]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
accel/tcg: Add cpu_ld*_code_mmu
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
47
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 # define DEBUG_TLB_LOG_GATE 1
52 # else
53 # define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
59
60 #define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63 ## __VA_ARGS__); \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69 #define assert_cpu_is_self(cpu) do { \
70 if (DEBUG_TLB_GATE) { \
71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
72 } \
73 } while (0)
74
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80 */
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 {
86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
87 }
88
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 {
91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
92 }
93
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95 size_t max_entries)
96 {
97 desc->window_begin_ns = ns;
98 desc->window_max_entries = max_entries;
99 }
100
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102 {
103 CPUJumpCache *jc = cpu->tb_jmp_cache;
104 int i, i0;
105
106 if (unlikely(!jc)) {
107 return;
108 }
109
110 i0 = tb_jmp_cache_hash_page(page_addr);
111 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
112 qatomic_set(&jc->array[i0 + i].tb, NULL);
113 }
114 }
115
116 /**
117 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
118 * @desc: The CPUTLBDesc portion of the TLB
119 * @fast: The CPUTLBDescFast portion of the same TLB
120 *
121 * Called with tlb_lock_held.
122 *
123 * We have two main constraints when resizing a TLB: (1) we only resize it
124 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
125 * the array or unnecessarily flushing it), which means we do not control how
126 * frequently the resizing can occur; (2) we don't have access to the guest's
127 * future scheduling decisions, and therefore have to decide the magnitude of
128 * the resize based on past observations.
129 *
130 * In general, a memory-hungry process can benefit greatly from an appropriately
131 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
132 * we just have to make the TLB as large as possible; while an oversized TLB
133 * results in minimal TLB miss rates, it also takes longer to be flushed
134 * (flushes can be _very_ frequent), and the reduced locality can also hurt
135 * performance.
136 *
137 * To achieve near-optimal performance for all kinds of workloads, we:
138 *
139 * 1. Aggressively increase the size of the TLB when the use rate of the
140 * TLB being flushed is high, since it is likely that in the near future this
141 * memory-hungry process will execute again, and its memory hungriness will
142 * probably be similar.
143 *
144 * 2. Slowly reduce the size of the TLB as the use rate declines over a
145 * reasonably large time window. The rationale is that if in such a time window
146 * we have not observed a high TLB use rate, it is likely that we won't observe
147 * it in the near future. In that case, once a time window expires we downsize
148 * the TLB to match the maximum use rate observed in the window.
149 *
150 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
151 * since in that range performance is likely near-optimal. Recall that the TLB
152 * is direct mapped, so we want the use rate to be low (or at least not too
153 * high), since otherwise we are likely to have a significant amount of
154 * conflict misses.
155 */
156 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
157 int64_t now)
158 {
159 size_t old_size = tlb_n_entries(fast);
160 size_t rate;
161 size_t new_size = old_size;
162 int64_t window_len_ms = 100;
163 int64_t window_len_ns = window_len_ms * 1000 * 1000;
164 bool window_expired = now > desc->window_begin_ns + window_len_ns;
165
166 if (desc->n_used_entries > desc->window_max_entries) {
167 desc->window_max_entries = desc->n_used_entries;
168 }
169 rate = desc->window_max_entries * 100 / old_size;
170
171 if (rate > 70) {
172 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
173 } else if (rate < 30 && window_expired) {
174 size_t ceil = pow2ceil(desc->window_max_entries);
175 size_t expected_rate = desc->window_max_entries * 100 / ceil;
176
177 /*
178 * Avoid undersizing when the max number of entries seen is just below
179 * a pow2. For instance, if max_entries == 1025, the expected use rate
180 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
181 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
182 * later. Thus, make sure that the expected use rate remains below 70%.
183 * (and since we double the size, that means the lowest rate we'd
184 * expect to get is 35%, which is still in the 30-70% range where
185 * we consider that the size is appropriate.)
186 */
187 if (expected_rate > 70) {
188 ceil *= 2;
189 }
190 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
191 }
192
193 if (new_size == old_size) {
194 if (window_expired) {
195 tlb_window_reset(desc, now, desc->n_used_entries);
196 }
197 return;
198 }
199
200 g_free(fast->table);
201 g_free(desc->fulltlb);
202
203 tlb_window_reset(desc, now, 0);
204 /* desc->n_used_entries is cleared by the caller */
205 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
206 fast->table = g_try_new(CPUTLBEntry, new_size);
207 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
208
209 /*
210 * If the allocations fail, try smaller sizes. We just freed some
211 * memory, so going back to half of new_size has a good chance of working.
212 * Increased memory pressure elsewhere in the system might cause the
213 * allocations to fail though, so we progressively reduce the allocation
214 * size, aborting if we cannot even allocate the smallest TLB we support.
215 */
216 while (fast->table == NULL || desc->fulltlb == NULL) {
217 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
218 error_report("%s: %s", __func__, strerror(errno));
219 abort();
220 }
221 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
222 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
223
224 g_free(fast->table);
225 g_free(desc->fulltlb);
226 fast->table = g_try_new(CPUTLBEntry, new_size);
227 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
228 }
229 }
230
231 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
232 {
233 desc->n_used_entries = 0;
234 desc->large_page_addr = -1;
235 desc->large_page_mask = -1;
236 desc->vindex = 0;
237 memset(fast->table, -1, sizeof_tlb(fast));
238 memset(desc->vtable, -1, sizeof(desc->vtable));
239 }
240
241 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
242 int64_t now)
243 {
244 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
245 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
246
247 tlb_mmu_resize_locked(desc, fast, now);
248 tlb_mmu_flush_locked(desc, fast);
249 }
250
251 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
252 {
253 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
254
255 tlb_window_reset(desc, now, 0);
256 desc->n_used_entries = 0;
257 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
258 fast->table = g_new(CPUTLBEntry, n_entries);
259 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
260 tlb_mmu_flush_locked(desc, fast);
261 }
262
263 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
264 {
265 env_tlb(env)->d[mmu_idx].n_used_entries++;
266 }
267
268 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
269 {
270 env_tlb(env)->d[mmu_idx].n_used_entries--;
271 }
272
273 void tlb_init(CPUState *cpu)
274 {
275 CPUArchState *env = cpu->env_ptr;
276 int64_t now = get_clock_realtime();
277 int i;
278
279 qemu_spin_init(&env_tlb(env)->c.lock);
280
281 /* All tlbs are initialized flushed. */
282 env_tlb(env)->c.dirty = 0;
283
284 for (i = 0; i < NB_MMU_MODES; i++) {
285 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
286 }
287 }
288
289 void tlb_destroy(CPUState *cpu)
290 {
291 CPUArchState *env = cpu->env_ptr;
292 int i;
293
294 qemu_spin_destroy(&env_tlb(env)->c.lock);
295 for (i = 0; i < NB_MMU_MODES; i++) {
296 CPUTLBDesc *desc = &env_tlb(env)->d[i];
297 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
298
299 g_free(fast->table);
300 g_free(desc->fulltlb);
301 }
302 }
303
304 /* flush_all_helper: run fn across all cpus
305 *
306 * If the wait flag is set then the src cpu's helper will be queued as
307 * "safe" work and the loop exited creating a synchronisation point
308 * where all queued work will be finished before execution starts
309 * again.
