853 if (likely(!crosspage)) {
1854 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1855
1856 flags = l->page[0].flags;
1857 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1858 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1859 }
1860 if (unlikely(flags & TLB_BSWAP)) {
1861 l->memop ^= MO_BSWAP;
1862 }
1863 } else {
1864 /* Finish compute of page crossing. */
1865 int size0 = l->page[1].addr - addr;
1866 l->page[1].size = l->page[0].size - size0;
1867 l->page[0].size = size0;
1868
1869 /*
1870 * Lookup both pages, recognizing exceptions from either. If the
1871 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1872 */
1873 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1874 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1875 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1876 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1877 }
1878
1879 flags = l->page[0].flags | l->page[1].flags;
1880 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1881 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1882 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1883 }
1884
1885 /*
1886 * Since target/sparc is the only user of TLB_BSWAP, and all
1887 * Sparc accesses are aligned, any treatment across two pages
1888 * would be arbitrary. Refuse it until there's a use.
1889 */
1890 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1891 }
1892
1893 return crosspage;
1894 }
1895
1896 /*
1897 * Probe for an atomic operation. Do not allow unaligned operations,
1898 * or io operations to proceed. Return the host address.
1899 */
1900 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1901 MemOpIdx oi, int size, uintptr_t retaddr)
1902 {
1903 uintptr_t mmu_idx = get_mmuidx(oi);
1904 MemOp mop = get_memop(oi);
1905 int a_bits = get_alignment_bits(mop);
1906 uintptr_t index;
1907 CPUTLBEntry *tlbe;
1908 target_ulong tlb_addr;
1909 void *hostaddr;
1910 CPUTLBEntryFull *full;
1911
1912 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1913
1914 /* Adjust the given return address. */
1915 retaddr -= GETPC_ADJ;
1916
1917 /* Enforce guest required alignment. */
1918 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1919 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1920 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1921 mmu_idx, retaddr);
1922 }
1923
1924 /* Enforce qemu required alignment. */
1925 if (unlikely(addr & (size - 1))) {
1926 /* We get here if guest alignment was not requested,
1927 or was not enforced by cpu_unaligned_access above.
1928 We might widen the access and emulate, but for now
1929 mark an exception and exit the cpu loop. */
1930 goto stop_the_world;
1931 }
1932
1933 index = tlb_index(env, mmu_idx, addr);
1934 tlbe = tlb_entry(env, mmu_idx, addr);
1935
1936 /* Check TLB entry and enforce page permissions. */
1937 tlb_addr = tlb_addr_write(tlbe);
1938 if (!tlb_hit(tlb_addr, addr)) {
1939 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1940 addr & TARGET_PAGE_MASK)) {
1941 tlb_fill(env_cpu(env), addr, size,
1942 MMU_DATA_STORE, mmu_idx, retaddr);
1943 index = tlb_index(env, mmu_idx, addr);
1944 tlbe = tlb_entry(env, mmu_idx, addr);
1945 }
1946 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1947 }
1948
1949 /*
1950 * Let the guest notice RMW on a write-only page.
1951 * We have just verified that the page is writable.
1952 * Subpage lookups may have left TLB_INVALID_MASK set,
1953 * but addr_read will only be -1 if PAGE_READ was unset.
1954 */
1955 if (unlikely(tlbe->addr_read == -1)) {
1956 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1957 /*
1958 * Since we don't support reads and writes to different
1959 * addresses, and we do have the proper page loaded for
1960 * write, this shouldn't ever return. But just in case,
1961 * handle via stop-the-world.
1962 */
1963 goto stop_the_world;
1964 }
1965 /* Collect TLB_WATCHPOINT for read. */
1966 tlb_addr |= tlbe->addr_read;
1967
1968 /* Notice an IO access or a needs-MMU-lookup access */
1969 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1970 /* There's really nothing that can be done to
1971 support this apart from stop-the-world. */
1972 goto stop_the_world;
1973 }
1974
1975 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1976 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1977
1978 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1979 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1980 }
1981
1982 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1983 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs,
1984 BP_MEM_READ | BP_MEM_WRITE, retaddr);
1985 }
1986
1987 return hostaddr;
1988
1989 stop_the_world:
1990 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1991 }
1992
1993 /*
1994 * Load Helpers
1995 *
1996 * We support two different access types. SOFTMMU_CODE_ACCESS is
1997 * specifically for reading instructions from system memory. It is
1998 * called by the translation loop and in some helpers where the code
1999 * is disassembled. It shouldn't be called directly by guest code.
