]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
tcg: Widen CPUTLBEntry comparators to 64-bits
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "exec/helper-proto.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96 size_t max_entries)
97 {
98 desc->window_begin_ns = ns;
99 desc->window_max_entries = max_entries;
100 }
101
102 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
103 {
104 CPUJumpCache *jc = cpu->tb_jmp_cache;
105 int i, i0;
106
107 if (unlikely(!jc)) {
108 return;
109 }
110
111 i0 = tb_jmp_cache_hash_page(page_addr);
112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113 qatomic_set(&jc->array[i0 + i].tb, NULL);
114 }
115 }
116
117 /**
118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119 * @desc: The CPUTLBDesc portion of the TLB
120 * @fast: The CPUTLBDescFast portion of the same TLB
121 *
122 * Called with tlb_lock_held.
123 *
124 * We have two main constraints when resizing a TLB: (1) we only resize it
125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126 * the array or unnecessarily flushing it), which means we do not control how
127 * frequently the resizing can occur; (2) we don't have access to the guest's
128 * future scheduling decisions, and therefore have to decide the magnitude of
129 * the resize based on past observations.
130 *
131 * In general, a memory-hungry process can benefit greatly from an appropriately
132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133 * we just have to make the TLB as large as possible; while an oversized TLB
134 * results in minimal TLB miss rates, it also takes longer to be flushed
135 * (flushes can be _very_ frequent), and the reduced locality can also hurt
136 * performance.
137 *
138 * To achieve near-optimal performance for all kinds of workloads, we:
139 *
140 * 1. Aggressively increase the size of the TLB when the use rate of the
141 * TLB being flushed is high, since it is likely that in the near future this
142 * memory-hungry process will execute again, and its memory hungriness will
143 * probably be similar.
144 *
145 * 2. Slowly reduce the size of the TLB as the use rate declines over a
146 * reasonably large time window. The rationale is that if in such a time window
147 * we have not observed a high TLB use rate, it is likely that we won't observe
148 * it in the near future. In that case, once a time window expires we downsize
149 * the TLB to match the maximum use rate observed in the window.
150 *
151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152 * since in that range performance is likely near-optimal. Recall that the TLB
153 * is direct mapped, so we want the use rate to be low (or at least not too
154 * high), since otherwise we are likely to have a significant amount of
155 * conflict misses.
156 */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158 int64_t now)
159 {
160 size_t old_size = tlb_n_entries(fast);
161 size_t rate;
162 size_t new_size = old_size;
163 int64_t window_len_ms = 100;
164 int64_t window_len_ns = window_len_ms * 1000 * 1000;
165 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166
167 if (desc->n_used_entries > desc->window_max_entries) {
168 desc->window_max_entries = desc->n_used_entries;
169 }
170 rate = desc->window_max_entries * 100 / old_size;
171
172 if (rate > 70) {
173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174 } else if (rate < 30 && window_expired) {
175 size_t ceil = pow2ceil(desc->window_max_entries);
176 size_t expected_rate = desc->window_max_entries * 100 / ceil;
177
178 /*
179 * Avoid undersizing when the max number of entries seen is just below
180 * a pow2. For instance, if max_entries == 1025, the expected use rate
181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183 * later. Thus, make sure that the expected use rate remains below 70%.
184 * (and since we double the size, that means the lowest rate we'd
185 * expect to get is 35%, which is still in the 30-70% range where
186 * we consider that the size is appropriate.)
187 */
188 if (expected_rate > 70) {
189 ceil *= 2;
190 }
191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192 }
193
194 if (new_size == old_size) {
195 if (window_expired) {
196 tlb_window_reset(desc, now, desc->n_used_entries);
197 }
198 return;
199 }
200
201 g_free(fast->table);
202 g_free(desc->fulltlb);
203
204 tlb_window_reset(desc, now, 0);
205 /* desc->n_used_entries is cleared by the caller */
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 fast->table = g_try_new(CPUTLBEntry, new_size);
208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209
210 /*
211 * If the allocations fail, try smaller sizes. We just freed some
212 * memory, so going back to half of new_size has a good chance of working.
213 * Increased memory pressure elsewhere in the system might cause the
214 * allocations to fail though, so we progressively reduce the allocation
215 * size, aborting if we cannot even allocate the smallest TLB we support.
216 */
217 while (fast->table == NULL || desc->fulltlb == NULL) {
218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219 error_report("%s: %s", __func__, strerror(errno));
220 abort();
221 }
222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224
225 g_free(fast->table);
226 g_free(desc->fulltlb);
227 fast->table = g_try_new(CPUTLBEntry, new_size);
228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229 }
230 }
231
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234 desc->n_used_entries = 0;
235 desc->large_page_addr = -1;
236 desc->large_page_mask = -1;
237 desc->vindex = 0;
238 memset(fast->table, -1, sizeof_tlb(fast));
239 memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243 int64_t now)
244 {
245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247
248 tlb_mmu_resize_locked(desc, fast, now);
249 tlb_mmu_flush_locked(desc, fast);
250 }
251
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255
256 tlb_window_reset(desc, now, 0);
257 desc->n_used_entries = 0;
258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259 fast->table = g_new(CPUTLBEntry, n_entries);
260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261 tlb_mmu_flush_locked(desc, fast);
262 }
263
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266 env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271 env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273
274 void tlb_init(CPUState *cpu)
275 {
276 CPUArchState *env = cpu->env_ptr;
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&env_tlb(env)->c.lock);
281
282 /* All tlbs are initialized flushed. */
283 env_tlb(env)->c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294
295 qemu_spin_destroy(&env_tlb(env)->c.lock);
296 for (i = 0; i < NB_MMU_MODES; i++) {
297 CPUTLBDesc *desc = &env_tlb(env)->d[i];
298 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299
300 g_free(fast->table);
301 g_free(desc->fulltlb);
302 }
303 }
304
305 /* flush_all_helper: run fn across all cpus
306 *
307 * If the wait flag is set then the src cpu's helper will be queued as
308 * "safe" work and the loop exited creating a synchronisation point
309 * where all queued work will be finished before execution starts
310 * again.
311 */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313 run_on_cpu_data d)
314 {
315 CPUState *cpu;
316
317 CPU_FOREACH(cpu) {
318 if (cpu != src) {
319 async_run_on_cpu(cpu, fn, d);
320 }
321 }
322 }
323
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326 CPUState *cpu;
327 size_t full = 0, part = 0, elide = 0;
328
329 CPU_FOREACH(cpu) {
330 CPUArchState *env = cpu->env_ptr;
331
332 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 }
336 *pfull = full;
337 *ppart = part;
338 *pelide = elide;
339 }
340
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343 CPUArchState *env = cpu->env_ptr;
344 uint16_t asked = data.host_int;
345 uint16_t all_dirty, work, to_clean;
346 int64_t now = get_clock_realtime();
347
348 assert_cpu_is_self(cpu);
349
350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351
352 qemu_spin_lock(&env_tlb(env)->c.lock);
353
354 all_dirty = env_tlb(env)->c.dirty;
355 to_clean = asked & all_dirty;
356 all_dirty &= ~to_clean;
357 env_tlb(env)->c.dirty = all_dirty;
358
359 for (work = to_clean; work != 0; work &= work - 1) {
360 int mmu_idx = ctz32(work);
361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362 }
363
364 qemu_spin_unlock(&env_tlb(env)->c.lock);
365
366 tcg_flush_jmp_cache(cpu);
367
368 if (to_clean == ALL_MMUIDX_BITS) {
369 qatomic_set(&env_tlb(env)->c.full_flush_count,
370 env_tlb(env)->c.full_flush_count + 1);
371 } else {
372 qatomic_set(&env_tlb(env)->c.part_flush_count,
373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374 if (to_clean != asked) {
375 qatomic_set(&env_tlb(env)->c.elide_flush_count,
376 env_tlb(env)->c.elide_flush_count +
377 ctpop16(asked & ~to_clean));
378 }
379 }
380 }
381
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385
386 if (cpu->created && !qemu_cpu_is_self(cpu)) {
387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388 RUN_ON_CPU_HOST_INT(idxmap));
389 } else {
390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391 }
392 }
393
394 void tlb_flush(CPUState *cpu)
395 {
396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402
403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404
405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417
418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419
420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430 target_ulong page, target_ulong mask)
431 {
432 page &= mask;
433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434
435 return (page == (tlb_entry->addr_read & mask) ||
436 page == (tlb_addr_write(tlb_entry) & mask) ||
437 page == (tlb_entry->addr_code & mask));
438 }
439
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
441 target_ulong page)
442 {
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445
446 /**
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
449 */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 target_ulong page,
458 target_ulong mask)
459 {
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
463 }
464 return false;
465 }
466
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
468 target_ulong page)
469 {
470 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
471 }
472
473 /* Called with tlb_c.lock held */
474 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
475 target_ulong page,
476 target_ulong mask)
477 {
478 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
479 int k;
480
481 assert_cpu_is_self(env_cpu(env));
482 for (k = 0; k < CPU_VTLB_SIZE; k++) {
483 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
484 tlb_n_used_entries_dec(env, mmu_idx);
485 }
486 }
487 }
488
489 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
490 target_ulong page)
491 {
492 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
493 }
494
495 static void tlb_flush_page_locked(CPUArchState *env, int midx,
496 target_ulong page)
497 {
498 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
499 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
500
501 /* Check if we need to flush due to large pages. */
502 if ((page & lp_mask) == lp_addr) {
503 tlb_debug("forcing full flush midx %d ("
504 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
505 midx, lp_addr, lp_mask);
506 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
507 } else {
508 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
509 tlb_n_used_entries_dec(env, midx);
510 }
511 tlb_flush_vtlb_page_locked(env, midx, page);
512 }
513 }
514
515 /**
516 * tlb_flush_page_by_mmuidx_async_0:
517 * @cpu: cpu on which to flush
518 * @addr: page of virtual address to flush
519 * @idxmap: set of mmu_idx to flush
520 *
521 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
522 * at @addr from the tlbs indicated by @idxmap from @cpu.