310 */
311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
312 run_on_cpu_data d)
313 {
314 CPUState *cpu;
315
316 CPU_FOREACH(cpu) {
317 if (cpu != src) {
318 async_run_on_cpu(cpu, fn, d);
319 }
320 }
321 }
322
323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
324 {
325 CPUState *cpu;
326 size_t full = 0, part = 0, elide = 0;
327
328 CPU_FOREACH(cpu) {
329 CPUArchState *env = cpu->env_ptr;
330
331 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
332 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
333 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
334 }
335 *pfull = full;
336 *ppart = part;
337 *pelide = elide;
338 }
339
340 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
341 {
342 CPUArchState *env = cpu->env_ptr;
343 uint16_t asked = data.host_int;
344 uint16_t all_dirty, work, to_clean;
345 int64_t now = get_clock_realtime();
346
347 assert_cpu_is_self(cpu);
348
349 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
350
351 qemu_spin_lock(&env_tlb(env)->c.lock);
352
353 all_dirty = env_tlb(env)->c.dirty;
354 to_clean = asked & all_dirty;
355 all_dirty &= ~to_clean;
356 env_tlb(env)->c.dirty = all_dirty;
357
358 for (work = to_clean; work != 0; work &= work - 1) {
359 int mmu_idx = ctz32(work);
360 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
361 }
362
363 qemu_spin_unlock(&env_tlb(env)->c.lock);
364
365 tcg_flush_jmp_cache(cpu);
366
367 if (to_clean == ALL_MMUIDX_BITS) {
368 qatomic_set(&env_tlb(env)->c.full_flush_count,
369 env_tlb(env)->c.full_flush_count + 1);
370 } else {
371 qatomic_set(&env_tlb(env)->c.part_flush_count,
372 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
373 if (to_clean != asked) {
374 qatomic_set(&env_tlb(env)->c.elide_flush_count,
375 env_tlb(env)->c.elide_flush_count +
376 ctpop16(asked & ~to_clean));
377 }
378 }
379 }
380
381 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
382 {
383 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
384
385 if (cpu->created && !qemu_cpu_is_self(cpu)) {
386 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
387 RUN_ON_CPU_HOST_INT(idxmap));
388 } else {
389 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
390 }
391 }
392
393 void tlb_flush(CPUState *cpu)
394 {
395 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
396 }
397
398 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
399 {
400 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
401
402 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
403
404 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
405 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
406 }
407
408 void tlb_flush_all_cpus(CPUState *src_cpu)
409 {
410 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
411 }
412
413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
414 {
415 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
416
417 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
418
419 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
420 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 }
422
423 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
424 {
425 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
426 }
427
428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
429 target_ulong page, target_ulong mask)
430 {
431 page &= mask;
432 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
433
434 return (page == (tlb_entry->addr_read & mask) ||
435 page == (tlb_addr_write(tlb_entry) & mask) ||
436 page == (tlb_entry->addr_code & mask));
437 }
438
439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
440 target_ulong page)
441 {
442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444
445 /**
446 * tlb_entry_is_empty - return true if the entry is not in use
447 * @te: pointer to CPUTLBEntry
448 */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456 target_ulong page,
457 target_ulong mask)
458 {
459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460 memset(tlb_entry, -1, sizeof(*tlb_entry));
461 return true;
462 }
463 return false;
464 }
465
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
467 target_ulong page)
468 {
469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474 target_ulong page,
475 target_ulong mask)
476 {
477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478 int k;
479
480 assert_cpu_is_self(env_cpu(env));
481 for (k = 0; k < CPU_VTLB_SIZE; k++) {
482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483 tlb_n_used_entries_dec(env, mmu_idx);
484 }
485 }
486 }
487
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489 target_ulong page)
490 {
491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493
494 static void tlb_flush_page_locked(CPUArchState *env, int midx,
495 target_ulong page)
496 {
497 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
498 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
499
500 /* Check if we need to flush due to large pages. */
501 if ((page & lp_mask) == lp_addr) {
502 tlb_debug("forcing full flush midx %d ("
503 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
504 midx, lp_addr, lp_mask);
505 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
506 } else {
507 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
508 tlb_n_used_entries_dec(env, midx);
509 }
510 tlb_flush_vtlb_page_locked(env, midx, page);
511 }
512 }
513
514 /**
515 * tlb_flush_page_by_mmuidx_async_0:
516 * @cpu: cpu on which to flush
517 * @addr: page of virtual address to flush
518 * @idxmap: set of mmu_idx to flush
519 *
520 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
521 * at @addr from the tlbs indicated by @idxmap from @cpu.
522 */
523 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
524 target_ulong addr,
525 uint16_t idxmap)
526 {
527 CPUArchState *env = cpu->env_ptr;
528 int mmu_idx;
529
530 assert_cpu_is_self(cpu);
531
532 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
533
534 qemu_spin_lock(&env_tlb(env)->c.lock);
535 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
536 if ((idxmap >> mmu_idx) & 1) {
537 tlb_flush_page_locked(env, mmu_idx, addr);
538 }
539 }
540 qemu_spin_unlock(&env_tlb(env)->c.lock);
541
542 /*
543 * Discard jump cache entries for any tb which might potentially
544 * overlap the flushed page, which includes the previous.
545 */
546 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
547 tb_jmp_cache_clear_page(cpu, addr);
548 }
549
550 /**
551 * tlb_flush_page_by_mmuidx_async_1:
552 * @cpu: cpu on which to flush
553 * @data: encoded addr + idxmap
554 *
555 * Helper for tlb_flush_page_by_mmuidx and friends, called through
556 * async_run_on_cpu. The idxmap parameter is encoded in the page
557 * offset of the target_ptr field. This limits the set of mmu_idx
558 * that can be passed via this method.
559 */
560 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
561 run_on_cpu_data data)
562 {
563 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
564 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
565 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
566
567 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
568 }
569
570 typedef struct {
571 target_ulong addr;
572 uint16_t idxmap;
573 } TLBFlushPageByMMUIdxData;
574
575 /**
576 * tlb_flush_page_by_mmuidx_async_2:
577 * @cpu: cpu on which to flush
578 * @data: allocated addr + idxmap
579 *
580 * Helper for tlb_flush_page_by_mmuidx and friends, called through
581 * async_run_on_cpu. The addr+idxmap parameters are stored in a
582 * TLBFlushPageByMMUIdxData structure that has been allocated
583 * specifically for this helper. Free the structure when done.
584 */
585 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
586 run_on_cpu_data data)
587 {
588 TLBFlushPageByMMUIdxData *d = data.host_ptr;
589
590 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
591 g_free(d);
592 }
593
594 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
595 {
596 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
597
598 /* This should already be page aligned */
599 addr &= TARGET_PAGE_MASK;
600
601 if (qemu_cpu_is_self(cpu)) {
602 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
603 } else if (idxmap < TARGET_PAGE_SIZE) {
604 /*
605 * Most targets have only a few mmu_idx. In the case where
606 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
607 * allocating memory for this operation.
608 */
609 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
610 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
611 } else {
612 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
613
614 /* Otherwise allocate a structure, freed by the worker. */
615 d->addr = addr;
616 d->idxmap = idxmap;
617 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
618 RUN_ON_CPU_HOST_PTR(d));
619 }
620 }
621
622 void tlb_flush_page(CPUState *cpu, target_ulong addr)
623 {
624 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
625 }
626
627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
628 uint16_t idxmap)
629 {
630 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
631
632 /* This should already be page aligned */
633 addr &= TARGET_PAGE_MASK;
634
635 /*
636 * Allocate memory to hold addr+idxmap only when needed.
637 * See tlb_flush_page_by_mmuidx for details.
638 */
639 if (idxmap < TARGET_PAGE_SIZE) {
640 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
641 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
642 } else {
643 CPUState *dst_cpu;
644
645 /* Allocate a separate data block for each destination cpu. */
646 CPU_FOREACH(dst_cpu) {
647 if (dst_cpu != src_cpu) {
648 TLBFlushPageByMMUIdxData *d
649 = g_new(TLBFlushPageByMMUIdxData, 1);
650
651 d->addr = addr;
652 d->idxmap = idxmap;
653 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
654 RUN_ON_CPU_HOST_PTR(d));
655 }
656 }
657 }
658
659 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
660 }
661
662 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
663 {
664 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
665 }
666
667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
668 target_ulong addr,
669 uint16_t idxmap)
670 {
671 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
672
673 /* This should already be page aligned */
674 addr &= TARGET_PAGE_MASK;
675
676 /*
677 * Allocate memory to hold addr+idxmap only when needed.
678 * See tlb_flush_page_by_mmuidx for details.
679 */
680 if (idxmap < TARGET_PAGE_SIZE) {
681 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
684 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
685 } else {
686 CPUState *dst_cpu;
687 TLBFlushPageByMMUIdxData *d;
688
689 /* Allocate a separate data block for each destination cpu. */
690 CPU_FOREACH(dst_cpu) {
691 if (dst_cpu != src_cpu) {
692 d = g_new(TLBFlushPageByMMUIdxData, 1);
693 d->addr = addr;
694 d->idxmap = idxmap;
695 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
696 RUN_ON_CPU_HOST_PTR(d));
697 }
698 }
699
700 d = g_new(TLBFlushPageByMMUIdxData, 1);
701 d->addr = addr;
702 d->idxmap = idxmap;
703 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
704 RUN_ON_CPU_HOST_PTR(d));
705 }
706 }
707
708 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
709 {
710 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
711 }
712
713 static void tlb_flush_range_locked(CPUArchState *env, int midx,
714 target_ulong addr, target_ulong len,
715 unsigned bits)
716 {
717 CPUTLBDesc *d = &env_tlb(env)->d[midx];
718 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
719 target_ulong mask = MAKE_64BIT_MASK(0, bits);
720
721 /*
722 * If @bits is smaller than the tlb size, there may be multiple entries
723 * within the TLB; otherwise all addresses that match under @mask hit
724 * the same TLB entry.
725 * TODO: Perhaps allow bits to be a few bits less than the size.
726 * For now, just flush the entire TLB.
727 *
728 * If @len is larger than the tlb size, then it will take longer to
729 * test all of the entries in the TLB than it will to flush it all.
730 */
731 if (mask < f->mask || len > f->mask) {
732 tlb_debug("forcing full flush midx %d ("
733 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
734 midx, addr, mask, len);
735 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
736 return;
737 }
738
739 /*
740 * Check if we need to flush due to large pages.
741 * Because large_page_mask contains all 1's from the msb,
742 * we only need to test the end of the range.