2000 *
2001 * For the benefit of TCG generated code, we want to avoid the
2002 * complication of ABI-specific return type promotion and always
2003 * return a value extended to the register size of the host. This is
2004 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2005 * data, and for that we always have uint64_t.
2006 *
2007 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2008 */
2009
2010 /**
2011 * do_ld_mmio_beN:
2012 * @env: cpu context
2013 * @p: translation parameters
2014 * @ret_be: accumulated data
2015 * @mmu_idx: virtual address context
2016 * @ra: return address into tcg generated code, or 0
2017 *
2018 * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2019 * The bytes are concatenated in big-endian order with @ret_be.
2020 */
2021 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2022 uint64_t ret_be, int mmu_idx,
2023 MMUAccessType type, uintptr_t ra)
2024 {
2025 CPUTLBEntryFull *full = p->full;
2026 target_ulong addr = p->addr;
2027 int i, size = p->size;
2028
2029 QEMU_IOTHREAD_LOCK_GUARD();
2030 for (i = 0; i < size; i++) {
2031 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2032 ret_be = (ret_be << 8) | x;
2033 }
2034 return ret_be;
2035 }
2036
2037 /**
2038 * do_ld_bytes_beN
2039 * @p: translation parameters
2040 * @ret_be: accumulated data
2041 *
2042 * Load @p->size bytes from @p->haddr, which is RAM.
2043 * The bytes to concatenated in big-endian order with @ret_be.
2044 */
2045 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2046 {
2047 uint8_t *haddr = p->haddr;
2048 int i, size = p->size;
2049
2050 for (i = 0; i < size; i++) {
2051 ret_be = (ret_be << 8) | haddr[i];
2052 }
2053 return ret_be;
2054 }
2055
2056 /**
2057 * do_ld_parts_beN
2058 * @p: translation parameters
2059 * @ret_be: accumulated data
2060 *
2061 * As do_ld_bytes_beN, but atomically on each aligned part.
2062 */
2063 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2064 {
2065 void *haddr = p->haddr;
2066 int size = p->size;
2067
2068 do {
2069 uint64_t x;
2070 int n;
2071
2072 /*
2073 * Find minimum of alignment and size.
2074 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2075 * would have only checked the low bits of addr|size once at the start,
2076 * but is just as easy.
2077 */
2078 switch (((uintptr_t)haddr | size) & 7) {
2079 case 4:
2080 x = cpu_to_be32(load_atomic4(haddr));
2081 ret_be = (ret_be << 32) | x;
2082 n = 4;
2083 break;
2084 case 2:
2085 case 6:
2086 x = cpu_to_be16(load_atomic2(haddr));
2087 ret_be = (ret_be << 16) | x;
2088 n = 2;
2089 break;
2090 default:
2091 x = *(uint8_t *)haddr;
2092 ret_be = (ret_be << 8) | x;
2093 n = 1;
2094 break;
2095 case 0:
2096 g_assert_not_reached();
2097 }
2098 haddr += n;
2099 size -= n;
2100 } while (size != 0);
2101 return ret_be;
2102 }
2103
2104 /**
2105 * do_ld_parts_be4
2106 * @p: translation parameters
2107 * @ret_be: accumulated data
2108 *
2109 * As do_ld_bytes_beN, but with one atomic load.
2110 * Four aligned bytes are guaranteed to cover the load.
2111 */
2112 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2113 {
2114 int o = p->addr & 3;
2115 uint32_t x = load_atomic4(p->haddr - o);
2116
2117 x = cpu_to_be32(x);
2118 x <<= o * 8;
2119 x >>= (4 - p->size) * 8;
2120 return (ret_be << (p->size * 8)) | x;
2121 }
2122
2123 /**
2124 * do_ld_parts_be8
2125 * @p: translation parameters
2126 * @ret_be: accumulated data
2127 *
2128 * As do_ld_bytes_beN, but with one atomic load.
2129 * Eight aligned bytes are guaranteed to cover the load.