523 */
524 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
525 target_ulong addr,
526 uint16_t idxmap)
527 {
528 CPUArchState *env = cpu->env_ptr;
529 int mmu_idx;
530
531 assert_cpu_is_self(cpu);
532
533 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
534
535 qemu_spin_lock(&env_tlb(env)->c.lock);
536 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
537 if ((idxmap >> mmu_idx) & 1) {
538 tlb_flush_page_locked(env, mmu_idx, addr);
539 }
540 }
541 qemu_spin_unlock(&env_tlb(env)->c.lock);
542
543 /*
544 * Discard jump cache entries for any tb which might potentially
545 * overlap the flushed page, which includes the previous.
546 */
547 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
548 tb_jmp_cache_clear_page(cpu, addr);
549 }
550
551 /**
552 * tlb_flush_page_by_mmuidx_async_1:
553 * @cpu: cpu on which to flush
554 * @data: encoded addr + idxmap
555 *
556 * Helper for tlb_flush_page_by_mmuidx and friends, called through
557 * async_run_on_cpu. The idxmap parameter is encoded in the page
558 * offset of the target_ptr field. This limits the set of mmu_idx
559 * that can be passed via this method.
560 */
561 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
562 run_on_cpu_data data)
563 {
564 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
565 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
566 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
567
568 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
569 }
570
571 typedef struct {
572 target_ulong addr;
573 uint16_t idxmap;
574 } TLBFlushPageByMMUIdxData;
575
576 /**
577 * tlb_flush_page_by_mmuidx_async_2:
578 * @cpu: cpu on which to flush
579 * @data: allocated addr + idxmap
580 *
581 * Helper for tlb_flush_page_by_mmuidx and friends, called through
582 * async_run_on_cpu. The addr+idxmap parameters are stored in a
583 * TLBFlushPageByMMUIdxData structure that has been allocated
584 * specifically for this helper. Free the structure when done.
585 */
586 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
587 run_on_cpu_data data)
588 {
589 TLBFlushPageByMMUIdxData *d = data.host_ptr;
590
591 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
592 g_free(d);
593 }
594
595 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
596 {
597 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
598
599 /* This should already be page aligned */
600 addr &= TARGET_PAGE_MASK;
601
602 if (qemu_cpu_is_self(cpu)) {
603 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
604 } else if (idxmap < TARGET_PAGE_SIZE) {
605 /*
606 * Most targets have only a few mmu_idx. In the case where
607 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
608 * allocating memory for this operation.
609 */
610 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
611 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
612 } else {
613 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
614
615 /* Otherwise allocate a structure, freed by the worker. */
616 d->addr = addr;
617 d->idxmap = idxmap;
618 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
619 RUN_ON_CPU_HOST_PTR(d));
620 }
621 }
622
623 void tlb_flush_page(CPUState *cpu, target_ulong addr)
624 {
625 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
626 }
627
628 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
629 uint16_t idxmap)
630 {
631 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
632
633 /* This should already be page aligned */
634 addr &= TARGET_PAGE_MASK;
635
636 /*
637 * Allocate memory to hold addr+idxmap only when needed.
638 * See tlb_flush_page_by_mmuidx for details.
639 */
640 if (idxmap < TARGET_PAGE_SIZE) {
641 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
642 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
643 } else {
644 CPUState *dst_cpu;
645
646 /* Allocate a separate data block for each destination cpu. */
647 CPU_FOREACH(dst_cpu) {
648 if (dst_cpu != src_cpu) {
649 TLBFlushPageByMMUIdxData *d
650 = g_new(TLBFlushPageByMMUIdxData, 1);
651
652 d->addr = addr;
653 d->idxmap = idxmap;
654 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
655 RUN_ON_CPU_HOST_PTR(d));
656 }
657 }
658 }
659
660 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
661 }
662
663 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
664 {
665 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
666 }
667
668 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
669 target_ulong addr,
670 uint16_t idxmap)
671 {
672 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
673
674 /* This should already be page aligned */
675 addr &= TARGET_PAGE_MASK;
676
677 /*
678 * Allocate memory to hold addr+idxmap only when needed.
679 * See tlb_flush_page_by_mmuidx for details.
680 */
681 if (idxmap < TARGET_PAGE_SIZE) {
682 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
685 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
686 } else {
687 CPUState *dst_cpu;
688 TLBFlushPageByMMUIdxData *d;
689
690 /* Allocate a separate data block for each destination cpu. */
691 CPU_FOREACH(dst_cpu) {
692 if (dst_cpu != src_cpu) {
693 d = g_new(TLBFlushPageByMMUIdxData, 1);
694 d->addr = addr;
695 d->idxmap = idxmap;
696 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
697 RUN_ON_CPU_HOST_PTR(d));
698 }
699 }
700
701 d = g_new(TLBFlushPageByMMUIdxData, 1);
702 d->addr = addr;
703 d->idxmap = idxmap;
704 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
705 RUN_ON_CPU_HOST_PTR(d));
706 }
707 }
708
709 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
710 {
711 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
712 }
713
714 static void tlb_flush_range_locked(CPUArchState *env, int midx,
715 target_ulong addr, target_ulong len,
716 unsigned bits)
717 {
718 CPUTLBDesc *d = &env_tlb(env)->d[midx];
719 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
720 target_ulong mask = MAKE_64BIT_MASK(0, bits);
721
722 /*
723 * If @bits is smaller than the tlb size, there may be multiple entries
724 * within the TLB; otherwise all addresses that match under @mask hit
725 * the same TLB entry.
726 * TODO: Perhaps allow bits to be a few bits less than the size.
727 * For now, just flush the entire TLB.
728 *
729 * If @len is larger than the tlb size, then it will take longer to
730 * test all of the entries in the TLB than it will to flush it all.
731 */
732 if (mask < f->mask || len > f->mask) {
733 tlb_debug("forcing full flush midx %d ("
734 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
735 midx, addr, mask, len);
736 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
737 return;
738 }
739
740 /*
741 * Check if we need to flush due to large pages.
742 * Because large_page_mask contains all 1's from the msb,
743 * we only need to test the end of the range.
744 */
745 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
746 tlb_debug("forcing full flush midx %d ("
747 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
748 midx, d->large_page_addr, d->large_page_mask);
749 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
750 return;
751 }
752
753 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
754 target_ulong page = addr + i;
755 CPUTLBEntry *entry = tlb_entry(env, midx, page);
756
757 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
758 tlb_n_used_entries_dec(env, midx);
759 }
760 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
761 }
762 }
763
764 typedef struct {
765 target_ulong addr;
766 target_ulong len;
767 uint16_t idxmap;
768 uint16_t bits;
769 } TLBFlushRangeData;
770
771 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
772 TLBFlushRangeData d)
773 {
774 CPUArchState *env = cpu->env_ptr;
775 int mmu_idx;
776
777 assert_cpu_is_self(cpu);
778
779 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
780 d.addr, d.bits, d.len, d.idxmap);
781
782 qemu_spin_lock(&env_tlb(env)->c.lock);
783 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
784 if ((d.idxmap >> mmu_idx) & 1) {
785 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
786 }
787 }
788 qemu_spin_unlock(&env_tlb(env)->c.lock);
789
790 /*
791 * If the length is larger than the jump cache size, then it will take
792 * longer to clear each entry individually than it will to clear it all.
793 */
794 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
795 tcg_flush_jmp_cache(cpu);
796 return;
797 }
798
799 /*
800 * Discard jump cache entries for any tb which might potentially
801 * overlap the flushed pages, which includes the previous.
802 */
803 d.addr -= TARGET_PAGE_SIZE;
804 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
805 tb_jmp_cache_clear_page(cpu, d.addr);
806 d.addr += TARGET_PAGE_SIZE;
807 }
808 }
809
810 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
811 run_on_cpu_data data)
812 {
813 TLBFlushRangeData *d = data.host_ptr;
814 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
815 g_free(d);
816 }
817
818 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
819 target_ulong len, uint16_t idxmap,
820 unsigned bits)
821 {
822 TLBFlushRangeData d;
823
824 /*
825 * If all bits are significant, and len is small,
826 * this devolves to tlb_flush_page.
827 */
828 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
829 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
830 return;
831 }
832 /* If no page bits are significant, this devolves to tlb_flush. */
833 if (bits < TARGET_PAGE_BITS) {
834 tlb_flush_by_mmuidx(cpu, idxmap);
835 return;
836 }
837
838 /* This should already be page aligned */
839 d.addr = addr & TARGET_PAGE_MASK;
840 d.len = len;
841 d.idxmap = idxmap;
842 d.bits = bits;
843
844 if (qemu_cpu_is_self(cpu)) {
845 tlb_flush_range_by_mmuidx_async_0(cpu, d);
846 } else {
847 /* Otherwise allocate a structure, freed by the worker. */
848 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
849 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
850 RUN_ON_CPU_HOST_PTR(p));
851 }
852 }
853
854 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
855 uint16_t idxmap, unsigned bits)
856 {
857 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
858 }
859
860 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
861 target_ulong addr, target_ulong len,
862 uint16_t idxmap, unsigned bits)
863 {
864 TLBFlushRangeData d;
865 CPUState *dst_cpu;
866
867 /*
868 * If all bits are significant, and len is small,
869 * this devolves to tlb_flush_page.
870 */
871 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
872 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
873 return;
874 }
875 /* If no page bits are significant, this devolves to tlb_flush. */
876 if (bits < TARGET_PAGE_BITS) {
877 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
878 return;
879 }
880
881 /* This should already be page aligned */
882 d.addr = addr & TARGET_PAGE_MASK;
883 d.len = len;
884 d.idxmap = idxmap;
885 d.bits = bits;
886
887 /* Allocate a separate data block for each destination cpu. */
888 CPU_FOREACH(dst_cpu) {
889 if (dst_cpu != src_cpu) {
890 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
891 async_run_on_cpu(dst_cpu,
892 tlb_flush_range_by_mmuidx_async_1,
893 RUN_ON_CPU_HOST_PTR(p));
894 }
895 }
896
897 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
898 }
899
900 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
901 target_ulong addr,
902 uint16_t idxmap, unsigned bits)
903 {
904 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
905 idxmap, bits);
906 }
907
908 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
909 target_ulong addr,
910 target_ulong len,
911 uint16_t idxmap,
912 unsigned bits)
913 {
914 TLBFlushRangeData d, *p;
915 CPUState *dst_cpu;
916
917 /*
918 * If all bits are significant, and len is small,
919 * this devolves to tlb_flush_page.