743 */
744 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
745 tlb_debug("forcing full flush midx %d ("
746 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
747 midx, d->large_page_addr, d->large_page_mask);
748 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
749 return;
750 }
751
752 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
753 target_ulong page = addr + i;
754 CPUTLBEntry *entry = tlb_entry(env, midx, page);
755
756 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
757 tlb_n_used_entries_dec(env, midx);
758 }
759 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
760 }
761 }
762
763 typedef struct {
764 target_ulong addr;
765 target_ulong len;
766 uint16_t idxmap;
767 uint16_t bits;
768 } TLBFlushRangeData;
769
770 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
771 TLBFlushRangeData d)
772 {
773 CPUArchState *env = cpu->env_ptr;
774 int mmu_idx;
775
776 assert_cpu_is_self(cpu);
777
778 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
779 d.addr, d.bits, d.len, d.idxmap);
780
781 qemu_spin_lock(&env_tlb(env)->c.lock);
782 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
783 if ((d.idxmap >> mmu_idx) & 1) {
784 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
785 }
786 }
787 qemu_spin_unlock(&env_tlb(env)->c.lock);
788
789 /*
790 * If the length is larger than the jump cache size, then it will take
791 * longer to clear each entry individually than it will to clear it all.
792 */
793 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
794 tcg_flush_jmp_cache(cpu);
795 return;
796 }
797
798 /*
799 * Discard jump cache entries for any tb which might potentially
800 * overlap the flushed pages, which includes the previous.
801 */
802 d.addr -= TARGET_PAGE_SIZE;
803 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
804 tb_jmp_cache_clear_page(cpu, d.addr);
805 d.addr += TARGET_PAGE_SIZE;
806 }
807 }
808
809 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
810 run_on_cpu_data data)
811 {
812 TLBFlushRangeData *d = data.host_ptr;
813 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
814 g_free(d);
815 }
816
817 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
818 target_ulong len, uint16_t idxmap,
819 unsigned bits)
820 {
821 TLBFlushRangeData d;
822
823 /*
824 * If all bits are significant, and len is small,
825 * this devolves to tlb_flush_page.
826 */
827 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
828 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
829 return;
830 }
831 /* If no page bits are significant, this devolves to tlb_flush. */
832 if (bits < TARGET_PAGE_BITS) {
833 tlb_flush_by_mmuidx(cpu, idxmap);
834 return;
835 }
836
837 /* This should already be page aligned */
838 d.addr = addr & TARGET_PAGE_MASK;
839 d.len = len;
840 d.idxmap = idxmap;
841 d.bits = bits;
842
843 if (qemu_cpu_is_self(cpu)) {
844 tlb_flush_range_by_mmuidx_async_0(cpu, d);
845 } else {
846 /* Otherwise allocate a structure, freed by the worker. */
847 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
848 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
849 RUN_ON_CPU_HOST_PTR(p));
850 }
851 }
852
853 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
854 uint16_t idxmap, unsigned bits)
855 {
856 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
857 }
858
859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
860 target_ulong addr, target_ulong len,
861 uint16_t idxmap, unsigned bits)
862 {
863 TLBFlushRangeData d;
864 CPUState *dst_cpu;
865
866 /*
867 * If all bits are significant, and len is small,
868 * this devolves to tlb_flush_page.
869 */
870 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
871 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
872 return;
873 }
874 /* If no page bits are significant, this devolves to tlb_flush. */
875 if (bits < TARGET_PAGE_BITS) {
876 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
877 return;
878 }
879
880 /* This should already be page aligned */
881 d.addr = addr & TARGET_PAGE_MASK;
882 d.len = len;
883 d.idxmap = idxmap;
884 d.bits = bits;
885
886 /* Allocate a separate data block for each destination cpu. */
887 CPU_FOREACH(dst_cpu) {
888 if (dst_cpu != src_cpu) {
889 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
890 async_run_on_cpu(dst_cpu,
891 tlb_flush_range_by_mmuidx_async_1,
892 RUN_ON_CPU_HOST_PTR(p));
893 }
894 }
895
896 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
897 }
898
899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
900 target_ulong addr,
901 uint16_t idxmap, unsigned bits)
902 {
903 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
904 idxmap, bits);
905 }
906
907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
908 target_ulong addr,
909 target_ulong len,
910 uint16_t idxmap,
911 unsigned bits)
912 {
913 TLBFlushRangeData d, *p;
914 CPUState *dst_cpu;
915
916 /*
917 * If all bits are significant, and len is small,
918 * this devolves to tlb_flush_page.
919 */
920 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
921 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
922 return;
923 }
924 /* If no page bits are significant, this devolves to tlb_flush. */
925 if (bits < TARGET_PAGE_BITS) {
926 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
927 return;
928 }
929
930 /* This should already be page aligned */
931 d.addr = addr & TARGET_PAGE_MASK;
932 d.len = len;
933 d.idxmap = idxmap;
934 d.bits = bits;
935
936 /* Allocate a separate data block for each destination cpu. */
937 CPU_FOREACH(dst_cpu) {
938 if (dst_cpu != src_cpu) {
939 p = g_memdup(&d, sizeof(d));
940 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
941 RUN_ON_CPU_HOST_PTR(p));
942 }
943 }
944
945 p = g_memdup(&d, sizeof(d));
946 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
947 RUN_ON_CPU_HOST_PTR(p));
948 }
949
950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
951 target_ulong addr,
952 uint16_t idxmap,
953 unsigned bits)
954 {
955 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
956 idxmap, bits);
957 }
958
959 /* update the TLBs so that writes to code in the virtual page 'addr'
960 can be detected */
961 void tlb_protect_code(ram_addr_t ram_addr)
962 {
963 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
964 TARGET_PAGE_SIZE,
965 DIRTY_MEMORY_CODE);
966 }
967
968 /* update the TLB so that writes in physical page 'phys_addr' are no longer
969 tested for self modifying code */
970 void tlb_unprotect_code(ram_addr_t ram_addr)
971 {
972 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
973 }
974
975
976 /*
977 * Dirty write flag handling
978 *
979 * When the TCG code writes to a location it looks up the address in
980 * the TLB and uses that data to compute the final address. If any of
981 * the lower bits of the address are set then the slow path is forced.
982 * There are a number of reasons to do this but for normal RAM the
983 * most usual is detecting writes to code regions which may invalidate
984 * generated code.
985 *
986 * Other vCPUs might be reading their TLBs during guest execution, so we update
987 * te->addr_write with qatomic_set. We don't need to worry about this for
988 * oversized guests as MTTCG is disabled for them.
989 *
990 * Called with tlb_c.lock held.
991 */
992 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
993 uintptr_t start, uintptr_t length)
994 {
995 uintptr_t addr = tlb_entry->addr_write;
996
997 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
998 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
999 addr &= TARGET_PAGE_MASK;
1000 addr += tlb_entry->addend;
1001 if ((addr - start) < length) {
1002 #if TCG_OVERSIZED_GUEST
1003 tlb_entry->addr_write |= TLB_NOTDIRTY;
1004 #else
1005 qatomic_set(&tlb_entry->addr_write,
1006 tlb_entry->addr_write | TLB_NOTDIRTY);
1007 #endif
1008 }
1009 }
1010 }
1011
1012 /*
1013 * Called with tlb_c.lock held.
1014 * Called only from the vCPU context, i.e. the TLB's owner thread.
1015 */
1016 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1017 {
1018 *d = *s;
1019 }
1020
1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1022 * the target vCPU).
1023 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1024 * thing actually updated is the target TLB entry ->addr_write flags.
1025 */
1026 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1027 {
1028 CPUArchState *env;
1029
1030 int mmu_idx;
1031
1032 env = cpu->env_ptr;
1033 qemu_spin_lock(&env_tlb(env)->c.lock);
1034 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1035 unsigned int i;
1036 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1037
1038 for (i = 0; i < n; i++) {
1039 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1040 start1, length);
1041 }
1042
1043 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1044 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1045 start1, length);
1046 }
1047 }
1048 qemu_spin_unlock(&env_tlb(env)->c.lock);
1049 }
1050
1051 /* Called with tlb_c.lock held */
1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1053 target_ulong vaddr)
1054 {
1055 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1056 tlb_entry->addr_write = vaddr;
1057 }
1058 }
1059
1060 /* update the TLB corresponding to virtual page vaddr
1061 so that it is no longer dirty */
1062 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1063 {
1064 CPUArchState *env = cpu->env_ptr;
1065 int mmu_idx;
1066
1067 assert_cpu_is_self(cpu);
1068
1069 vaddr &= TARGET_PAGE_MASK;
1070 qemu_spin_lock(&env_tlb(env)->c.lock);
1071 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1072 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1073 }
1074
1075 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1076 int k;
1077 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1078 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1079 }
1080 }
1081 qemu_spin_unlock(&env_tlb(env)->c.lock);
1082 }
1083
1084 /* Our TLB does not support large pages, so remember the area covered by
1085 large pages and trigger a full TLB flush if these are invalidated. */
1086 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1087 target_ulong vaddr, target_ulong size)
1088 {
1089 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1090 target_ulong lp_mask = ~(size - 1);
1091
1092 if (lp_addr == (target_ulong)-1) {
1093 /* No previous large page. */
1094 lp_addr = vaddr;
1095 } else {
1096 /* Extend the existing region to include the new page.
1097 This is a compromise between unnecessary flushes and
1098 the cost of maintaining a full variable size TLB. */
1099 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1100 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1101 lp_mask <<= 1;
1102 }
1103 }
1104 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1105 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1106 }
1107
1108 /*
1109 * Add a new TLB entry. At most one entry for a given virtual address
1110 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1111 * supplied size is only used by tlb_flush_page.