2130 */
2131 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2132 MMULookupPageData *p, uint64_t ret_be)
2133 {
2134 int o = p->addr & 7;
2135 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2136
2137 x = cpu_to_be64(x);
2138 x <<= o * 8;
2139 x >>= (8 - p->size) * 8;
2140 return (ret_be << (p->size * 8)) | x;
2141 }
2142
2143 /**
2144 * do_ld_parts_be16
2145 * @p: translation parameters
2146 * @ret_be: accumulated data
2147 *
2148 * As do_ld_bytes_beN, but with one atomic load.
2149 * 16 aligned bytes are guaranteed to cover the load.
2150 */
2151 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2152 MMULookupPageData *p, uint64_t ret_be)
2153 {
2154 int o = p->addr & 15;
2155 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2156 int size = p->size;
2157
2158 if (!HOST_BIG_ENDIAN) {
2159 y = bswap128(y);
2160 }
2161 y = int128_lshift(y, o * 8);
2162 y = int128_urshift(y, (16 - size) * 8);
2163 x = int128_make64(ret_be);
2164 x = int128_lshift(x, size * 8);
2165 return int128_or(x, y);
2166 }
2167
2168 /*
2169 * Wrapper for the above.
2170 */
2171 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2172 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2173 MemOp mop, uintptr_t ra)
2174 {
2175 MemOp atom;
2176 unsigned tmp, half_size;
2177
2178 if (unlikely(p->flags & TLB_MMIO)) {
2179 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2180 }
2181
2182 /*
2183 * It is a given that we cross a page and therefore there is no
2184 * atomicity for the load as a whole, but subobjects may need attention.
2185 */
2186 atom = mop & MO_ATOM_MASK;
2187 switch (atom) {
2188 case MO_ATOM_SUBALIGN:
2189 return do_ld_parts_beN(p, ret_be);
2190
2191 case MO_ATOM_IFALIGN_PAIR:
2192 case MO_ATOM_WITHIN16_PAIR:
2193 tmp = mop & MO_SIZE;
2194 tmp = tmp ? tmp - 1 : 0;
2195 half_size = 1 << tmp;
2196 if (atom == MO_ATOM_IFALIGN_PAIR
2197 ? p->size == half_size
2198 : p->size >= half_size) {
2199 if (!HAVE_al8_fast && p->size < 4) {
2200 return do_ld_whole_be4(p, ret_be);
2201 } else {
2202 return do_ld_whole_be8(env, ra, p, ret_be);
2203 }
2204 }
2205 /* fall through */
2206
2207 case MO_ATOM_IFALIGN:
2208 case MO_ATOM_WITHIN16:
2209 case MO_ATOM_NONE:
2210 return do_ld_bytes_beN(p, ret_be);
2211
2212 default:
2213 g_assert_not_reached();
2214 }
2215 }
2216
2217 /*
2218 * Wrapper for the above, for 8 < size < 16.
2219 */
2220 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2221 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2222 {
2223 int size = p->size;
2224 uint64_t b;
2225 MemOp atom;
2226
2227 if (unlikely(p->flags & TLB_MMIO)) {
2228 p->size = size - 8;
2229 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra);
2230 p->addr += p->size;
2231 p->size = 8;
2232 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra);
2233 return int128_make128(b, a);
2234 }
2235
2236 /*
2237 * It is a given that we cross a page and therefore there is no
2238 * atomicity for the load as a whole, but subobjects may need attention.
2239 */
2240 atom = mop & MO_ATOM_MASK;
2241 switch (atom) {
2242 case MO_ATOM_SUBALIGN:
2243 p->size = size - 8;
2244 a = do_ld_parts_beN(p, a);
2245 p->haddr += size - 8;
2246 p->size = 8;
2247 b = do_ld_parts_beN(p, 0);
2248 break;
2249
2250 case MO_ATOM_WITHIN16_PAIR:
2251 /* Since size > 8, this is the half that must be atomic. */
2252 return do_ld_whole_be16(env, ra, p, a);
2253
2254 case MO_ATOM_IFALIGN_PAIR:
2255 /*
2256 * Since size > 8, both halves are misaligned,
2257 * and so neither is atomic.