920 */
921 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
922 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
923 return;
924 }
925 /* If no page bits are significant, this devolves to tlb_flush. */
926 if (bits < TARGET_PAGE_BITS) {
927 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
928 return;
929 }
930
931 /* This should already be page aligned */
932 d.addr = addr & TARGET_PAGE_MASK;
933 d.len = len;
934 d.idxmap = idxmap;
935 d.bits = bits;
936
937 /* Allocate a separate data block for each destination cpu. */
938 CPU_FOREACH(dst_cpu) {
939 if (dst_cpu != src_cpu) {
940 p = g_memdup(&d, sizeof(d));
941 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
942 RUN_ON_CPU_HOST_PTR(p));
943 }
944 }
945
946 p = g_memdup(&d, sizeof(d));
947 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
948 RUN_ON_CPU_HOST_PTR(p));
949 }
950
951 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
952 target_ulong addr,
953 uint16_t idxmap,
954 unsigned bits)
955 {
956 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
957 idxmap, bits);
958 }
959
960 /* update the TLBs so that writes to code in the virtual page 'addr'
961 can be detected */
962 void tlb_protect_code(ram_addr_t ram_addr)
963 {
964 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
965 TARGET_PAGE_SIZE,
966 DIRTY_MEMORY_CODE);
967 }
968
969 /* update the TLB so that writes in physical page 'phys_addr' are no longer
970 tested for self modifying code */
971 void tlb_unprotect_code(ram_addr_t ram_addr)
972 {
973 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
974 }
975
976
977 /*
978 * Dirty write flag handling
979 *
980 * When the TCG code writes to a location it looks up the address in
981 * the TLB and uses that data to compute the final address. If any of
982 * the lower bits of the address are set then the slow path is forced.
983 * There are a number of reasons to do this but for normal RAM the
984 * most usual is detecting writes to code regions which may invalidate
985 * generated code.
986 *
987 * Other vCPUs might be reading their TLBs during guest execution, so we update
988 * te->addr_write with qatomic_set. We don't need to worry about this for
989 * oversized guests as MTTCG is disabled for them.
990 *
991 * Called with tlb_c.lock held.
992 */
993 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
994 uintptr_t start, uintptr_t length)
995 {
996 uintptr_t addr = tlb_entry->addr_write;
997
998 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
999 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
1000 addr &= TARGET_PAGE_MASK;
1001 addr += tlb_entry->addend;
1002 if ((addr - start) < length) {
1003 #if TARGET_LONG_BITS == 32
1004 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1005 ptr_write += HOST_BIG_ENDIAN;
1006 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1007 #elif TCG_OVERSIZED_GUEST
1008 tlb_entry->addr_write |= TLB_NOTDIRTY;
1009 #else
1010 qatomic_set(&tlb_entry->addr_write,
1011 tlb_entry->addr_write | TLB_NOTDIRTY);
1012 #endif
1013 }
1014 }
1015 }
1016
1017 /*
1018 * Called with tlb_c.lock held.
1019 * Called only from the vCPU context, i.e. the TLB's owner thread.
1020 */
1021 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1022 {
1023 *d = *s;
1024 }
1025
1026 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1027 * the target vCPU).
1028 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1029 * thing actually updated is the target TLB entry ->addr_write flags.
1030 */
1031 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1032 {
1033 CPUArchState *env;
1034
1035 int mmu_idx;
1036
1037 env = cpu->env_ptr;
1038 qemu_spin_lock(&env_tlb(env)->c.lock);
1039 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1040 unsigned int i;
1041 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1042
1043 for (i = 0; i < n; i++) {
1044 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1045 start1, length);
1046 }
1047
1048 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1049 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1050 start1, length);
1051 }
1052 }
1053 qemu_spin_unlock(&env_tlb(env)->c.lock);
1054 }
1055
1056 /* Called with tlb_c.lock held */
1057 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1058 target_ulong vaddr)
1059 {
1060 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1061 tlb_entry->addr_write = vaddr;
1062 }
1063 }
1064
1065 /* update the TLB corresponding to virtual page vaddr
1066 so that it is no longer dirty */
1067 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1068 {
1069 CPUArchState *env = cpu->env_ptr;
1070 int mmu_idx;
1071
1072 assert_cpu_is_self(cpu);
1073
1074 vaddr &= TARGET_PAGE_MASK;
1075 qemu_spin_lock(&env_tlb(env)->c.lock);
1076 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1077 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1078 }
1079
1080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1081 int k;
1082 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1083 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1084 }
1085 }
1086 qemu_spin_unlock(&env_tlb(env)->c.lock);
1087 }
1088
1089 /* Our TLB does not support large pages, so remember the area covered by
1090 large pages and trigger a full TLB flush if these are invalidated. */
1091 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1092 target_ulong vaddr, target_ulong size)
1093 {
1094 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1095 target_ulong lp_mask = ~(size - 1);
1096
1097 if (lp_addr == (target_ulong)-1) {
1098 /* No previous large page. */
1099 lp_addr = vaddr;
1100 } else {
1101 /* Extend the existing region to include the new page.
1102 This is a compromise between unnecessary flushes and
1103 the cost of maintaining a full variable size TLB. */
1104 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1105 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1106 lp_mask <<= 1;
1107 }
1108 }
1109 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1110 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1111 }
1112
1113 /*
1114 * Add a new TLB entry. At most one entry for a given virtual address
1115 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1116 * supplied size is only used by tlb_flush_page.
1117 *
1118 * Called from TCG-generated code, which is under an RCU read-side
1119 * critical section.
1120 */
1121 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1122 target_ulong vaddr, CPUTLBEntryFull *full)
1123 {
1124 CPUArchState *env = cpu->env_ptr;
1125 CPUTLB *tlb = env_tlb(env);
1126 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1127 MemoryRegionSection *section;
1128 unsigned int index;
1129 target_ulong address;
1130 target_ulong write_address;
1131 uintptr_t addend;
1132 CPUTLBEntry *te, tn;
1133 hwaddr iotlb, xlat, sz, paddr_page;
1134 target_ulong vaddr_page;
1135 int asidx, wp_flags, prot;
1136 bool is_ram, is_romd;
1137
1138 assert_cpu_is_self(cpu);
1139
1140 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1141 sz = TARGET_PAGE_SIZE;
1142 } else {
1143 sz = (hwaddr)1 << full->lg_page_size;
1144 tlb_add_large_page(env, mmu_idx, vaddr, sz);
1145 }
1146 vaddr_page = vaddr & TARGET_PAGE_MASK;
1147 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1148
1149 prot = full->prot;
1150 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1151 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1152 &xlat, &sz, full->attrs, &prot);
1153 assert(sz >= TARGET_PAGE_SIZE);
1154
1155 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1156 " prot=%x idx=%d\n",
1157 vaddr, full->phys_addr, prot, mmu_idx);
1158
1159 address = vaddr_page;
1160 if (full->lg_page_size < TARGET_PAGE_BITS) {
1161 /* Repeat the MMU check and TLB fill on every access. */
1162 address |= TLB_INVALID_MASK;
1163 }
1164 if (full->attrs.byte_swap) {
1165 address |= TLB_BSWAP;
1166 }
1167
1168 is_ram = memory_region_is_ram(section->mr);
1169 is_romd = memory_region_is_romd(section->mr);
1170
1171 if (is_ram || is_romd) {
1172 /* RAM and ROMD both have associated host memory. */
1173 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1174 } else {
1175 /* I/O does not; force the host address to NULL. */
1176 addend = 0;
1177 }
1178
1179 write_address = address;
1180 if (is_ram) {
1181 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1182 /*
1183 * Computing is_clean is expensive; avoid all that unless
1184 * the page is actually writable.
1185 */
1186 if (prot & PAGE_WRITE) {
1187 if (section->readonly) {
1188 write_address |= TLB_DISCARD_WRITE;
1189 } else if (cpu_physical_memory_is_clean(iotlb)) {
1190 write_address |= TLB_NOTDIRTY;
1191 }
1192 }
1193 } else {
1194 /* I/O or ROMD */
1195 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1196 /*
1197 * Writes to romd devices must go through MMIO to enable write.
1198 * Reads to romd devices go through the ram_ptr found above,
1199 * but of course reads to I/O must go through MMIO.
1200 */
1201 write_address |= TLB_MMIO;
1202 if (!is_romd) {
1203 address = write_address;
1204 }
1205 }
1206
1207 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1208 TARGET_PAGE_SIZE);
1209
1210 index = tlb_index(env, mmu_idx, vaddr_page);
1211 te = tlb_entry(env, mmu_idx, vaddr_page);
1212
1213 /*
1214 * Hold the TLB lock for the rest of the function. We could acquire/release
1215 * the lock several times in the function, but it is faster to amortize the
1216 * acquisition cost by acquiring it just once. Note that this leads to
1217 * a longer critical section, but this is not a concern since the TLB lock
1218 * is unlikely to be contended.
1219 */
1220 qemu_spin_lock(&tlb->c.lock);
1221
1222 /* Note that the tlb is no longer clean. */
1223 tlb->c.dirty |= 1 << mmu_idx;
1224
1225 /* Make sure there's no cached translation for the new page. */
1226 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1227
1228 /*
1229 * Only evict the old entry to the victim tlb if it's for a
1230 * different page; otherwise just overwrite the stale data.