1112 *
1113 * Called from TCG-generated code, which is under an RCU read-side
1114 * critical section.
1115 */
1116 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1117 target_ulong vaddr, CPUTLBEntryFull *full)
1118 {
1119 CPUArchState *env = cpu->env_ptr;
1120 CPUTLB *tlb = env_tlb(env);
1121 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1122 MemoryRegionSection *section;
1123 unsigned int index;
1124 target_ulong address;
1125 target_ulong write_address;
1126 uintptr_t addend;
1127 CPUTLBEntry *te, tn;
1128 hwaddr iotlb, xlat, sz, paddr_page;
1129 target_ulong vaddr_page;
1130 int asidx, wp_flags, prot;
1131 bool is_ram, is_romd;
1132
1133 assert_cpu_is_self(cpu);
1134
1135 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1136 sz = TARGET_PAGE_SIZE;
1137 } else {
1138 sz = (hwaddr)1 << full->lg_page_size;
1139 tlb_add_large_page(env, mmu_idx, vaddr, sz);
1140 }
1141 vaddr_page = vaddr & TARGET_PAGE_MASK;
1142 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1143
1144 prot = full->prot;
1145 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1146 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1147 &xlat, &sz, full->attrs, &prot);
1148 assert(sz >= TARGET_PAGE_SIZE);
1149
1150 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1151 " prot=%x idx=%d\n",
1152 vaddr, full->phys_addr, prot, mmu_idx);
1153
1154 address = vaddr_page;
1155 if (full->lg_page_size < TARGET_PAGE_BITS) {
1156 /* Repeat the MMU check and TLB fill on every access. */
1157 address |= TLB_INVALID_MASK;
1158 }
1159 if (full->attrs.byte_swap) {
1160 address |= TLB_BSWAP;
1161 }
1162
1163 is_ram = memory_region_is_ram(section->mr);
1164 is_romd = memory_region_is_romd(section->mr);
1165
1166 if (is_ram || is_romd) {
1167 /* RAM and ROMD both have associated host memory. */
1168 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1169 } else {
1170 /* I/O does not; force the host address to NULL. */
1171 addend = 0;
1172 }
1173
1174 write_address = address;
1175 if (is_ram) {
1176 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1177 /*
1178 * Computing is_clean is expensive; avoid all that unless
1179 * the page is actually writable.
1180 */
1181 if (prot & PAGE_WRITE) {
1182 if (section->readonly) {
1183 write_address |= TLB_DISCARD_WRITE;
1184 } else if (cpu_physical_memory_is_clean(iotlb)) {
1185 write_address |= TLB_NOTDIRTY;
1186 }
1187 }
1188 } else {
1189 /* I/O or ROMD */
1190 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1191 /*
1192 * Writes to romd devices must go through MMIO to enable write.
1193 * Reads to romd devices go through the ram_ptr found above,
1194 * but of course reads to I/O must go through MMIO.
1195 */
1196 write_address |= TLB_MMIO;
1197 if (!is_romd) {
1198 address = write_address;
1199 }
1200 }
1201
1202 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1203 TARGET_PAGE_SIZE);
1204
1205 index = tlb_index(env, mmu_idx, vaddr_page);
1206 te = tlb_entry(env, mmu_idx, vaddr_page);
1207
1208 /*
1209 * Hold the TLB lock for the rest of the function. We could acquire/release
1210 * the lock several times in the function, but it is faster to amortize the
1211 * acquisition cost by acquiring it just once. Note that this leads to
1212 * a longer critical section, but this is not a concern since the TLB lock
1213 * is unlikely to be contended.
1214 */
1215 qemu_spin_lock(&tlb->c.lock);
1216
1217 /* Note that the tlb is no longer clean. */
1218 tlb->c.dirty |= 1 << mmu_idx;
1219
1220 /* Make sure there's no cached translation for the new page. */
1221 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1222
1223 /*
1224 * Only evict the old entry to the victim tlb if it's for a
1225 * different page; otherwise just overwrite the stale data.
1226 */
1227 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1228 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1229 CPUTLBEntry *tv = &desc->vtable[vidx];
1230
1231 /* Evict the old entry into the victim tlb. */
1232 copy_tlb_helper_locked(tv, te);
1233 desc->vfulltlb[vidx] = desc->fulltlb[index];
1234 tlb_n_used_entries_dec(env, mmu_idx);
1235 }
1236
1237 /* refill the tlb */
1238 /*
1239 * At this point iotlb contains a physical section number in the lower
1240 * TARGET_PAGE_BITS, and either
1241 * + the ram_addr_t of the page base of the target RAM (RAM)
1242 * + the offset within section->mr of the page base (I/O, ROMD)
1243 * We subtract the vaddr_page (which is page aligned and thus won't
1244 * disturb the low bits) to give an offset which can be added to the
1245 * (non-page-aligned) vaddr of the eventual memory access to get
1246 * the MemoryRegion offset for the access. Note that the vaddr we
1247 * subtract here is that of the page base, and not the same as the
1248 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1249 */
1250 desc->fulltlb[index] = *full;
1251 desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1252 desc->fulltlb[index].phys_addr = paddr_page;
1253
1254 /* Now calculate the new entry */
1255 tn.addend = addend - vaddr_page;
1256 if (prot & PAGE_READ) {
1257 tn.addr_read = address;
1258 if (wp_flags & BP_MEM_READ) {
1259 tn.addr_read |= TLB_WATCHPOINT;
1260 }
1261 } else {
1262 tn.addr_read = -1;
1263 }
1264
1265 if (prot & PAGE_EXEC) {
1266 tn.addr_code = address;
1267 } else {
1268 tn.addr_code = -1;
1269 }
1270
1271 tn.addr_write = -1;
1272 if (prot & PAGE_WRITE) {
1273 tn.addr_write = write_address;
1274 if (prot & PAGE_WRITE_INV) {
1275 tn.addr_write |= TLB_INVALID_MASK;
1276 }
1277 if (wp_flags & BP_MEM_WRITE) {
1278 tn.addr_write |= TLB_WATCHPOINT;
1279 }
1280 }
1281
1282 copy_tlb_helper_locked(te, &tn);
1283 tlb_n_used_entries_inc(env, mmu_idx);
1284 qemu_spin_unlock(&tlb->c.lock);
1285 }
1286
1287 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1288 hwaddr paddr, MemTxAttrs attrs, int prot,
1289 int mmu_idx, target_ulong size)
1290 {
1291 CPUTLBEntryFull full = {
1292 .phys_addr = paddr,
1293 .attrs = attrs,
1294 .prot = prot,
1295 .lg_page_size = ctz64(size)
1296 };
1297
1298 assert(is_power_of_2(size));
1299 tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1300 }
1301
1302 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1303 hwaddr paddr, int prot,
1304 int mmu_idx, target_ulong size)
1305 {
1306 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1307 prot, mmu_idx, size);
1308 }
1309
1310 /*
1311 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1312 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1313 * be discarded and looked up again (e.g. via tlb_entry()).
1314 */
1315 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1316 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1317 {
1318 bool ok;
1319
1320 /*
1321 * This is not a probe, so only valid return is success; failure
1322 * should result in exception + longjmp to the cpu loop.
1323 */
1324 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1325 access_type, mmu_idx, false, retaddr);
1326 assert(ok);
1327 }
1328
1329 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1330 MMUAccessType access_type,
1331 int mmu_idx, uintptr_t retaddr)
1332 {
1333 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1334 mmu_idx, retaddr);
1335 }
1336
1337 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1338 vaddr addr, unsigned size,
1339 MMUAccessType access_type,
1340 int mmu_idx, MemTxAttrs attrs,
1341 MemTxResult response,
1342 uintptr_t retaddr)
1343 {
1344 CPUClass *cc = CPU_GET_CLASS(cpu);
1345
1346 if (!cpu->ignore_memory_transaction_failures &&
1347 cc->tcg_ops->do_transaction_failed) {
1348 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1349 access_type, mmu_idx, attrs,
1350 response, retaddr);
1351 }
1352 }
1353
1354 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1355 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1356 MMUAccessType access_type, MemOp op)
1357 {
1358 CPUState *cpu = env_cpu(env);
1359 hwaddr mr_offset;
1360 MemoryRegionSection *section;
1361 MemoryRegion *mr;
1362 uint64_t val;
1363 MemTxResult r;
1364
1365 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1366 mr = section->mr;
1367 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1368 cpu->mem_io_pc = retaddr;
1369 if (!cpu->can_do_io) {
1370 cpu_io_recompile(cpu, retaddr);
1371 }
1372
1373 {
1374 QEMU_IOTHREAD_LOCK_GUARD();
1375 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1376 }
1377
1378 if (r != MEMTX_OK) {
1379 hwaddr physaddr = mr_offset +
1380 section->offset_within_address_space -
1381 section->offset_within_region;
1382
1383 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1384 mmu_idx, full->attrs, r, retaddr);
1385 }
1386 return val;
1387 }
1388
1389 /*
1390 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1391 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1392 * because of the side effect of io_writex changing memory layout.