2258 */
2259 case MO_ATOM_IFALIGN:
2260 case MO_ATOM_WITHIN16:
2261 case MO_ATOM_NONE:
2262 p->size = size - 8;
2263 a = do_ld_bytes_beN(p, a);
2264 b = ldq_be_p(p->haddr + size - 8);
2265 break;
2266
2267 default:
2268 g_assert_not_reached();
2269 }
2270
2271 return int128_make128(b, a);
2272 }
2273
2274 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2275 MMUAccessType type, uintptr_t ra)
2276 {
2277 if (unlikely(p->flags & TLB_MMIO)) {
2278 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2279 } else {
2280 return *(uint8_t *)p->haddr;
2281 }
2282 }
2283
2284 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2285 MMUAccessType type, MemOp memop, uintptr_t ra)
2286 {
2287 uint64_t ret;
2288
2289 if (unlikely(p->flags & TLB_MMIO)) {
2290 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2291 }
2292
2293 /* Perform the load host endian, then swap if necessary. */
2294 ret = load_atom_2(env, ra, p->haddr, memop);
2295 if (memop & MO_BSWAP) {
2296 ret = bswap16(ret);
2297 }
2298 return ret;
2299 }
2300
2301 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2302 MMUAccessType type, MemOp memop, uintptr_t ra)
2303 {
2304 uint32_t ret;
2305
2306 if (unlikely(p->flags & TLB_MMIO)) {
2307 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2308 }
2309
2310 /* Perform the load host endian. */
2311 ret = load_atom_4(env, ra, p->haddr, memop);
2312 if (memop & MO_BSWAP) {
2313 ret = bswap32(ret);
2314 }
2315 return ret;
2316 }
2317
2318 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2319 MMUAccessType type, MemOp memop, uintptr_t ra)
2320 {
2321 uint64_t ret;
2322
2323 if (unlikely(p->flags & TLB_MMIO)) {
2324 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2325 }
2326
2327 /* Perform the load host endian. */
2328 ret = load_atom_8(env, ra, p->haddr, memop);
2329 if (memop & MO_BSWAP) {
2330 ret = bswap64(ret);
2331 }
2332 return ret;
2333 }
2334
2335 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2336 uintptr_t ra, MMUAccessType access_type)
2337 {
2338 MMULookupLocals l;
2339 bool crosspage;
2340
2341 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2342 tcg_debug_assert(!crosspage);
2343
2344 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2345 }
2346
2347 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2348 MemOpIdx oi, uintptr_t retaddr)
2349 {
2350 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2351 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2352 }
2353
2354 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2355 uintptr_t ra, MMUAccessType access_type)
2356 {
2357 MMULookupLocals l;
2358 bool crosspage;
2359 uint16_t ret;
2360 uint8_t a, b;
2361
2362 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2363 if (likely(!crosspage)) {
2364 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2365 }
2366
2367 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2368 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2369
2370 if ((l.memop & MO_BSWAP) == MO_LE) {
2371 ret = a | (b << 8);
2372 } else {
2373 ret = b | (a << 8);
2374 }
2375 return ret;
2376 }
2377
2378 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2379 MemOpIdx oi, uintptr_t retaddr)
2380 {
2381 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2382 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2383 }
2384
2385 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2386 uintptr_t ra, MMUAccessType access_type)
2387 {
2388 MMULookupLocals l;
2389 bool crosspage;
2390 uint32_t ret;
2391
2392 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2393 if (likely(!crosspage)) {
2394 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2395 }
2396
2397 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2398 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2399 if ((l.memop & MO_BSWAP) == MO_LE) {
2400 ret = bswap32(ret);
2401 }
2402 return ret;
2403 }
2404
2405 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2406 MemOpIdx oi, uintptr_t retaddr)
2407 {
2408 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2409 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2410 }
2411
2412 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2413 uintptr_t ra, MMUAccessType access_type)
2414 {
2415 MMULookupLocals l;
2416 bool crosspage;
2417 uint64_t ret;
2418
2419 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2420 if (likely(!crosspage)) {
2421 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2422 }
2423
2424 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2425 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2426 if ((l.memop & MO_BSWAP) == MO_LE) {
2427 ret = bswap64(ret);
2428 }
2429 return ret;
2430 }
2431
2432 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2433 MemOpIdx oi, uintptr_t retaddr)
2434 {
2435 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2436 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2437 }
2438
2439 /*
2440 * Provide signed versions of the load routines as well. We can of course