1231 */
1232 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1233 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1234 CPUTLBEntry *tv = &desc->vtable[vidx];
1235
1236 /* Evict the old entry into the victim tlb. */
1237 copy_tlb_helper_locked(tv, te);
1238 desc->vfulltlb[vidx] = desc->fulltlb[index];
1239 tlb_n_used_entries_dec(env, mmu_idx);
1240 }
1241
1242 /* refill the tlb */
1243 /*
1244 * At this point iotlb contains a physical section number in the lower
1245 * TARGET_PAGE_BITS, and either
1246 * + the ram_addr_t of the page base of the target RAM (RAM)
1247 * + the offset within section->mr of the page base (I/O, ROMD)
1248 * We subtract the vaddr_page (which is page aligned and thus won't
1249 * disturb the low bits) to give an offset which can be added to the
1250 * (non-page-aligned) vaddr of the eventual memory access to get
1251 * the MemoryRegion offset for the access. Note that the vaddr we
1252 * subtract here is that of the page base, and not the same as the
1253 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1254 */
1255 desc->fulltlb[index] = *full;
1256 desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1257 desc->fulltlb[index].phys_addr = paddr_page;
1258
1259 /* Now calculate the new entry */
1260 tn.addend = addend - vaddr_page;
1261 if (prot & PAGE_READ) {
1262 tn.addr_read = address;
1263 if (wp_flags & BP_MEM_READ) {
1264 tn.addr_read |= TLB_WATCHPOINT;
1265 }
1266 } else {
1267 tn.addr_read = -1;
1268 }
1269
1270 if (prot & PAGE_EXEC) {
1271 tn.addr_code = address;
1272 } else {
1273 tn.addr_code = -1;
1274 }
1275
1276 tn.addr_write = -1;
1277 if (prot & PAGE_WRITE) {
1278 tn.addr_write = write_address;
1279 if (prot & PAGE_WRITE_INV) {
1280 tn.addr_write |= TLB_INVALID_MASK;
1281 }
1282 if (wp_flags & BP_MEM_WRITE) {
1283 tn.addr_write |= TLB_WATCHPOINT;
1284 }
1285 }
1286
1287 copy_tlb_helper_locked(te, &tn);
1288 tlb_n_used_entries_inc(env, mmu_idx);
1289 qemu_spin_unlock(&tlb->c.lock);
1290 }
1291
1292 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1293 hwaddr paddr, MemTxAttrs attrs, int prot,
1294 int mmu_idx, target_ulong size)
1295 {
1296 CPUTLBEntryFull full = {
1297 .phys_addr = paddr,
1298 .attrs = attrs,
1299 .prot = prot,
1300 .lg_page_size = ctz64(size)
1301 };
1302
1303 assert(is_power_of_2(size));
1304 tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1305 }
1306
1307 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1308 hwaddr paddr, int prot,
1309 int mmu_idx, target_ulong size)
1310 {
1311 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1312 prot, mmu_idx, size);
1313 }
1314
1315 /*
1316 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1317 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1318 * be discarded and looked up again (e.g. via tlb_entry()).
1319 */
1320 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1321 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1322 {
1323 bool ok;
1324
1325 /*
1326 * This is not a probe, so only valid return is success; failure
1327 * should result in exception + longjmp to the cpu loop.
1328 */
1329 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1330 access_type, mmu_idx, false, retaddr);
1331 assert(ok);
1332 }
1333
1334 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1335 MMUAccessType access_type,
1336 int mmu_idx, uintptr_t retaddr)
1337 {
1338 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1339 mmu_idx, retaddr);
1340 }
1341
1342 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1343 vaddr addr, unsigned size,
1344 MMUAccessType access_type,
1345 int mmu_idx, MemTxAttrs attrs,
1346 MemTxResult response,
1347 uintptr_t retaddr)
1348 {
1349 CPUClass *cc = CPU_GET_CLASS(cpu);
1350
1351 if (!cpu->ignore_memory_transaction_failures &&
1352 cc->tcg_ops->do_transaction_failed) {
1353 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1354 access_type, mmu_idx, attrs,
1355 response, retaddr);
1356 }
1357 }
1358
1359 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1360 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1361 MMUAccessType access_type, MemOp op)
1362 {
1363 CPUState *cpu = env_cpu(env);
1364 hwaddr mr_offset;
1365 MemoryRegionSection *section;
1366 MemoryRegion *mr;
1367 uint64_t val;
1368 MemTxResult r;
1369
1370 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1371 mr = section->mr;
1372 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1373 cpu->mem_io_pc = retaddr;
1374 if (!cpu->can_do_io) {
1375 cpu_io_recompile(cpu, retaddr);
1376 }
1377
1378 {
1379 QEMU_IOTHREAD_LOCK_GUARD();
1380 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1381 }
1382
1383 if (r != MEMTX_OK) {
1384 hwaddr physaddr = mr_offset +
1385 section->offset_within_address_space -
1386 section->offset_within_region;
1387
1388 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1389 mmu_idx, full->attrs, r, retaddr);
1390 }
1391 return val;
1392 }
1393
1394 /*
1395 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1396 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1397 * because of the side effect of io_writex changing memory layout.
1398 */
1399 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1400 hwaddr mr_offset)
1401 {
1402 #ifdef CONFIG_PLUGIN
1403 SavedIOTLB *saved = &cs->saved_iotlb;
1404 saved->section = section;
1405 saved->mr_offset = mr_offset;
1406 #endif
1407 }
1408
1409 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1410 int mmu_idx, uint64_t val, target_ulong addr,
1411 uintptr_t retaddr, MemOp op)
1412 {
1413 CPUState *cpu = env_cpu(env);
1414 hwaddr mr_offset;
1415 MemoryRegionSection *section;
1416 MemoryRegion *mr;
1417 MemTxResult r;
1418
1419 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1420 mr = section->mr;
1421 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1422 if (!cpu->can_do_io) {
1423 cpu_io_recompile(cpu, retaddr);
1424 }
1425 cpu->mem_io_pc = retaddr;
1426
1427 /*
1428 * The memory_region_dispatch may trigger a flush/resize
1429 * so for plugins we save the iotlb_data just in case.
1430 */
1431 save_iotlb_data(cpu, section, mr_offset);
1432
1433 {
1434 QEMU_IOTHREAD_LOCK_GUARD();
1435 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1436 }
1437
1438 if (r != MEMTX_OK) {
1439 hwaddr physaddr = mr_offset +
1440 section->offset_within_address_space -
1441 section->offset_within_region;
1442
1443 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1444 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1445 retaddr);
1446 }
1447 }
1448
1449 /* Return true if ADDR is present in the victim tlb, and has been copied
1450 back to the main tlb. */
1451 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1452 MMUAccessType access_type, target_ulong page)
1453 {
1454 size_t vidx;
1455
1456 assert_cpu_is_self(env_cpu(env));
1457 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1458 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1459 target_ulong cmp = tlb_read_idx(vtlb, access_type);
1460
1461 if (cmp == page) {
1462 /* Found entry in victim tlb, swap tlb and iotlb. */
1463 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1464
1465 qemu_spin_lock(&env_tlb(env)->c.lock);
1466 copy_tlb_helper_locked(&tmptlb, tlb);
1467 copy_tlb_helper_locked(tlb, vtlb);
1468 copy_tlb_helper_locked(vtlb, &tmptlb);
1469 qemu_spin_unlock(&env_tlb(env)->c.lock);
1470
1471 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1472 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1473 CPUTLBEntryFull tmpf;
1474 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1475 return true;
1476 }
1477 }
1478 return false;
1479 }
1480
1481 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1482 CPUTLBEntryFull *full, uintptr_t retaddr)
1483 {
1484 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1485
1486 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1487
1488 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1489 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1490 }
1491
1492 /*
1493 * Set both VGA and migration bits for simplicity and to remove
1494 * the notdirty callback faster.
1495 */
1496 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1497
1498 /* We remove the notdirty callback only if the code has been flushed. */
1499 if (!cpu_physical_memory_is_clean(ram_addr)) {
1500 trace_memory_notdirty_set_dirty(mem_vaddr);
1501 tlb_set_dirty(cpu, mem_vaddr);
1502 }
1503 }
1504
1505 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1506 int fault_size, MMUAccessType access_type,
1507 int mmu_idx, bool nonfault,
1508 void **phost, CPUTLBEntryFull **pfull,
1509 uintptr_t retaddr)
1510 {
1511 uintptr_t index = tlb_index(env, mmu_idx, addr);
1512 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1513 target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1514 target_ulong page_addr = addr & TARGET_PAGE_MASK;
1515 int flags = TLB_FLAGS_MASK;
1516
1517 if (!tlb_hit_page(tlb_addr, page_addr)) {
1518 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1519 CPUState *cs = env_cpu(env);
1520
1521 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1522 mmu_idx, nonfault, retaddr)) {
1523 /* Non-faulting page table read failed. */
1524 *phost = NULL;
1525 *pfull = NULL;
1526 return TLB_INVALID_MASK;
1527 }
1528
1529 /* TLB resize via tlb_fill may have moved the entry. */
1530 index = tlb_index(env, mmu_idx, addr);
1531 entry = tlb_entry(env, mmu_idx, addr);
1532
1533 /*
1534 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1535 * to force the next access through tlb_fill. We've just
1536 * called tlb_fill, so we know that this entry *is* valid.
1537 */
1538 flags &= ~TLB_INVALID_MASK;
1539 }
1540 tlb_addr = tlb_read_idx(entry, access_type);
1541 }
1542 flags &= tlb_addr;
1543
1544 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1545
1546 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1547 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1548 *phost = NULL;
1549 return TLB_MMIO;
1550 }
1551
1552 /* Everything else is RAM. */
1553 *phost = (void *)((uintptr_t)addr + entry->addend);
1554 return flags;
1555 }
1556
1557 int probe_access_full(CPUArchState *env, target_ulong addr, int size,
1558 MMUAccessType access_type, int mmu_idx,
1559 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1560 uintptr_t retaddr)
1561 {
1562 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1563 nonfault, phost, pfull, retaddr);
1564
1565 /* Handle clean RAM pages. */
1566 if (unlikely(flags & TLB_NOTDIRTY)) {
1567 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1568 flags &= ~TLB_NOTDIRTY;
1569 }
1570
1571 return flags;
1572 }
1573
1574 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
1575 MMUAccessType access_type, int mmu_idx,
1576 bool nonfault, void **phost, uintptr_t retaddr)
1577 {
1578 CPUTLBEntryFull *full;
1579 int flags;
1580
1581 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1582
1583 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1584 nonfault, phost, &full, retaddr);
1585
1586 /* Handle clean RAM pages. */
1587 if (unlikely(flags & TLB_NOTDIRTY)) {
1588 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1589 flags &= ~TLB_NOTDIRTY;
1590 }
1591
1592 return flags;
1593 }
1594
1595 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1596 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1597 {
1598 CPUTLBEntryFull *full;
1599 void *host;
1600 int flags;
1601
1602 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1603
1604 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1605 false, &host, &full, retaddr);
1606
1607 /* Per the interface, size == 0 merely faults the access. */
1608 if (size == 0) {
1609 return NULL;
1610 }
1611
1612 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1613 /* Handle watchpoints. */
1614 if (flags & TLB_WATCHPOINT) {
1615 int wp_access = (access_type == MMU_DATA_STORE
1616 ? BP_MEM_WRITE : BP_MEM_READ);
1617 cpu_check_watchpoint(env_cpu(env), addr, size,
1618 full->attrs, wp_access, retaddr);
1619 }
1620
1621 /* Handle clean RAM pages. */
1622 if (flags & TLB_NOTDIRTY) {
1623 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1624 }
1625 }
1626
1627 return host;
1628 }
1629
1630 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1631 MMUAccessType access_type, int mmu_idx)
1632 {
1633 CPUTLBEntryFull *full;
1634 void *host;
1635 int flags;
1636
1637 flags = probe_access_internal(env, addr, 0, access_type,
1638 mmu_idx, true, &host, &full, 0);
1639
1640 /* No combination of flags are expected by the caller. */
1641 return flags ? NULL : host;
1642 }
1643
1644 /*
1645 * Return a ram_addr_t for the virtual address for execution.