1393 */
1394 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1395 hwaddr mr_offset)
1396 {
1397 #ifdef CONFIG_PLUGIN
1398 SavedIOTLB *saved = &cs->saved_iotlb;
1399 saved->section = section;
1400 saved->mr_offset = mr_offset;
1401 #endif
1402 }
1403
1404 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1405 int mmu_idx, uint64_t val, target_ulong addr,
1406 uintptr_t retaddr, MemOp op)
1407 {
1408 CPUState *cpu = env_cpu(env);
1409 hwaddr mr_offset;
1410 MemoryRegionSection *section;
1411 MemoryRegion *mr;
1412 MemTxResult r;
1413
1414 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1415 mr = section->mr;
1416 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1417 if (!cpu->can_do_io) {
1418 cpu_io_recompile(cpu, retaddr);
1419 }
1420 cpu->mem_io_pc = retaddr;
1421
1422 /*
1423 * The memory_region_dispatch may trigger a flush/resize
1424 * so for plugins we save the iotlb_data just in case.
1425 */
1426 save_iotlb_data(cpu, section, mr_offset);
1427
1428 {
1429 QEMU_IOTHREAD_LOCK_GUARD();
1430 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1431 }
1432
1433 if (r != MEMTX_OK) {
1434 hwaddr physaddr = mr_offset +
1435 section->offset_within_address_space -
1436 section->offset_within_region;
1437
1438 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1439 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1440 retaddr);
1441 }
1442 }
1443
1444 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1445 {
1446 #if TCG_OVERSIZED_GUEST
1447 return *(target_ulong *)((uintptr_t)entry + ofs);
1448 #else
1449 /* ofs might correspond to .addr_write, so use qatomic_read */
1450 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1451 #endif
1452 }
1453
1454 /* Return true if ADDR is present in the victim tlb, and has been copied
1455 back to the main tlb. */
1456 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1457 size_t elt_ofs, target_ulong page)
1458 {
1459 size_t vidx;
1460
1461 assert_cpu_is_self(env_cpu(env));
1462 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1463 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1464 target_ulong cmp;
1465
1466 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1467 #if TCG_OVERSIZED_GUEST
1468 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1469 #else
1470 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1471 #endif
1472
1473 if (cmp == page) {
1474 /* Found entry in victim tlb, swap tlb and iotlb. */
1475 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1476
1477 qemu_spin_lock(&env_tlb(env)->c.lock);
1478 copy_tlb_helper_locked(&tmptlb, tlb);
1479 copy_tlb_helper_locked(tlb, vtlb);
1480 copy_tlb_helper_locked(vtlb, &tmptlb);
1481 qemu_spin_unlock(&env_tlb(env)->c.lock);
1482
1483 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1484 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1485 CPUTLBEntryFull tmpf;
1486 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1487 return true;
1488 }
1489 }
1490 return false;
1491 }
1492
1493 /* Macro to call the above, with local variables from the use context. */
1494 #define VICTIM_TLB_HIT(TY, ADDR) \
1495 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1496 (ADDR) & TARGET_PAGE_MASK)
1497
1498 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1499 CPUTLBEntryFull *full, uintptr_t retaddr)
1500 {
1501 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1502
1503 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1504
1505 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1506 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1507 }
1508
1509 /*
1510 * Set both VGA and migration bits for simplicity and to remove
1511 * the notdirty callback faster.
1512 */
1513 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1514
1515 /* We remove the notdirty callback only if the code has been flushed. */
1516 if (!cpu_physical_memory_is_clean(ram_addr)) {
1517 trace_memory_notdirty_set_dirty(mem_vaddr);
1518 tlb_set_dirty(cpu, mem_vaddr);
1519 }
1520 }
1521
1522 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1523 int fault_size, MMUAccessType access_type,
1524 int mmu_idx, bool nonfault,
1525 void **phost, CPUTLBEntryFull **pfull,
1526 uintptr_t retaddr)
1527 {
1528 uintptr_t index = tlb_index(env, mmu_idx, addr);
1529 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1530 target_ulong tlb_addr, page_addr;
1531 size_t elt_ofs;
1532 int flags;
1533
1534 switch (access_type) {
1535 case MMU_DATA_LOAD:
1536 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1537 break;
1538 case MMU_DATA_STORE:
1539 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1540 break;
1541 case MMU_INST_FETCH:
1542 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1543 break;
1544 default:
1545 g_assert_not_reached();
1546 }
1547 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1548
1549 flags = TLB_FLAGS_MASK;
1550 page_addr = addr & TARGET_PAGE_MASK;
1551 if (!tlb_hit_page(tlb_addr, page_addr)) {
1552 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1553 CPUState *cs = env_cpu(env);
1554
1555 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1556 mmu_idx, nonfault, retaddr)) {
1557 /* Non-faulting page table read failed. */
1558 *phost = NULL;
1559 *pfull = NULL;
1560 return TLB_INVALID_MASK;
1561 }
1562
1563 /* TLB resize via tlb_fill may have moved the entry. */
1564 index = tlb_index(env, mmu_idx, addr);
1565 entry = tlb_entry(env, mmu_idx, addr);
1566
1567 /*
1568 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1569 * to force the next access through tlb_fill. We've just
1570 * called tlb_fill, so we know that this entry *is* valid.
1571 */
1572 flags &= ~TLB_INVALID_MASK;
1573 }
1574 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1575 }
1576 flags &= tlb_addr;
1577
1578 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1579
1580 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1581 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1582 *phost = NULL;
1583 return TLB_MMIO;
1584 }
1585
1586 /* Everything else is RAM. */
1587 *phost = (void *)((uintptr_t)addr + entry->addend);
1588 return flags;
1589 }
1590
1591 int probe_access_full(CPUArchState *env, target_ulong addr, int size,
1592 MMUAccessType access_type, int mmu_idx,
1593 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1594 uintptr_t retaddr)
1595 {
1596 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1597 nonfault, phost, pfull, retaddr);
1598
1599 /* Handle clean RAM pages. */
1600 if (unlikely(flags & TLB_NOTDIRTY)) {
1601 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1602 flags &= ~TLB_NOTDIRTY;
1603 }
1604
1605 return flags;
1606 }
1607
1608 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
1609 MMUAccessType access_type, int mmu_idx,
1610 bool nonfault, void **phost, uintptr_t retaddr)
1611 {
1612 CPUTLBEntryFull *full;
1613 int flags;
1614
1615 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1616
1617 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1618 nonfault, phost, &full, retaddr);
1619
1620 /* Handle clean RAM pages. */
1621 if (unlikely(flags & TLB_NOTDIRTY)) {
1622 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1623 flags &= ~TLB_NOTDIRTY;
1624 }
1625
1626 return flags;
1627 }
1628
1629 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1630 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1631 {
1632 CPUTLBEntryFull *full;
1633 void *host;
1634 int flags;
1635
1636 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1637
1638 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1639 false, &host, &full, retaddr);
1640
1641 /* Per the interface, size == 0 merely faults the access. */
1642 if (size == 0) {
1643 return NULL;
1644 }
1645
1646 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1647 /* Handle watchpoints. */
1648 if (flags & TLB_WATCHPOINT) {
1649 int wp_access = (access_type == MMU_DATA_STORE
1650 ? BP_MEM_WRITE : BP_MEM_READ);
1651 cpu_check_watchpoint(env_cpu(env), addr, size,
1652 full->attrs, wp_access, retaddr);
1653 }
1654
1655 /* Handle clean RAM pages. */
1656 if (flags & TLB_NOTDIRTY) {
1657 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1658 }
1659 }
1660
1661 return host;
1662 }
1663
1664 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1665 MMUAccessType access_type, int mmu_idx)
1666 {
1667 CPUTLBEntryFull *full;
1668 void *host;
1669 int flags;
1670
1671 flags = probe_access_internal(env, addr, 0, access_type,
1672 mmu_idx, true, &host, &full, 0);
1673
1674 /* No combination of flags are expected by the caller. */
1675 return flags ? NULL : host;
1676 }
1677
1678 /*
1679 * Return a ram_addr_t for the virtual address for execution.
1680 *
1681 * Return -1 if we can't translate and execute from an entire page
1682 * of RAM. This will force us to execute by loading and translating
1683 * one insn at a time, without caching.
1684 *
1685 * NOTE: This function will trigger an exception if the page is
1686 * not executable.
1687 */
1688 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1689 void **hostp)
1690 {
1691 CPUTLBEntryFull *full;
1692 void *p;
1693
1694 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1695 cpu_mmu_index(env, true), false, &p, &full, 0);
1696 if (p == NULL) {
1697 return -1;
1698 }
1699
1700 if (full->lg_page_size < TARGET_PAGE_BITS) {
1701 return -1;
1702 }
1703
1704 if (hostp) {
1705 *hostp = p;
1706 }
1707 return qemu_ram_addr_from_host_nofail(p);
1708 }
1709
1710 #ifdef CONFIG_PLUGIN
1711 /*
1712 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1713 * This should be a hot path as we will have just looked this path up
1714 * in the softmmu lookup code (or helper). We don't handle re-fills or
1715 * checking the victim table. This is purely informational.