2441 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2442 */
2443
2444 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2445 MemOpIdx oi, uintptr_t retaddr)
2446 {
2447 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2448 }
2449
2450 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2451 MemOpIdx oi, uintptr_t retaddr)
2452 {
2453 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2454 }
2455
2456 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2457 MemOpIdx oi, uintptr_t retaddr)
2458 {
2459 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2460 }
2461
2462 static Int128 do_ld16_mmu(CPUArchState *env, target_ulong addr,
2463 MemOpIdx oi, uintptr_t ra)
2464 {
2465 MMULookupLocals l;
2466 bool crosspage;
2467 uint64_t a, b;
2468 Int128 ret;
2469 int first;
2470
2471 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2472 if (likely(!crosspage)) {
2473 /* Perform the load host endian. */
2474 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2475 QEMU_IOTHREAD_LOCK_GUARD();
2476 a = io_readx(env, l.page[0].full, l.mmu_idx, addr,
2477 ra, MMU_DATA_LOAD, MO_64);
2478 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8,
2479 ra, MMU_DATA_LOAD, MO_64);
2480 ret = int128_make128(HOST_BIG_ENDIAN ? b : a,
2481 HOST_BIG_ENDIAN ? a : b);
2482 } else {
2483 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2484 }
2485 if (l.memop & MO_BSWAP) {
2486 ret = bswap128(ret);
2487 }
2488 return ret;
2489 }
2490
2491 first = l.page[0].size;
2492 if (first == 8) {
2493 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2494
2495 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2496 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2497 if ((mop8 & MO_BSWAP) == MO_LE) {
2498 ret = int128_make128(a, b);
2499 } else {
2500 ret = int128_make128(b, a);
2501 }
2502 return ret;
2503 }
2504
2505 if (first < 8) {
2506 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2507 MMU_DATA_LOAD, l.memop, ra);
2508 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2509 } else {
2510 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2511 b = int128_getlo(ret);
2512 ret = int128_lshift(ret, l.page[1].size * 8);
2513 a = int128_gethi(ret);
2514 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2515 MMU_DATA_LOAD, l.memop, ra);
2516 ret = int128_make128(b, a);
2517 }
2518 if ((l.memop & MO_BSWAP) == MO_LE) {
2519 ret = bswap128(ret);
2520 }
2521 return ret;
2522 }
2523
2524 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2525 uint32_t oi, uintptr_t retaddr)
2526 {
2527 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2528 return do_ld16_mmu(env, addr, oi, retaddr);
2529 }
2530
2531 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2532 {
2533 return helper_ld16_mmu(env, addr, oi, GETPC());
2534 }
2535
2536 /*
2537 * Load helpers for cpu_ldst.h.
2538 */
2539
2540 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2541 {
2542 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2543 }
2544
2545 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2546 {
2547 uint8_t ret;
2548
2549 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2550 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2551 plugin_load_cb(env, addr, oi);
2552 return ret;
2553 }
2554
2555 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2556 MemOpIdx oi, uintptr_t ra)
2557 {
2558 uint16_t ret;
2559
2560 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2561 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2562 plugin_load_cb(env, addr, oi);
2563 return ret;
2564 }
2565
2566 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2567 MemOpIdx oi, uintptr_t ra)
2568 {
2569 uint32_t ret;
2570
2571 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2572 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2573 plugin_load_cb(env, addr, oi);
2574 return ret;
2575 }
2576
2577 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2578 MemOpIdx oi, uintptr_t ra)
2579 {
2580 uint64_t ret;
2581
2582 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2583 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2584 plugin_load_cb(env, addr, oi);
2585 return ret;
2586 }
2587
2588 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2589 MemOpIdx oi, uintptr_t ra)
2590 {
2591 Int128 ret;
2592
2593 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2594 ret = do_ld16_mmu(env, addr, oi, ra);
2595 plugin_load_cb(env, addr, oi);
2596 return ret;
2597 }
2598
2599 /*
2600 * Store Helpers
2601 */
2602
2603 /**
2604 * do_st_mmio_leN:
2605 * @env: cpu context
2606 * @p: translation parameters
2607 * @val_le: data to store
2608 * @mmu_idx: virtual address context
2609 * @ra: return address into tcg generated code, or 0
2610 *
2611 * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2612 * The bytes to store are extracted in little-endian order from @val_le;
2613 * return the bytes of @val_le beyond @p->size that have not been stored.