1646 *
1647 * Return -1 if we can't translate and execute from an entire page
1648 * of RAM. This will force us to execute by loading and translating
1649 * one insn at a time, without caching.
1650 *
1651 * NOTE: This function will trigger an exception if the page is
1652 * not executable.
1653 */
1654 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1655 void **hostp)
1656 {
1657 CPUTLBEntryFull *full;
1658 void *p;
1659
1660 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1661 cpu_mmu_index(env, true), false, &p, &full, 0);
1662 if (p == NULL) {
1663 return -1;
1664 }
1665
1666 if (full->lg_page_size < TARGET_PAGE_BITS) {
1667 return -1;
1668 }
1669
1670 if (hostp) {
1671 *hostp = p;
1672 }
1673 return qemu_ram_addr_from_host_nofail(p);
1674 }
1675
1676 /* Load/store with atomicity primitives. */
1677 #include "ldst_atomicity.c.inc"
1678
1679 #ifdef CONFIG_PLUGIN
1680 /*
1681 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1682 * This should be a hot path as we will have just looked this path up
1683 * in the softmmu lookup code (or helper). We don't handle re-fills or
1684 * checking the victim table. This is purely informational.
1685 *
1686 * This almost never fails as the memory access being instrumented
1687 * should have just filled the TLB. The one corner case is io_writex
1688 * which can cause TLB flushes and potential resizing of the TLBs
1689 * losing the information we need. In those cases we need to recover
1690 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1691 * from the same thread (which a mem callback will be) this is safe.
1692 */
1693
1694 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1695 bool is_store, struct qemu_plugin_hwaddr *data)
1696 {
1697 CPUArchState *env = cpu->env_ptr;
1698 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1699 uintptr_t index = tlb_index(env, mmu_idx, addr);
1700 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1701
1702 if (likely(tlb_hit(tlb_addr, addr))) {
1703 /* We must have an iotlb entry for MMIO */
1704 if (tlb_addr & TLB_MMIO) {
1705 CPUTLBEntryFull *full;
1706 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1707 data->is_io = true;
1708 data->v.io.section =
1709 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1710 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1711 } else {
1712 data->is_io = false;
1713 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1714 }
1715 return true;
1716 } else {
1717 SavedIOTLB *saved = &cpu->saved_iotlb;
1718 data->is_io = true;
1719 data->v.io.section = saved->section;
1720 data->v.io.offset = saved->mr_offset;
1721 return true;
1722 }
1723 }
1724
1725 #endif
1726
1727 /*
1728 * Probe for a load/store operation.
1729 * Return the host address and into @flags.
1730 */
1731
1732 typedef struct MMULookupPageData {
1733 CPUTLBEntryFull *full;
1734 void *haddr;
1735 target_ulong addr;
1736 int flags;
1737 int size;
1738 } MMULookupPageData;
1739
1740 typedef struct MMULookupLocals {
1741 MMULookupPageData page[2];
1742 MemOp memop;
1743 int mmu_idx;
1744 } MMULookupLocals;
1745
1746 /**
1747 * mmu_lookup1: translate one page
1748 * @env: cpu context
1749 * @data: lookup parameters
1750 * @mmu_idx: virtual address context
1751 * @access_type: load/store/code
1752 * @ra: return address into tcg generated code, or 0
1753 *
1754 * Resolve the translation for the one page at @data.addr, filling in
1755 * the rest of @data with the results. If the translation fails,
1756 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1757 * @mmu_idx may have resized.
1758 */
1759 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1760 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1761 {
1762 target_ulong addr = data->addr;
1763 uintptr_t index = tlb_index(env, mmu_idx, addr);
1764 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1765 target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1766 bool maybe_resized = false;
1767
1768 /* If the TLB entry is for a different page, reload and try again. */
1769 if (!tlb_hit(tlb_addr, addr)) {
1770 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1771 addr & TARGET_PAGE_MASK)) {
1772 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1773 maybe_resized = true;
1774 index = tlb_index(env, mmu_idx, addr);
1775 entry = tlb_entry(env, mmu_idx, addr);
1776 }
1777 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1778 }
1779
1780 data->flags = tlb_addr & TLB_FLAGS_MASK;
1781 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1782 /* Compute haddr speculatively; depending on flags it might be invalid. */
1783 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1784
1785 return maybe_resized;
1786 }
1787
1788 /**
1789 * mmu_watch_or_dirty
1790 * @env: cpu context
1791 * @data: lookup parameters
1792 * @access_type: load/store/code
1793 * @ra: return address into tcg generated code, or 0
1794 *
1795 * Trigger watchpoints for @data.addr:@data.size;
1796 * record writes to protected clean pages.
1797 */
1798 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1799 MMUAccessType access_type, uintptr_t ra)
1800 {
1801 CPUTLBEntryFull *full = data->full;
1802 target_ulong addr = data->addr;
1803 int flags = data->flags;
1804 int size = data->size;
1805
1806 /* On watchpoint hit, this will longjmp out. */
1807 if (flags & TLB_WATCHPOINT) {
1808 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1809 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1810 flags &= ~TLB_WATCHPOINT;
1811 }
1812
1813 /* Note that notdirty is only set for writes. */
1814 if (flags & TLB_NOTDIRTY) {
1815 notdirty_write(env_cpu(env), addr, size, full, ra);
1816 flags &= ~TLB_NOTDIRTY;
1817 }
1818 data->flags = flags;
1819 }
1820
1821 /**
1822 * mmu_lookup: translate page(s)
1823 * @env: cpu context
1824 * @addr: virtual address
1825 * @oi: combined mmu_idx and MemOp
1826 * @ra: return address into tcg generated code, or 0
1827 * @access_type: load/store/code
1828 * @l: output result
1829 *
1830 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1831 * bytes. Return true if the lookup crosses a page boundary.
1832 */
1833 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1834 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1835 {
1836 unsigned a_bits;
1837 bool crosspage;
1838 int flags;
1839
1840 l->memop = get_memop(oi);
1841 l->mmu_idx = get_mmuidx(oi);
1842
1843 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1844
1845 /* Handle CPU specific unaligned behaviour */
1846 a_bits = get_alignment_bits(l->memop);
1847 if (addr & ((1 << a_bits) - 1)) {
1848 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1849 }
1850
1851 l->page[0].addr = addr;
1852 l->page[0].size = memop_size(l->memop);
1853 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1854 l->page[1].size = 0;
1855 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1856
1857 if (likely(!crosspage)) {
1858 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1859
1860 flags = l->page[0].flags;
1861 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1862 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1863 }
1864 if (unlikely(flags & TLB_BSWAP)) {
1865 l->memop ^= MO_BSWAP;
1866 }
1867 } else {
1868 /* Finish compute of page crossing. */
1869 int size0 = l->page[1].addr - addr;
1870 l->page[1].size = l->page[0].size - size0;
1871 l->page[0].size = size0;
1872
1873 /*
1874 * Lookup both pages, recognizing exceptions from either. If the
1875 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1876 */
1877 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1878 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1879 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1880 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1881 }
1882
1883 flags = l->page[0].flags | l->page[1].flags;
1884 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1885 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1886 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1887 }
1888
1889 /*
1890 * Since target/sparc is the only user of TLB_BSWAP, and all
1891 * Sparc accesses are aligned, any treatment across two pages
1892 * would be arbitrary. Refuse it until there's a use.
1893 */
1894 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1895 }
1896
1897 return crosspage;
1898 }
1899
1900 /*
1901 * Probe for an atomic operation. Do not allow unaligned operations,
1902 * or io operations to proceed. Return the host address.
1903 */
1904 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1905 MemOpIdx oi, int size, uintptr_t retaddr)
1906 {
1907 uintptr_t mmu_idx = get_mmuidx(oi);
1908 MemOp mop = get_memop(oi);
1909 int a_bits = get_alignment_bits(mop);
1910 uintptr_t index;
1911 CPUTLBEntry *tlbe;
1912 target_ulong tlb_addr;
1913 void *hostaddr;
1914 CPUTLBEntryFull *full;
1915
1916 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1917
1918 /* Adjust the given return address. */
1919 retaddr -= GETPC_ADJ;
1920
1921 /* Enforce guest required alignment. */
1922 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1923 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1924 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1925 mmu_idx, retaddr);
1926 }
1927
1928 /* Enforce qemu required alignment. */
1929 if (unlikely(addr & (size - 1))) {
1930 /* We get here if guest alignment was not requested,
1931 or was not enforced by cpu_unaligned_access above.
1932 We might widen the access and emulate, but for now
1933 mark an exception and exit the cpu loop. */
1934 goto stop_the_world;
1935 }
1936
1937 index = tlb_index(env, mmu_idx, addr);
1938 tlbe = tlb_entry(env, mmu_idx, addr);
1939
1940 /* Check TLB entry and enforce page permissions. */
1941 tlb_addr = tlb_addr_write(tlbe);
1942 if (!tlb_hit(tlb_addr, addr)) {
1943 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1944 addr & TARGET_PAGE_MASK)) {
1945 tlb_fill(env_cpu(env), addr, size,
1946 MMU_DATA_STORE, mmu_idx, retaddr);
1947 index = tlb_index(env, mmu_idx, addr);
1948 tlbe = tlb_entry(env, mmu_idx, addr);
1949 }
1950 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1951 }
1952
1953 /*
1954 * Let the guest notice RMW on a write-only page.
1955 * We have just verified that the page is writable.