1716 *
1717 * This almost never fails as the memory access being instrumented
1718 * should have just filled the TLB. The one corner case is io_writex
1719 * which can cause TLB flushes and potential resizing of the TLBs
1720 * losing the information we need. In those cases we need to recover
1721 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1722 * from the same thread (which a mem callback will be) this is safe.
1723 */
1724
1725 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1726 bool is_store, struct qemu_plugin_hwaddr *data)
1727 {
1728 CPUArchState *env = cpu->env_ptr;
1729 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1730 uintptr_t index = tlb_index(env, mmu_idx, addr);
1731 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1732
1733 if (likely(tlb_hit(tlb_addr, addr))) {
1734 /* We must have an iotlb entry for MMIO */
1735 if (tlb_addr & TLB_MMIO) {
1736 CPUTLBEntryFull *full;
1737 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1738 data->is_io = true;
1739 data->v.io.section =
1740 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1741 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1742 } else {
1743 data->is_io = false;
1744 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1745 }
1746 return true;
1747 } else {
1748 SavedIOTLB *saved = &cpu->saved_iotlb;
1749 data->is_io = true;
1750 data->v.io.section = saved->section;
1751 data->v.io.offset = saved->mr_offset;
1752 return true;
1753 }
1754 }
1755
1756 #endif
1757
1758 /*
1759 * Probe for an atomic operation. Do not allow unaligned operations,
1760 * or io operations to proceed. Return the host address.
1761 *
1762 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1763 */
1764 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1765 MemOpIdx oi, int size, int prot,
1766 uintptr_t retaddr)
1767 {
1768 uintptr_t mmu_idx = get_mmuidx(oi);
1769 MemOp mop = get_memop(oi);
1770 int a_bits = get_alignment_bits(mop);
1771 uintptr_t index;
1772 CPUTLBEntry *tlbe;
1773 target_ulong tlb_addr;
1774 void *hostaddr;
1775 CPUTLBEntryFull *full;
1776
1777 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1778
1779 /* Adjust the given return address. */
1780 retaddr -= GETPC_ADJ;
1781
1782 /* Enforce guest required alignment. */
1783 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1784 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1785 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1786 mmu_idx, retaddr);
1787 }
1788
1789 /* Enforce qemu required alignment. */
1790 if (unlikely(addr & (size - 1))) {
1791 /* We get here if guest alignment was not requested,
1792 or was not enforced by cpu_unaligned_access above.
1793 We might widen the access and emulate, but for now
1794 mark an exception and exit the cpu loop. */
1795 goto stop_the_world;
1796 }
1797
1798 index = tlb_index(env, mmu_idx, addr);
1799 tlbe = tlb_entry(env, mmu_idx, addr);
1800
1801 /* Check TLB entry and enforce page permissions. */
1802 if (prot & PAGE_WRITE) {
1803 tlb_addr = tlb_addr_write(tlbe);
1804 if (!tlb_hit(tlb_addr, addr)) {
1805 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1806 tlb_fill(env_cpu(env), addr, size,
1807 MMU_DATA_STORE, mmu_idx, retaddr);
1808 index = tlb_index(env, mmu_idx, addr);
1809 tlbe = tlb_entry(env, mmu_idx, addr);
1810 }
1811 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1812 }
1813
1814 if (prot & PAGE_READ) {
1815 /*
1816 * Let the guest notice RMW on a write-only page.
1817 * We have just verified that the page is writable.
1818 * Subpage lookups may have left TLB_INVALID_MASK set,
1819 * but addr_read will only be -1 if PAGE_READ was unset.
1820 */
1821 if (unlikely(tlbe->addr_read == -1)) {
1822 tlb_fill(env_cpu(env), addr, size,
1823 MMU_DATA_LOAD, mmu_idx, retaddr);
1824 /*
1825 * Since we don't support reads and writes to different
1826 * addresses, and we do have the proper page loaded for
1827 * write, this shouldn't ever return. But just in case,
1828 * handle via stop-the-world.
1829 */
1830 goto stop_the_world;
1831 }
1832 /* Collect TLB_WATCHPOINT for read. */
1833 tlb_addr |= tlbe->addr_read;
1834 }
1835 } else /* if (prot & PAGE_READ) */ {
1836 tlb_addr = tlbe->addr_read;
1837 if (!tlb_hit(tlb_addr, addr)) {
1838 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1839 tlb_fill(env_cpu(env), addr, size,
1840 MMU_DATA_LOAD, mmu_idx, retaddr);
1841 index = tlb_index(env, mmu_idx, addr);
1842 tlbe = tlb_entry(env, mmu_idx, addr);
1843 }
1844 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1845 }
1846 }
1847
1848 /* Notice an IO access or a needs-MMU-lookup access */
1849 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1850 /* There's really nothing that can be done to
1851 support this apart from stop-the-world. */
1852 goto stop_the_world;
1853 }
1854
1855 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1856 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1857
1858 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1859 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1860 }
1861
1862 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1863 QEMU_BUILD_BUG_ON(PAGE_READ != BP_MEM_READ);
1864 QEMU_BUILD_BUG_ON(PAGE_WRITE != BP_MEM_WRITE);
1865 /* therefore prot == watchpoint bits */
1866 cpu_check_watchpoint(env_cpu(env), addr, size,
1867 full->attrs, prot, retaddr);
1868 }
1869
1870 return hostaddr;
1871
1872 stop_the_world:
1873 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1874 }
1875
1876 /*
1877 * Verify that we have passed the correct MemOp to the correct function.
1878 *
1879 * In the case of the helper_*_mmu functions, we will have done this by
1880 * using the MemOp to look up the helper during code generation.
1881 *
1882 * In the case of the cpu_*_mmu functions, this is up to the caller.
1883 * We could present one function to target code, and dispatch based on
1884 * the MemOp, but so far we have worked hard to avoid an indirect function
1885 * call along the memory path.
1886 */
1887 static void validate_memop(MemOpIdx oi, MemOp expected)
1888 {
1889 #ifdef CONFIG_DEBUG_TCG
1890 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1891 assert(have == expected);
1892 #endif
1893 }
1894
1895 /*
1896 * Load Helpers
1897 *
1898 * We support two different access types. SOFTMMU_CODE_ACCESS is
1899 * specifically for reading instructions from system memory. It is
1900 * called by the translation loop and in some helpers where the code
1901 * is disassembled. It shouldn't be called directly by guest code.
1902 */
1903
1904 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1905 MemOpIdx oi, uintptr_t retaddr);
1906
1907 static inline uint64_t QEMU_ALWAYS_INLINE
1908 load_memop(const void *haddr, MemOp op)
1909 {
1910 switch (op) {
1911 case MO_UB:
1912 return ldub_p(haddr);
1913 case MO_BEUW:
1914 return lduw_be_p(haddr);
1915 case MO_LEUW:
1916 return lduw_le_p(haddr);
1917 case MO_BEUL:
1918 return (uint32_t)ldl_be_p(haddr);
1919 case MO_LEUL:
1920 return (uint32_t)ldl_le_p(haddr);
1921 case MO_BEUQ:
1922 return ldq_be_p(haddr);
1923 case MO_LEUQ:
1924 return ldq_le_p(haddr);
1925 default:
1926 qemu_build_not_reached();
1927 }
1928 }
1929
1930 static inline uint64_t QEMU_ALWAYS_INLINE
1931 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1932 uintptr_t retaddr, MemOp op, bool code_read,
1933 FullLoadHelper *full_load)
1934 {
1935 const size_t tlb_off = code_read ?
1936 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1937 const MMUAccessType access_type =
1938 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1939 const unsigned a_bits = get_alignment_bits(get_memop(oi));
1940 const size_t size = memop_size(op);
1941 uintptr_t mmu_idx = get_mmuidx(oi);
1942 uintptr_t index;
1943 CPUTLBEntry *entry;
1944 target_ulong tlb_addr;
1945 void *haddr;
1946 uint64_t res;
1947
1948 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1949
1950 /* Handle CPU specific unaligned behaviour */
1951 if (addr & ((1 << a_bits) - 1)) {
1952 cpu_unaligned_access(env_cpu(env), addr, access_type,
1953 mmu_idx, retaddr);
1954 }
1955
1956 index = tlb_index(env, mmu_idx, addr);
1957 entry = tlb_entry(env, mmu_idx, addr);
1958 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1959
1960 /* If the TLB entry is for a different page, reload and try again. */
1961 if (!tlb_hit(tlb_addr, addr)) {
1962 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1963 addr & TARGET_PAGE_MASK)) {
1964 tlb_fill(env_cpu(env), addr, size,
1965 access_type, mmu_idx, retaddr);
1966 index = tlb_index(env, mmu_idx, addr);
1967 entry = tlb_entry(env, mmu_idx, addr);
1968 }
1969 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1970 tlb_addr &= ~TLB_INVALID_MASK;
1971 }
1972
1973 /* Handle anything that isn't just a straight memory access. */
1974 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1975 CPUTLBEntryFull *full;
1976 bool need_swap;
1977
1978 /* For anything that is unaligned, recurse through full_load. */
1979 if ((addr & (size - 1)) != 0) {
1980 goto do_unaligned_access;
1981 }
1982
1983 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1984
1985 /* Handle watchpoints. */
1986 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1987 /* On watchpoint hit, this will longjmp out. */
1988 cpu_check_watchpoint(env_cpu(env), addr, size,
1989 full->attrs, BP_MEM_READ, retaddr);
1990 }
1991
1992 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1993
1994 /* Handle I/O access. */
1995 if (likely(tlb_addr & TLB_MMIO)) {
1996 return io_readx(env, full, mmu_idx, addr, retaddr,
1997 access_type, op ^ (need_swap * MO_BSWAP));
1998 }
1999
2000 haddr = (void *)((uintptr_t)addr + entry->addend);
2001
2002 /*
2003 * Keep these two load_memop separate to ensure that the compiler
2004 * is able to fold the entire function to a single instruction.