2614 */
2615 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2616 uint64_t val_le, int mmu_idx, uintptr_t ra)
2617 {
2618 CPUTLBEntryFull *full = p->full;
2619 target_ulong addr = p->addr;
2620 int i, size = p->size;
2621
2622 QEMU_IOTHREAD_LOCK_GUARD();
2623 for (i = 0; i < size; i++, val_le >>= 8) {
2624 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2625 }
2626 return val_le;
2627 }
2628
2629 /*
2630 * Wrapper for the above.
2631 */
2632 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2633 uint64_t val_le, int mmu_idx,
2634 MemOp mop, uintptr_t ra)
2635 {
2636 MemOp atom;
2637 unsigned tmp, half_size;
2638
2639 if (unlikely(p->flags & TLB_MMIO)) {
2640 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2641 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2642 return val_le >> (p->size * 8);
2643 }
2644
2645 /*
2646 * It is a given that we cross a page and therefore there is no atomicity
2647 * for the store as a whole, but subobjects may need attention.
2648 */
2649 atom = mop & MO_ATOM_MASK;
2650 switch (atom) {
2651 case MO_ATOM_SUBALIGN:
2652 return store_parts_leN(p->haddr, p->size, val_le);
2653
2654 case MO_ATOM_IFALIGN_PAIR:
2655 case MO_ATOM_WITHIN16_PAIR:
2656 tmp = mop & MO_SIZE;
2657 tmp = tmp ? tmp - 1 : 0;
2658 half_size = 1 << tmp;
2659 if (atom == MO_ATOM_IFALIGN_PAIR
2660 ? p->size == half_size
2661 : p->size >= half_size) {
2662 if (!HAVE_al8_fast && p->size <= 4) {
2663 return store_whole_le4(p->haddr, p->size, val_le);
2664 } else if (HAVE_al8) {
2665 return store_whole_le8(p->haddr, p->size, val_le);
2666 } else {
2667 cpu_loop_exit_atomic(env_cpu(env), ra);
2668 }
2669 }
2670 /* fall through */
2671
2672 case MO_ATOM_IFALIGN:
2673 case MO_ATOM_WITHIN16:
2674 case MO_ATOM_NONE:
2675 return store_bytes_leN(p->haddr, p->size, val_le);
2676
2677 default:
2678 g_assert_not_reached();
2679 }
2680 }
2681
2682 /*
2683 * Wrapper for the above, for 8 < size < 16.
2684 */
2685 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2686 Int128 val_le, int mmu_idx,
2687 MemOp mop, uintptr_t ra)
2688 {
2689 int size = p->size;
2690 MemOp atom;
2691
2692 if (unlikely(p->flags & TLB_MMIO)) {
2693 p->size = 8;
2694 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra);
2695 p->size = size - 8;
2696 p->addr += 8;
2697 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra);
2698 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2699 return int128_gethi(val_le) >> ((size - 8) * 8);
2700 }
2701
2702 /*
2703 * It is a given that we cross a page and therefore there is no atomicity
2704 * for the store as a whole, but subobjects may need attention.
2705 */
2706 atom = mop & MO_ATOM_MASK;
2707 switch (atom) {
2708 case MO_ATOM_SUBALIGN:
2709 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2710 return store_parts_leN(p->haddr + 8, p->size - 8,
2711 int128_gethi(val_le));
2712
2713 case MO_ATOM_WITHIN16_PAIR:
2714 /* Since size > 8, this is the half that must be atomic. */
2715 if (!HAVE_ATOMIC128_RW) {
2716 cpu_loop_exit_atomic(env_cpu(env), ra);
2717 }
2718 return store_whole_le16(p->haddr, p->size, val_le);
2719
2720 case MO_ATOM_IFALIGN_PAIR:
2721 /*
2722 * Since size > 8, both halves are misaligned,
2723 * and so neither is atomic.