1956 * Subpage lookups may have left TLB_INVALID_MASK set,
1957 * but addr_read will only be -1 if PAGE_READ was unset.
1958 */
1959 if (unlikely(tlbe->addr_read == -1)) {
1960 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1961 /*
1962 * Since we don't support reads and writes to different
1963 * addresses, and we do have the proper page loaded for
1964 * write, this shouldn't ever return. But just in case,
1965 * handle via stop-the-world.
1966 */
1967 goto stop_the_world;
1968 }
1969 /* Collect TLB_WATCHPOINT for read. */
1970 tlb_addr |= tlbe->addr_read;
1971
1972 /* Notice an IO access or a needs-MMU-lookup access */
1973 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1974 /* There's really nothing that can be done to
1975 support this apart from stop-the-world. */
1976 goto stop_the_world;
1977 }
1978
1979 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1980 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1981
1982 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1983 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1984 }
1985
1986 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1987 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs,
1988 BP_MEM_READ | BP_MEM_WRITE, retaddr);
1989 }
1990
1991 return hostaddr;
1992
1993 stop_the_world:
1994 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1995 }
1996
1997 /*
1998 * Load Helpers
1999 *
2000 * We support two different access types. SOFTMMU_CODE_ACCESS is
2001 * specifically for reading instructions from system memory. It is
2002 * called by the translation loop and in some helpers where the code
2003 * is disassembled. It shouldn't be called directly by guest code.
2004 *
2005 * For the benefit of TCG generated code, we want to avoid the
2006 * complication of ABI-specific return type promotion and always
2007 * return a value extended to the register size of the host. This is
2008 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2009 * data, and for that we always have uint64_t.
2010 *
2011 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2012 */
2013
2014 /**
2015 * do_ld_mmio_beN:
2016 * @env: cpu context
2017 * @p: translation parameters
2018 * @ret_be: accumulated data
2019 * @mmu_idx: virtual address context
2020 * @ra: return address into tcg generated code, or 0
2021 *
2022 * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2023 * The bytes are concatenated in big-endian order with @ret_be.
2024 */
2025 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2026 uint64_t ret_be, int mmu_idx,
2027 MMUAccessType type, uintptr_t ra)
2028 {
2029 CPUTLBEntryFull *full = p->full;
2030 target_ulong addr = p->addr;
2031 int i, size = p->size;
2032
2033 QEMU_IOTHREAD_LOCK_GUARD();
2034 for (i = 0; i < size; i++) {
2035 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2036 ret_be = (ret_be << 8) | x;
2037 }
2038 return ret_be;
2039 }
2040
2041 /**
2042 * do_ld_bytes_beN
2043 * @p: translation parameters
2044 * @ret_be: accumulated data
2045 *
2046 * Load @p->size bytes from @p->haddr, which is RAM.
2047 * The bytes to concatenated in big-endian order with @ret_be.
2048 */
2049 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2050 {
2051 uint8_t *haddr = p->haddr;
2052 int i, size = p->size;
2053
2054 for (i = 0; i < size; i++) {
2055 ret_be = (ret_be << 8) | haddr[i];
2056 }
2057 return ret_be;
2058 }
2059
2060 /**
2061 * do_ld_parts_beN
2062 * @p: translation parameters
2063 * @ret_be: accumulated data
2064 *
2065 * As do_ld_bytes_beN, but atomically on each aligned part.
2066 */
2067 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2068 {
2069 void *haddr = p->haddr;
2070 int size = p->size;
2071
2072 do {
2073 uint64_t x;
2074 int n;
2075
2076 /*
2077 * Find minimum of alignment and size.
2078 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2079 * would have only checked the low bits of addr|size once at the start,
2080 * but is just as easy.
2081 */
2082 switch (((uintptr_t)haddr | size) & 7) {
2083 case 4:
2084 x = cpu_to_be32(load_atomic4(haddr));
2085 ret_be = (ret_be << 32) | x;
2086 n = 4;
2087 break;
2088 case 2:
2089 case 6:
2090 x = cpu_to_be16(load_atomic2(haddr));
2091 ret_be = (ret_be << 16) | x;
2092 n = 2;
2093 break;
2094 default:
2095 x = *(uint8_t *)haddr;
2096 ret_be = (ret_be << 8) | x;
2097 n = 1;
2098 break;
2099 case 0:
2100 g_assert_not_reached();
2101 }
2102 haddr += n;
2103 size -= n;
2104 } while (size != 0);
2105 return ret_be;
2106 }
2107
2108 /**
2109 * do_ld_parts_be4
2110 * @p: translation parameters
2111 * @ret_be: accumulated data
2112 *
2113 * As do_ld_bytes_beN, but with one atomic load.
2114 * Four aligned bytes are guaranteed to cover the load.
2115 */
2116 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2117 {
2118 int o = p->addr & 3;
2119 uint32_t x = load_atomic4(p->haddr - o);
2120
2121 x = cpu_to_be32(x);
2122 x <<= o * 8;
2123 x >>= (4 - p->size) * 8;
2124 return (ret_be << (p->size * 8)) | x;
2125 }
2126
2127 /**
2128 * do_ld_parts_be8
2129 * @p: translation parameters
2130 * @ret_be: accumulated data
2131 *
2132 * As do_ld_bytes_beN, but with one atomic load.
2133 * Eight aligned bytes are guaranteed to cover the load.
2134 */
2135 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2136 MMULookupPageData *p, uint64_t ret_be)
2137 {
2138 int o = p->addr & 7;
2139 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2140
2141 x = cpu_to_be64(x);
2142 x <<= o * 8;
2143 x >>= (8 - p->size) * 8;
2144 return (ret_be << (p->size * 8)) | x;
2145 }
2146
2147 /**
2148 * do_ld_parts_be16
2149 * @p: translation parameters
2150 * @ret_be: accumulated data
2151 *
2152 * As do_ld_bytes_beN, but with one atomic load.
2153 * 16 aligned bytes are guaranteed to cover the load.
2154 */
2155 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2156 MMULookupPageData *p, uint64_t ret_be)
2157 {
2158 int o = p->addr & 15;
2159 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2160 int size = p->size;
2161
2162 if (!HOST_BIG_ENDIAN) {
2163 y = bswap128(y);
2164 }
2165 y = int128_lshift(y, o * 8);
2166 y = int128_urshift(y, (16 - size) * 8);
2167 x = int128_make64(ret_be);
2168 x = int128_lshift(x, size * 8);
2169 return int128_or(x, y);
2170 }
2171
2172 /*
2173 * Wrapper for the above.
2174 */
2175 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2176 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2177 MemOp mop, uintptr_t ra)
2178 {
2179 MemOp atom;
2180 unsigned tmp, half_size;
2181
2182 if (unlikely(p->flags & TLB_MMIO)) {
2183 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2184 }
2185
2186 /*
2187 * It is a given that we cross a page and therefore there is no
2188 * atomicity for the load as a whole, but subobjects may need attention.
2189 */
2190 atom = mop & MO_ATOM_MASK;
2191 switch (atom) {
2192 case MO_ATOM_SUBALIGN:
2193 return do_ld_parts_beN(p, ret_be);
2194
2195 case MO_ATOM_IFALIGN_PAIR:
2196 case MO_ATOM_WITHIN16_PAIR:
2197 tmp = mop & MO_SIZE;
2198 tmp = tmp ? tmp - 1 : 0;
2199 half_size = 1 << tmp;
2200 if (atom == MO_ATOM_IFALIGN_PAIR
2201 ? p->size == half_size
2202 : p->size >= half_size) {
2203 if (!HAVE_al8_fast && p->size < 4) {
2204 return do_ld_whole_be4(p, ret_be);
2205 } else {
2206 return do_ld_whole_be8(env, ra, p, ret_be);
2207 }
2208 }
2209 /* fall through */
2210
2211 case MO_ATOM_IFALIGN:
2212 case MO_ATOM_WITHIN16:
2213 case MO_ATOM_NONE:
2214 return do_ld_bytes_beN(p, ret_be);
2215
2216 default:
2217 g_assert_not_reached();
2218 }
2219 }
2220
2221 /*
2222 * Wrapper for the above, for 8 < size < 16.
2223 */
2224 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2225 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2226 {
2227 int size = p->size;
2228 uint64_t b;
2229 MemOp atom;
2230
2231 if (unlikely(p->flags & TLB_MMIO)) {
2232 p->size = size - 8;
2233 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra);
2234 p->addr += p->size;
2235 p->size = 8;
2236 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra);
2237 return int128_make128(b, a);
2238 }
2239
2240 /*
2241 * It is a given that we cross a page and therefore there is no
2242 * atomicity for the load as a whole, but subobjects may need attention.
2243 */
2244 atom = mop & MO_ATOM_MASK;
2245 switch (atom) {
2246 case MO_ATOM_SUBALIGN:
2247 p->size = size - 8;
2248 a = do_ld_parts_beN(p, a);
2249 p->haddr += size - 8;
2250 p->size = 8;
2251 b = do_ld_parts_beN(p, 0);
2252 break;
2253
2254 case MO_ATOM_WITHIN16_PAIR:
2255 /* Since size > 8, this is the half that must be atomic. */
2256 return do_ld_whole_be16(env, ra, p, a);
2257
2258 case MO_ATOM_IFALIGN_PAIR:
2259 /*
2260 * Since size > 8, both halves are misaligned,
2261 * and so neither is atomic.