2005 * There is a build-time assert inside to remind you of this. ;-)
2006 */
2007 if (unlikely(need_swap)) {
2008 return load_memop(haddr, op ^ MO_BSWAP);
2009 }
2010 return load_memop(haddr, op);
2011 }
2012
2013 /* Handle slow unaligned access (it spans two pages or IO). */
2014 if (size > 1
2015 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2016 >= TARGET_PAGE_SIZE)) {
2017 target_ulong addr1, addr2;
2018 uint64_t r1, r2;
2019 unsigned shift;
2020 do_unaligned_access:
2021 addr1 = addr & ~((target_ulong)size - 1);
2022 addr2 = addr1 + size;
2023 r1 = full_load(env, addr1, oi, retaddr);
2024 r2 = full_load(env, addr2, oi, retaddr);
2025 shift = (addr & (size - 1)) * 8;
2026
2027 if (memop_big_endian(op)) {
2028 /* Big-endian combine. */
2029 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
2030 } else {
2031 /* Little-endian combine. */
2032 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
2033 }
2034 return res & MAKE_64BIT_MASK(0, size * 8);
2035 }
2036
2037 haddr = (void *)((uintptr_t)addr + entry->addend);
2038 return load_memop(haddr, op);
2039 }
2040
2041 /*
2042 * For the benefit of TCG generated code, we want to avoid the
2043 * complication of ABI-specific return type promotion and always
2044 * return a value extended to the register size of the host. This is
2045 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2046 * data, and for that we always have uint64_t.
2047 *
2048 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2049 */
2050
2051 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2052 MemOpIdx oi, uintptr_t retaddr)
2053 {
2054 validate_memop(oi, MO_UB);
2055 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2056 }
2057
2058 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2059 MemOpIdx oi, uintptr_t retaddr)
2060 {
2061 return full_ldub_mmu(env, addr, oi, retaddr);
2062 }
2063
2064 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2065 MemOpIdx oi, uintptr_t retaddr)
2066 {
2067 validate_memop(oi, MO_LEUW);
2068 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2069 full_le_lduw_mmu);
2070 }
2071
2072 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2073 MemOpIdx oi, uintptr_t retaddr)
2074 {
2075 return full_le_lduw_mmu(env, addr, oi, retaddr);
2076 }
2077
2078 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2079 MemOpIdx oi, uintptr_t retaddr)
2080 {
2081 validate_memop(oi, MO_BEUW);
2082 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2083 full_be_lduw_mmu);
2084 }
2085
2086 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2087 MemOpIdx oi, uintptr_t retaddr)
2088 {
2089 return full_be_lduw_mmu(env, addr, oi, retaddr);
2090 }
2091
2092 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2093 MemOpIdx oi, uintptr_t retaddr)
2094 {
2095 validate_memop(oi, MO_LEUL);
2096 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2097 full_le_ldul_mmu);
2098 }
2099
2100 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2101 MemOpIdx oi, uintptr_t retaddr)
2102 {
2103 return full_le_ldul_mmu(env, addr, oi, retaddr);
2104 }
2105
2106 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2107 MemOpIdx oi, uintptr_t retaddr)
2108 {
2109 validate_memop(oi, MO_BEUL);
2110 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2111 full_be_ldul_mmu);
2112 }
2113
2114 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2115 MemOpIdx oi, uintptr_t retaddr)
2116 {
2117 return full_be_ldul_mmu(env, addr, oi, retaddr);
2118 }
2119
2120 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2121 MemOpIdx oi, uintptr_t retaddr)
2122 {
2123 validate_memop(oi, MO_LEUQ);
2124 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
2125 helper_le_ldq_mmu);
2126 }
2127
2128 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2129 MemOpIdx oi, uintptr_t retaddr)
2130 {
2131 validate_memop(oi, MO_BEUQ);
2132 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
2133 helper_be_ldq_mmu);
2134 }
2135
2136 /*
2137 * Provide signed versions of the load routines as well. We can of course
2138 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2139 */
2140
2141
2142 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2143 MemOpIdx oi, uintptr_t retaddr)
2144 {
2145 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2146 }
2147
2148 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2149 MemOpIdx oi, uintptr_t retaddr)
2150 {
2151 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2152 }
2153
2154 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2155 MemOpIdx oi, uintptr_t retaddr)
2156 {
2157 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2158 }
2159
2160 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2161 MemOpIdx oi, uintptr_t retaddr)
2162 {
2163 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2164 }
2165
2166 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2167 MemOpIdx oi, uintptr_t retaddr)
2168 {
2169 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2170 }
2171
2172 /*
2173 * Load helpers for cpu_ldst.h.
2174 */
2175
2176 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2177 MemOpIdx oi, uintptr_t retaddr,
2178 FullLoadHelper *full_load)
2179 {
2180 uint64_t ret;
2181
2182 ret = full_load(env, addr, oi, retaddr);
2183 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2184 return ret;
2185 }
2186
2187 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2188 {
2189 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2190 }
2191
2192 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2193 MemOpIdx oi, uintptr_t ra)
2194 {
2195 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2196 }
2197
2198 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2199 MemOpIdx oi, uintptr_t ra)
2200 {
2201 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2202 }
2203
2204 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2205 MemOpIdx oi, uintptr_t ra)
2206 {
2207 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
2208 }
2209
2210 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2211 MemOpIdx oi, uintptr_t ra)
2212 {
2213 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2214 }
2215
2216 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2217 MemOpIdx oi, uintptr_t ra)
2218 {
2219 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2220 }
2221
2222 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2223 MemOpIdx oi, uintptr_t ra)
2224 {
2225 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2226 }
2227
2228 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr,
2229 MemOpIdx oi, uintptr_t ra)
2230 {
2231 MemOp mop = get_memop(oi);
2232 int mmu_idx = get_mmuidx(oi);
2233 MemOpIdx new_oi;
2234 unsigned a_bits;
2235 uint64_t h, l;
2236
2237 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128));
2238 a_bits = get_alignment_bits(mop);
2239
2240 /* Handle CPU specific unaligned behaviour */
2241 if (addr & ((1 << a_bits) - 1)) {
2242 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD,
2243 mmu_idx, ra);
2244 }
2245
2246 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2247 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2248 new_oi = make_memop_idx(mop, mmu_idx);
2249
2250 h = helper_be_ldq_mmu(env, addr, new_oi, ra);
2251 l = helper_be_ldq_mmu(env, addr + 8, new_oi, ra);
2252
2253 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2254 return int128_make128(l, h);
2255 }
2256
2257 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr,
2258 MemOpIdx oi, uintptr_t ra)
2259 {
2260 MemOp mop = get_memop(oi);
2261 int mmu_idx = get_mmuidx(oi);
2262 MemOpIdx new_oi;
2263 unsigned a_bits;
2264 uint64_t h, l;
2265
2266 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128));
2267 a_bits = get_alignment_bits(mop);
2268
2269 /* Handle CPU specific unaligned behaviour */
2270 if (addr & ((1 << a_bits) - 1)) {
2271 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD,
2272 mmu_idx, ra);
2273 }
2274
2275 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2276 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2277 new_oi = make_memop_idx(mop, mmu_idx);
2278
2279 l = helper_le_ldq_mmu(env, addr, new_oi, ra);
2280 h = helper_le_ldq_mmu(env, addr + 8, new_oi, ra);
2281
2282 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2283 return int128_make128(l, h);
2284 }
2285
2286 /*
2287 * Store Helpers
2288 */
2289
2290 static inline void QEMU_ALWAYS_INLINE
2291 store_memop(void *haddr, uint64_t val, MemOp op)
2292 {
2293 switch (op) {
2294 case MO_UB:
2295 stb_p(haddr, val);
2296 break;
2297 case MO_BEUW:
2298 stw_be_p(haddr, val);
2299 break;
2300 case MO_LEUW:
2301 stw_le_p(haddr, val);
2302 break;
2303 case MO_BEUL:
2304 stl_be_p(haddr, val);
2305 break;
2306 case MO_LEUL:
2307 stl_le_p(haddr, val);
2308 break;
2309 case MO_BEUQ:
2310 stq_be_p(haddr, val);
2311 break;
2312 case MO_LEUQ:
2313 stq_le_p(haddr, val);
2314 break;
2315 default:
2316 qemu_build_not_reached();
2317 }
2318 }
2319
2320 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2321 MemOpIdx oi, uintptr_t retaddr);
2322
2323 static void __attribute__((noinline))
2324 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2325 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2326 bool big_endian)
2327 {
2328 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2329 uintptr_t index, index2;
2330 CPUTLBEntry *entry, *entry2;
2331 target_ulong page1, page2, tlb_addr, tlb_addr2;
2332 MemOpIdx oi;
2333 size_t size2;
2334 int i;
2335
2336 /*
2337 * Ensure the second page is in the TLB. Note that the first page
2338 * is already guaranteed to be filled, and that the second page
2339 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV
2340 * handling: the first page could have evicted itself.