2724 */
2725 case MO_ATOM_IFALIGN:
2726 case MO_ATOM_NONE:
2727 stq_le_p(p->haddr, int128_getlo(val_le));
2728 return store_bytes_leN(p->haddr + 8, p->size - 8,
2729 int128_gethi(val_le));
2730
2731 default:
2732 g_assert_not_reached();
2733 }
2734 }
2735
2736 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2737 int mmu_idx, uintptr_t ra)
2738 {
2739 if (unlikely(p->flags & TLB_MMIO)) {
2740 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2741 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2742 /* nothing */
2743 } else {
2744 *(uint8_t *)p->haddr = val;
2745 }
2746 }
2747
2748 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2749 int mmu_idx, MemOp memop, uintptr_t ra)
2750 {
2751 if (unlikely(p->flags & TLB_MMIO)) {
2752 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2753 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2754 /* nothing */
2755 } else {
2756 /* Swap to host endian if necessary, then store. */
2757 if (memop & MO_BSWAP) {
2758 val = bswap16(val);
2759 }
2760 store_atom_2(env, ra, p->haddr, memop, val);
2761 }
2762 }
2763
2764 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2765 int mmu_idx, MemOp memop, uintptr_t ra)
2766 {
2767 if (unlikely(p->flags & TLB_MMIO)) {
2768 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2769 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2770 /* nothing */
2771 } else {
2772 /* Swap to host endian if necessary, then store. */
2773 if (memop & MO_BSWAP) {
2774 val = bswap32(val);
2775 }
2776 store_atom_4(env, ra, p->haddr, memop, val);
2777 }
2778 }
2779
2780 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2781 int mmu_idx, MemOp memop, uintptr_t ra)
2782 {
2783 if (unlikely(p->flags & TLB_MMIO)) {
2784 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2785 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2786 /* nothing */
2787 } else {
2788 /* Swap to host endian if necessary, then store. */
2789 if (memop & MO_BSWAP) {
2790 val = bswap64(val);
2791 }
2792 store_atom_8(env, ra, p->haddr, memop, val);
2793 }
2794 }
2795
2796 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2797 MemOpIdx oi, uintptr_t ra)
2798 {
2799 MMULookupLocals l;
2800 bool crosspage;
2801
2802 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2803 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2804 tcg_debug_assert(!crosspage);
2805
2806 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2807 }
2808
2809 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2810 MemOpIdx oi, uintptr_t ra)
2811 {
2812 MMULookupLocals l;
2813 bool crosspage;
2814 uint8_t a, b;
2815
2816 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2817 if (likely(!crosspage)) {
2818 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2819 return;
2820 }
2821
2822 if ((l.memop & MO_BSWAP) == MO_LE) {
2823 a = val, b = val >> 8;
2824 } else {
2825 b = val, a = val >> 8;
2826 }
2827 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2828 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2829 }
2830
2831 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2832 MemOpIdx oi, uintptr_t retaddr)
2833 {
2834 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2835 do_st2_mmu(env, addr, val, oi, retaddr);
2836 }
2837
2838 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2839 MemOpIdx oi, uintptr_t ra)
2840 {
2841 MMULookupLocals l;
2842 bool crosspage;
2843
2844 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2845 if (likely(!crosspage)) {
2846 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2847 return;
2848 }
2849
2850 /* Swap to little endian for simplicity, then store by bytes. */
2851 if ((l.memop & MO_BSWAP) != MO_LE) {
2852 val = bswap32(val);
2853 }
2854 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2855 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2856 }
2857
2858 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2859 MemOpIdx oi, uintptr_t retaddr)
2860 {
2861 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2862 do_st4_mmu(env, addr, val, oi, retaddr);
2863 }
2864
2865 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2866 MemOpIdx oi, uintptr_t ra)
2867 {
2868 MMULookupLocals l;
2869 bool crosspage;
2870
2871 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2872 if (likely(!crosspage)) {
2873 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2874 return;
2875 }
2876
2877 /* Swap to little endian for simplicity, then store by bytes. */
2878 if ((l.memop & MO_BSWAP) != MO_LE) {
2879 val = bswap64(val);
2880 }
2881 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2882 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2883 }
2884
2885 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
2886 MemOpIdx oi, uintptr_t retaddr)
2887 {
2888 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2889 do_st8_mmu(env, addr, val, oi, retaddr);
2890 }
2891
2892 static void do_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
2893 MemOpIdx oi, uintptr_t ra)
2894 {
2895 MMULookupLocals l;
2896 bool crosspage;
2897 uint64_t a, b;
2898 int first;
2899
2900 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2901 if (likely(!crosspage)) {
2902 /* Swap to host endian if necessary, then store. */
2903 if (l.memop & MO_BSWAP) {
2904 val = bswap128(val);
2905 }
2906 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2907 QEMU_IOTHREAD_LOCK_GUARD();