2262 */
2263 case MO_ATOM_IFALIGN:
2264 case MO_ATOM_WITHIN16:
2265 case MO_ATOM_NONE:
2266 p->size = size - 8;
2267 a = do_ld_bytes_beN(p, a);
2268 b = ldq_be_p(p->haddr + size - 8);
2269 break;
2270
2271 default:
2272 g_assert_not_reached();
2273 }
2274
2275 return int128_make128(b, a);
2276 }
2277
2278 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2279 MMUAccessType type, uintptr_t ra)
2280 {
2281 if (unlikely(p->flags & TLB_MMIO)) {
2282 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2283 } else {
2284 return *(uint8_t *)p->haddr;
2285 }
2286 }
2287
2288 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2289 MMUAccessType type, MemOp memop, uintptr_t ra)
2290 {
2291 uint64_t ret;
2292
2293 if (unlikely(p->flags & TLB_MMIO)) {
2294 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2295 }
2296
2297 /* Perform the load host endian, then swap if necessary. */
2298 ret = load_atom_2(env, ra, p->haddr, memop);
2299 if (memop & MO_BSWAP) {
2300 ret = bswap16(ret);
2301 }
2302 return ret;
2303 }
2304
2305 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2306 MMUAccessType type, MemOp memop, uintptr_t ra)
2307 {
2308 uint32_t ret;
2309
2310 if (unlikely(p->flags & TLB_MMIO)) {
2311 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2312 }
2313
2314 /* Perform the load host endian. */
2315 ret = load_atom_4(env, ra, p->haddr, memop);
2316 if (memop & MO_BSWAP) {
2317 ret = bswap32(ret);
2318 }
2319 return ret;
2320 }
2321
2322 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2323 MMUAccessType type, MemOp memop, uintptr_t ra)
2324 {
2325 uint64_t ret;
2326
2327 if (unlikely(p->flags & TLB_MMIO)) {
2328 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2329 }
2330
2331 /* Perform the load host endian. */
2332 ret = load_atom_8(env, ra, p->haddr, memop);
2333 if (memop & MO_BSWAP) {
2334 ret = bswap64(ret);
2335 }
2336 return ret;
2337 }
2338
2339 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2340 uintptr_t ra, MMUAccessType access_type)
2341 {
2342 MMULookupLocals l;
2343 bool crosspage;
2344
2345 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2346 tcg_debug_assert(!crosspage);
2347
2348 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2349 }
2350
2351 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2352 MemOpIdx oi, uintptr_t retaddr)
2353 {
2354 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2355 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2356 }
2357
2358 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2359 uintptr_t ra, MMUAccessType access_type)
2360 {
2361 MMULookupLocals l;
2362 bool crosspage;
2363 uint16_t ret;
2364 uint8_t a, b;
2365
2366 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2367 if (likely(!crosspage)) {
2368 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2369 }
2370
2371 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2372 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2373
2374 if ((l.memop & MO_BSWAP) == MO_LE) {
2375 ret = a | (b << 8);
2376 } else {
2377 ret = b | (a << 8);
2378 }
2379 return ret;
2380 }
2381
2382 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2383 MemOpIdx oi, uintptr_t retaddr)
2384 {
2385 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2386 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2387 }
2388
2389 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2390 uintptr_t ra, MMUAccessType access_type)
2391 {
2392 MMULookupLocals l;
2393 bool crosspage;
2394 uint32_t ret;
2395
2396 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2397 if (likely(!crosspage)) {
2398 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2399 }
2400
2401 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2402 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2403 if ((l.memop & MO_BSWAP) == MO_LE) {
2404 ret = bswap32(ret);
2405 }
2406 return ret;
2407 }
2408
2409 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2410 MemOpIdx oi, uintptr_t retaddr)
2411 {
2412 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2413 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2414 }
2415
2416 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2417 uintptr_t ra, MMUAccessType access_type)
2418 {
2419 MMULookupLocals l;
2420 bool crosspage;
2421 uint64_t ret;
2422
2423 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2424 if (likely(!crosspage)) {
2425 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2426 }
2427
2428 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2429 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2430 if ((l.memop & MO_BSWAP) == MO_LE) {
2431 ret = bswap64(ret);
2432 }
2433 return ret;
2434 }
2435
2436 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2437 MemOpIdx oi, uintptr_t retaddr)
2438 {
2439 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2440 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2441 }
2442
2443 /*
2444 * Provide signed versions of the load routines as well. We can of course
2445 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2446 */
2447
2448 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2449 MemOpIdx oi, uintptr_t retaddr)
2450 {
2451 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2452 }
2453
2454 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2455 MemOpIdx oi, uintptr_t retaddr)
2456 {
2457 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2458 }
2459
2460 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2461 MemOpIdx oi, uintptr_t retaddr)
2462 {
2463 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2464 }
2465
2466 static Int128 do_ld16_mmu(CPUArchState *env, target_ulong addr,
2467 MemOpIdx oi, uintptr_t ra)
2468 {
2469 MMULookupLocals l;
2470 bool crosspage;
2471 uint64_t a, b;
2472 Int128 ret;
2473 int first;
2474
2475 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2476 if (likely(!crosspage)) {
2477 /* Perform the load host endian. */
2478 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2479 QEMU_IOTHREAD_LOCK_GUARD();
2480 a = io_readx(env, l.page[0].full, l.mmu_idx, addr,
2481 ra, MMU_DATA_LOAD, MO_64);
2482 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8,
2483 ra, MMU_DATA_LOAD, MO_64);
2484 ret = int128_make128(HOST_BIG_ENDIAN ? b : a,
2485 HOST_BIG_ENDIAN ? a : b);
2486 } else {
2487 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2488 }
2489 if (l.memop & MO_BSWAP) {
2490 ret = bswap128(ret);
2491 }
2492 return ret;
2493 }
2494
2495 first = l.page[0].size;
2496 if (first == 8) {
2497 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2498
2499 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2500 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2501 if ((mop8 & MO_BSWAP) == MO_LE) {
2502 ret = int128_make128(a, b);
2503 } else {
2504 ret = int128_make128(b, a);
2505 }
2506 return ret;
2507 }
2508
2509 if (first < 8) {
2510 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2511 MMU_DATA_LOAD, l.memop, ra);
2512 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2513 } else {
2514 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2515 b = int128_getlo(ret);
2516 ret = int128_lshift(ret, l.page[1].size * 8);
2517 a = int128_gethi(ret);
2518 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2519 MMU_DATA_LOAD, l.memop, ra);
2520 ret = int128_make128(b, a);
2521 }
2522 if ((l.memop & MO_BSWAP) == MO_LE) {
2523 ret = bswap128(ret);
2524 }
2525 return ret;
2526 }
2527
2528 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2529 uint32_t oi, uintptr_t retaddr)
2530 {
2531 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2532 return do_ld16_mmu(env, addr, oi, retaddr);
2533 }
2534
2535 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2536 {
2537 return helper_ld16_mmu(env, addr, oi, GETPC());
2538 }
2539
2540 /*
2541 * Load helpers for cpu_ldst.h.
2542 */
2543
2544 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2545 {
2546 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2547 }
2548
2549 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2550 {
2551 uint8_t ret;
2552
2553 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2554 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2555 plugin_load_cb(env, addr, oi);
2556 return ret;
2557 }
2558
2559 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2560 MemOpIdx oi, uintptr_t ra)
2561 {
2562 uint16_t ret;
2563
2564 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2565 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2566 plugin_load_cb(env, addr, oi);
2567 return ret;
2568 }
2569
2570 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2571 MemOpIdx oi, uintptr_t ra)
2572 {
2573 uint32_t ret;
2574
2575 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2576 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2577 plugin_load_cb(env, addr, oi);
2578 return ret;
2579 }
2580
2581 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2582 MemOpIdx oi, uintptr_t ra)
2583 {
2584 uint64_t ret;
2585
2586 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2587 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2588 plugin_load_cb(env, addr, oi);
2589 return ret;
2590 }
2591
2592 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2593 MemOpIdx oi, uintptr_t ra)
2594 {
2595 Int128 ret;
2596
2597 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2598 ret = do_ld16_mmu(env, addr, oi, ra);
2599 plugin_load_cb(env, addr, oi);
2600 return ret;
2601 }
2602
2603 /*
2604 * Store Helpers
2605 */
2606
2607 /**
2608 * do_st_mmio_leN:
2609 * @env: cpu context
2610 * @p: translation parameters
2611 * @val_le: data to store
2612 * @mmu_idx: virtual address context
2613 * @ra: return address into tcg generated code, or 0
2614 *
2615 * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2616 * The bytes to store are extracted in little-endian order from @val_le;
2617 * return the bytes of @val_le beyond @p->size that have not been stored.
2618 */
2619 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2620 uint64_t val_le, int mmu_idx, uintptr_t ra)
2621 {
2622 CPUTLBEntryFull *full = p->full;
2623 target_ulong addr = p->addr;
2624 int i, size = p->size;
2625
2626 QEMU_IOTHREAD_LOCK_GUARD();
2627 for (i = 0; i < size; i++, val_le >>= 8) {
2628 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2629 }
2630 return val_le;
2631 }
2632
2633 /*
2634 * Wrapper for the above.
2635 */
2636 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2637 uint64_t val_le, int mmu_idx,
2638 MemOp mop, uintptr_t ra)
2639 {
2640 MemOp atom;
2641 unsigned tmp, half_size;
2642
2643 if (unlikely(p->flags & TLB_MMIO)) {
2644 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2645 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2646 return val_le >> (p->size * 8);
2647 }
2648
2649 /*
2650 * It is a given that we cross a page and therefore there is no atomicity
2651 * for the store as a whole, but subobjects may need attention.
2652 */
2653 atom = mop & MO_ATOM_MASK;
2654 switch (atom) {
2655 case MO_ATOM_SUBALIGN:
2656 return store_parts_leN(p->haddr, p->size, val_le);
2657
2658 case MO_ATOM_IFALIGN_PAIR:
2659 case MO_ATOM_WITHIN16_PAIR:
2660 tmp = mop & MO_SIZE;
2661 tmp = tmp ? tmp - 1 : 0;
2662 half_size = 1 << tmp;
2663 if (atom == MO_ATOM_IFALIGN_PAIR
2664 ? p->size == half_size
2665 : p->size >= half_size) {
2666 if (!HAVE_al8_fast && p->size <= 4) {
2667 return store_whole_le4(p->haddr, p->size, val_le);
2668 } else if (HAVE_al8) {
2669 return store_whole_le8(p->haddr, p->size, val_le);
2670 } else {
2671 cpu_loop_exit_atomic(env_cpu(env), ra);
2672 }
2673 }
2674 /* fall through */
2675
2676 case MO_ATOM_IFALIGN:
2677 case MO_ATOM_WITHIN16:
2678 case MO_ATOM_NONE:
2679 return store_bytes_leN(p->haddr, p->size, val_le);
2680
2681 default:
2682 g_assert_not_reached();
2683 }
2684 }
2685
2686 /*
2687 * Wrapper for the above, for 8 < size < 16.