2908 if (HOST_BIG_ENDIAN) {
2909 b = int128_getlo(val), a = int128_gethi(val);
2910 } else {
2911 a = int128_getlo(val), b = int128_gethi(val);
2912 }
2913 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64);
2914 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64);
2915 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2916 /* nothing */
2917 } else {
2918 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
2919 }
2920 return;
2921 }
2922
2923 first = l.page[0].size;
2924 if (first == 8) {
2925 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2926
2927 if (l.memop & MO_BSWAP) {
2928 val = bswap128(val);
2929 }
2930 if (HOST_BIG_ENDIAN) {
2931 b = int128_getlo(val), a = int128_gethi(val);
2932 } else {
2933 a = int128_getlo(val), b = int128_gethi(val);
2934 }
2935 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
2936 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
2937 return;
2938 }
2939
2940 if ((l.memop & MO_BSWAP) != MO_LE) {
2941 val = bswap128(val);
2942 }
2943 if (first < 8) {
2944 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2945 val = int128_urshift(val, first * 8);
2946 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2947 } else {
2948 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2949 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
2950 }
2951 }
2952
2953 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
2954 MemOpIdx oi, uintptr_t retaddr)
2955 {
2956 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2957 do_st16_mmu(env, addr, val, oi, retaddr);
2958 }
2959
2960 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
2961 {
2962 helper_st16_mmu(env, addr, val, oi, GETPC());
2963 }
2964
2965 /*
2966 * Store Helpers for cpu_ldst.h
2967 */
2968
2969 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2970 {
2971 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2972 }
2973
2974 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2975 MemOpIdx oi, uintptr_t retaddr)
2976 {
2977 helper_stb_mmu(env, addr, val, oi, retaddr);
2978 plugin_store_cb(env, addr, oi);
2979 }
2980
2981 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2982 MemOpIdx oi, uintptr_t retaddr)
2983 {
2984 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2985 do_st2_mmu(env, addr, val, oi, retaddr);
2986 plugin_store_cb(env, addr, oi);
2987 }
2988
2989 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2990 MemOpIdx oi, uintptr_t retaddr)
2991 {
2992 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2993 do_st4_mmu(env, addr, val, oi, retaddr);
2994 plugin_store_cb(env, addr, oi);
2995 }
2996
2997 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2998 MemOpIdx oi, uintptr_t retaddr)
2999 {
3000 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3001 do_st8_mmu(env, addr, val, oi, retaddr);
3002 plugin_store_cb(env, addr, oi);
3003 }
3004
3005 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3006 MemOpIdx oi, uintptr_t retaddr)
3007 {
3008 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3009 do_st16_mmu(env, addr, val, oi, retaddr);
3010 plugin_store_cb(env, addr, oi);
3011 }
3012
3013 #include "ldst_common.c.inc"
3014
3015 /*
3016 * First set of functions passes in OI and RETADDR.
3017 * This makes them callable from other helpers.
3018 */
3019
3020 #define ATOMIC_NAME(X) \
3021 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3022
3023 #define ATOMIC_MMU_CLEANUP
3024
3025 #include "atomic_common.c.inc"
3026
3027 #define DATA_SIZE 1
3028 #include "atomic_template.h"
3029
3030 #define DATA_SIZE 2
3031 #include "atomic_template.h"
3032
3033 #define DATA_SIZE 4
3034 #include "atomic_template.h"
3035
3036 #ifdef CONFIG_ATOMIC64
3037 #define DATA_SIZE 8
3038 #include "atomic_template.h"
3039 #endif
3040
3041 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
3042 #define DATA_SIZE 16
3043 #include "atomic_template.h"
3044 #endif
3045
3046 /* Code access functions. */
3047
3048 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3049 {
3050 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3051 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3052 }
3053
3054 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3055 {
3056 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3057 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3058 }
3059
3060 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3061 {
3062 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3063 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3064 }
3065
3066 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3067 {
3068 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3069 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3070 }
3071
3072 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3073 MemOpIdx oi, uintptr_t retaddr)
3074 {
3075 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3076 }
3077
3078 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3079 MemOpIdx oi, uintptr_t retaddr)
3080 {
3081 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3082 }
3083
3084 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3085 MemOpIdx oi, uintptr_t retaddr)
3086 {
3087 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3088 }
3089
3090 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3091 MemOpIdx oi, uintptr_t retaddr)
3092 {
3093 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3094 }