2688 */
2689 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2690 Int128 val_le, int mmu_idx,
2691 MemOp mop, uintptr_t ra)
2692 {
2693 int size = p->size;
2694 MemOp atom;
2695
2696 if (unlikely(p->flags & TLB_MMIO)) {
2697 p->size = 8;
2698 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra);
2699 p->size = size - 8;
2700 p->addr += 8;
2701 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra);
2702 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2703 return int128_gethi(val_le) >> ((size - 8) * 8);
2704 }
2705
2706 /*
2707 * It is a given that we cross a page and therefore there is no atomicity
2708 * for the store as a whole, but subobjects may need attention.
2709 */
2710 atom = mop & MO_ATOM_MASK;
2711 switch (atom) {
2712 case MO_ATOM_SUBALIGN:
2713 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2714 return store_parts_leN(p->haddr + 8, p->size - 8,
2715 int128_gethi(val_le));
2716
2717 case MO_ATOM_WITHIN16_PAIR:
2718 /* Since size > 8, this is the half that must be atomic. */
2719 if (!HAVE_ATOMIC128_RW) {
2720 cpu_loop_exit_atomic(env_cpu(env), ra);
2721 }
2722 return store_whole_le16(p->haddr, p->size, val_le);
2723
2724 case MO_ATOM_IFALIGN_PAIR:
2725 /*
2726 * Since size > 8, both halves are misaligned,
2727 * and so neither is atomic.
2728 */
2729 case MO_ATOM_IFALIGN:
2730 case MO_ATOM_NONE:
2731 stq_le_p(p->haddr, int128_getlo(val_le));
2732 return store_bytes_leN(p->haddr + 8, p->size - 8,
2733 int128_gethi(val_le));
2734
2735 default:
2736 g_assert_not_reached();
2737 }
2738 }
2739
2740 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2741 int mmu_idx, uintptr_t ra)
2742 {
2743 if (unlikely(p->flags & TLB_MMIO)) {
2744 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2745 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2746 /* nothing */
2747 } else {
2748 *(uint8_t *)p->haddr = val;
2749 }
2750 }
2751
2752 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2753 int mmu_idx, MemOp memop, uintptr_t ra)
2754 {
2755 if (unlikely(p->flags & TLB_MMIO)) {
2756 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2757 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2758 /* nothing */
2759 } else {
2760 /* Swap to host endian if necessary, then store. */
2761 if (memop & MO_BSWAP) {
2762 val = bswap16(val);
2763 }
2764 store_atom_2(env, ra, p->haddr, memop, val);
2765 }
2766 }
2767
2768 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2769 int mmu_idx, MemOp memop, uintptr_t ra)
2770 {
2771 if (unlikely(p->flags & TLB_MMIO)) {
2772 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2773 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2774 /* nothing */
2775 } else {
2776 /* Swap to host endian if necessary, then store. */
2777 if (memop & MO_BSWAP) {
2778 val = bswap32(val);
2779 }
2780 store_atom_4(env, ra, p->haddr, memop, val);
2781 }
2782 }
2783
2784 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2785 int mmu_idx, MemOp memop, uintptr_t ra)
2786 {
2787 if (unlikely(p->flags & TLB_MMIO)) {
2788 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2789 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2790 /* nothing */
2791 } else {
2792 /* Swap to host endian if necessary, then store. */
2793 if (memop & MO_BSWAP) {
2794 val = bswap64(val);
2795 }
2796 store_atom_8(env, ra, p->haddr, memop, val);
2797 }
2798 }
2799
2800 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2801 MemOpIdx oi, uintptr_t ra)
2802 {
2803 MMULookupLocals l;
2804 bool crosspage;
2805
2806 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2807 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2808 tcg_debug_assert(!crosspage);
2809
2810 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2811 }
2812
2813 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2814 MemOpIdx oi, uintptr_t ra)
2815 {
2816 MMULookupLocals l;
2817 bool crosspage;
2818 uint8_t a, b;
2819
2820 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2821 if (likely(!crosspage)) {
2822 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2823 return;
2824 }
2825
2826 if ((l.memop & MO_BSWAP) == MO_LE) {
2827 a = val, b = val >> 8;
2828 } else {
2829 b = val, a = val >> 8;
2830 }
2831 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2832 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2833 }
2834
2835 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2836 MemOpIdx oi, uintptr_t retaddr)
2837 {
2838 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2839 do_st2_mmu(env, addr, val, oi, retaddr);
2840 }
2841
2842 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2843 MemOpIdx oi, uintptr_t ra)
2844 {
2845 MMULookupLocals l;
2846 bool crosspage;
2847
2848 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2849 if (likely(!crosspage)) {
2850 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2851 return;
2852 }
2853
2854 /* Swap to little endian for simplicity, then store by bytes. */
2855 if ((l.memop & MO_BSWAP) != MO_LE) {
2856 val = bswap32(val);
2857 }
2858 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2859 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2860 }
2861
2862 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2863 MemOpIdx oi, uintptr_t retaddr)
2864 {
2865 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2866 do_st4_mmu(env, addr, val, oi, retaddr);
2867 }
2868
2869 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2870 MemOpIdx oi, uintptr_t ra)
2871 {
2872 MMULookupLocals l;
2873 bool crosspage;
2874
2875 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2876 if (likely(!crosspage)) {
2877 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2878 return;
2879 }
2880
2881 /* Swap to little endian for simplicity, then store by bytes. */
2882 if ((l.memop & MO_BSWAP) != MO_LE) {
2883 val = bswap64(val);
2884 }
2885 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2886 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2887 }
2888
2889 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
2890 MemOpIdx oi, uintptr_t retaddr)
2891 {
2892 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2893 do_st8_mmu(env, addr, val, oi, retaddr);
2894 }
2895
2896 static void do_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
2897 MemOpIdx oi, uintptr_t ra)
2898 {
2899 MMULookupLocals l;
2900 bool crosspage;
2901 uint64_t a, b;
2902 int first;
2903
2904 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2905 if (likely(!crosspage)) {
2906 /* Swap to host endian if necessary, then store. */
2907 if (l.memop & MO_BSWAP) {
2908 val = bswap128(val);
2909 }
2910 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2911 QEMU_IOTHREAD_LOCK_GUARD();
2912 if (HOST_BIG_ENDIAN) {
2913 b = int128_getlo(val), a = int128_gethi(val);
2914 } else {
2915 a = int128_getlo(val), b = int128_gethi(val);
2916 }
2917 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64);
2918 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64);
2919 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2920 /* nothing */
2921 } else {
2922 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
2923 }
2924 return;
2925 }
2926
2927 first = l.page[0].size;
2928 if (first == 8) {
2929 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2930
2931 if (l.memop & MO_BSWAP) {
2932 val = bswap128(val);
2933 }
2934 if (HOST_BIG_ENDIAN) {
2935 b = int128_getlo(val), a = int128_gethi(val);
2936 } else {
2937 a = int128_getlo(val), b = int128_gethi(val);
2938 }
2939 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
2940 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
2941 return;
2942 }
2943
2944 if ((l.memop & MO_BSWAP) != MO_LE) {
2945 val = bswap128(val);
2946 }
2947 if (first < 8) {
2948 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2949 val = int128_urshift(val, first * 8);
2950 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2951 } else {
2952 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2953 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
2954 }
2955 }
2956
2957 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
2958 MemOpIdx oi, uintptr_t retaddr)
2959 {
2960 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2961 do_st16_mmu(env, addr, val, oi, retaddr);
2962 }
2963
2964 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
2965 {
2966 helper_st16_mmu(env, addr, val, oi, GETPC());
2967 }
2968
2969 /*
2970 * Store Helpers for cpu_ldst.h
2971 */
2972
2973 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2974 {
2975 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2976 }
2977
2978 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2979 MemOpIdx oi, uintptr_t retaddr)
2980 {
2981 helper_stb_mmu(env, addr, val, oi, retaddr);
2982 plugin_store_cb(env, addr, oi);
2983 }
2984
2985 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2986 MemOpIdx oi, uintptr_t retaddr)
2987 {
2988 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2989 do_st2_mmu(env, addr, val, oi, retaddr);
2990 plugin_store_cb(env, addr, oi);
2991 }
2992
2993 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2994 MemOpIdx oi, uintptr_t retaddr)
2995 {
2996 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2997 do_st4_mmu(env, addr, val, oi, retaddr);
2998 plugin_store_cb(env, addr, oi);
2999 }
3000
3001 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
3002 MemOpIdx oi, uintptr_t retaddr)
3003 {
3004 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3005 do_st8_mmu(env, addr, val, oi, retaddr);
3006 plugin_store_cb(env, addr, oi);
3007 }
3008
3009 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3010 MemOpIdx oi, uintptr_t retaddr)
3011 {
3012 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3013 do_st16_mmu(env, addr, val, oi, retaddr);
3014 plugin_store_cb(env, addr, oi);
3015 }
3016
3017 #include "ldst_common.c.inc"
3018
3019 /*
3020 * First set of functions passes in OI and RETADDR.
3021 * This makes them callable from other helpers.
3022 */
3023
3024 #define ATOMIC_NAME(X) \
3025 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3026
3027 #define ATOMIC_MMU_CLEANUP
3028
3029 #include "atomic_common.c.inc"
3030
3031 #define DATA_SIZE 1
3032 #include "atomic_template.h"
3033
3034 #define DATA_SIZE 2
3035 #include "atomic_template.h"
3036
3037 #define DATA_SIZE 4
3038 #include "atomic_template.h"
3039
3040 #ifdef CONFIG_ATOMIC64
3041 #define DATA_SIZE 8
3042 #include "atomic_template.h"
3043 #endif
3044
3045 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
3046 #define DATA_SIZE 16
3047 #include "atomic_template.h"
3048 #endif
3049
3050 /* Code access functions. */
3051
3052 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3053 {
3054 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3055 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3056 }
3057
3058 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3059 {
3060 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3061 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3062 }
3063
3064 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3065 {
3066 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3067 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3068 }
3069
3070 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3071 {
3072 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3073 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3074 }
3075
3076 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3077 MemOpIdx oi, uintptr_t retaddr)
3078 {
3079 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3080 }
3081
3082 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3083 MemOpIdx oi, uintptr_t retaddr)
3084 {
3085 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3086 }
3087
3088 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3089 MemOpIdx oi, uintptr_t retaddr)
3090 {
3091 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3092 }
3093
3094 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3095 MemOpIdx oi, uintptr_t retaddr)
3096 {
3097 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3098 }