2341 */
2342 page1 = addr & TARGET_PAGE_MASK;
2343 page2 = (addr + size) & TARGET_PAGE_MASK;
2344 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2345 index2 = tlb_index(env, mmu_idx, page2);
2346 entry2 = tlb_entry(env, mmu_idx, page2);
2347
2348 tlb_addr2 = tlb_addr_write(entry2);
2349 if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) {
2350 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2351 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2352 mmu_idx, retaddr);
2353 index2 = tlb_index(env, mmu_idx, page2);
2354 entry2 = tlb_entry(env, mmu_idx, page2);
2355 }
2356 tlb_addr2 = tlb_addr_write(entry2);
2357 }
2358
2359 index = tlb_index(env, mmu_idx, addr);
2360 entry = tlb_entry(env, mmu_idx, addr);
2361 tlb_addr = tlb_addr_write(entry);
2362
2363 /*
2364 * Handle watchpoints. Since this may trap, all checks
2365 * must happen before any store.
2366 */
2367 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2368 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2369 env_tlb(env)->d[mmu_idx].fulltlb[index].attrs,
2370 BP_MEM_WRITE, retaddr);
2371 }
2372 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2373 cpu_check_watchpoint(env_cpu(env), page2, size2,
2374 env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs,
2375 BP_MEM_WRITE, retaddr);
2376 }
2377
2378 /*
2379 * XXX: not efficient, but simple.
2380 * This loop must go in the forward direction to avoid issues
2381 * with self-modifying code in Windows 64-bit.
2382 */
2383 oi = make_memop_idx(MO_UB, mmu_idx);
2384 if (big_endian) {
2385 for (i = 0; i < size; ++i) {
2386 /* Big-endian extract. */
2387 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2388 full_stb_mmu(env, addr + i, val8, oi, retaddr);
2389 }
2390 } else {
2391 for (i = 0; i < size; ++i) {
2392 /* Little-endian extract. */
2393 uint8_t val8 = val >> (i * 8);
2394 full_stb_mmu(env, addr + i, val8, oi, retaddr);
2395 }
2396 }
2397 }
2398
2399 static inline void QEMU_ALWAYS_INLINE
2400 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2401 MemOpIdx oi, uintptr_t retaddr, MemOp op)
2402 {
2403 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2404 const unsigned a_bits = get_alignment_bits(get_memop(oi));
2405 const size_t size = memop_size(op);
2406 uintptr_t mmu_idx = get_mmuidx(oi);
2407 uintptr_t index;
2408 CPUTLBEntry *entry;
2409 target_ulong tlb_addr;
2410 void *haddr;
2411
2412 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
2413
2414 /* Handle CPU specific unaligned behaviour */
2415 if (addr & ((1 << a_bits) - 1)) {
2416 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2417 mmu_idx, retaddr);
2418 }
2419
2420 index = tlb_index(env, mmu_idx, addr);
2421 entry = tlb_entry(env, mmu_idx, addr);
2422 tlb_addr = tlb_addr_write(entry);
2423
2424 /* If the TLB entry is for a different page, reload and try again. */
2425 if (!tlb_hit(tlb_addr, addr)) {
2426 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2427 addr & TARGET_PAGE_MASK)) {
2428 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2429 mmu_idx, retaddr);
2430 index = tlb_index(env, mmu_idx, addr);
2431 entry = tlb_entry(env, mmu_idx, addr);
2432 }
2433 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2434 }
2435
2436 /* Handle anything that isn't just a straight memory access. */
2437 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2438 CPUTLBEntryFull *full;
2439 bool need_swap;
2440
2441 /* For anything that is unaligned, recurse through byte stores. */
2442 if ((addr & (size - 1)) != 0) {
2443 goto do_unaligned_access;
2444 }
2445
2446 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2447
2448 /* Handle watchpoints. */
2449 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2450 /* On watchpoint hit, this will longjmp out. */
2451 cpu_check_watchpoint(env_cpu(env), addr, size,
2452 full->attrs, BP_MEM_WRITE, retaddr);
2453 }
2454
2455 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2456
2457 /* Handle I/O access. */
2458 if (tlb_addr & TLB_MMIO) {
2459 io_writex(env, full, mmu_idx, val, addr, retaddr,
2460 op ^ (need_swap * MO_BSWAP));
2461 return;
2462 }
2463
2464 /* Ignore writes to ROM. */
2465 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2466 return;
2467 }
2468
2469 /* Handle clean RAM pages. */
2470 if (tlb_addr & TLB_NOTDIRTY) {
2471 notdirty_write(env_cpu(env), addr, size, full, retaddr);
2472 }
2473
2474 haddr = (void *)((uintptr_t)addr + entry->addend);
2475
2476 /*
2477 * Keep these two store_memop separate to ensure that the compiler
2478 * is able to fold the entire function to a single instruction.
2479 * There is a build-time assert inside to remind you of this. ;-)
2480 */
2481 if (unlikely(need_swap)) {
2482 store_memop(haddr, val, op ^ MO_BSWAP);
2483 } else {
2484 store_memop(haddr, val, op);
2485 }
2486 return;
2487 }
2488
2489 /* Handle slow unaligned access (it spans two pages or IO). */
2490 if (size > 1
2491 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2492 >= TARGET_PAGE_SIZE)) {
2493 do_unaligned_access:
2494 store_helper_unaligned(env, addr, val, retaddr, size,
2495 mmu_idx, memop_big_endian(op));
2496 return;
2497 }
2498
2499 haddr = (void *)((uintptr_t)addr + entry->addend);
2500 store_memop(haddr, val, op);
2501 }
2502
2503 static void __attribute__((noinline))
2504 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2505 MemOpIdx oi, uintptr_t retaddr)
2506 {
2507 validate_memop(oi, MO_UB);
2508 store_helper(env, addr, val, oi, retaddr, MO_UB);
2509 }
2510
2511 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2512 MemOpIdx oi, uintptr_t retaddr)
2513 {
2514 full_stb_mmu(env, addr, val, oi, retaddr);
2515 }
2516
2517 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2518 MemOpIdx oi, uintptr_t retaddr)
2519 {
2520 validate_memop(oi, MO_LEUW);
2521 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2522 }
2523
2524 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2525 MemOpIdx oi, uintptr_t retaddr)
2526 {
2527 full_le_stw_mmu(env, addr, val, oi, retaddr);
2528 }
2529
2530 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2531 MemOpIdx oi, uintptr_t retaddr)
2532 {
2533 validate_memop(oi, MO_BEUW);
2534 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2535 }
2536
2537 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2538 MemOpIdx oi, uintptr_t retaddr)
2539 {
2540 full_be_stw_mmu(env, addr, val, oi, retaddr);
2541 }
2542
2543 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2544 MemOpIdx oi, uintptr_t retaddr)
2545 {
2546 validate_memop(oi, MO_LEUL);
2547 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2548 }
2549
2550 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2551 MemOpIdx oi, uintptr_t retaddr)
2552 {
2553 full_le_stl_mmu(env, addr, val, oi, retaddr);
2554 }
2555
2556 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2557 MemOpIdx oi, uintptr_t retaddr)
2558 {
2559 validate_memop(oi, MO_BEUL);
2560 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2561 }
2562
2563 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2564 MemOpIdx oi, uintptr_t retaddr)
2565 {
2566 full_be_stl_mmu(env, addr, val, oi, retaddr);
2567 }
2568
2569 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2570 MemOpIdx oi, uintptr_t retaddr)
2571 {
2572 validate_memop(oi, MO_LEUQ);
2573 store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
2574 }
2575
2576 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2577 MemOpIdx oi, uintptr_t retaddr)
2578 {
2579 validate_memop(oi, MO_BEUQ);
2580 store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
2581 }
2582
2583 /*
2584 * Store Helpers for cpu_ldst.h
2585 */
2586
2587 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2588 uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2589
2590 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2591 uint64_t val, MemOpIdx oi, uintptr_t ra,
2592 FullStoreHelper *full_store)
2593 {
2594 full_store(env, addr, val, oi, ra);
2595 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2596 }
2597
2598 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2599 MemOpIdx oi, uintptr_t retaddr)
2600 {
2601 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2602 }
2603
2604 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2605 MemOpIdx oi, uintptr_t retaddr)
2606 {
2607 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2608 }
2609
2610 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2611 MemOpIdx oi, uintptr_t retaddr)
2612 {
2613 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2614 }
2615
2616 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2617 MemOpIdx oi, uintptr_t retaddr)
2618 {
2619 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2620 }
2621
2622 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2623 MemOpIdx oi, uintptr_t retaddr)
2624 {
2625 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2626 }
2627
2628 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2629 MemOpIdx oi, uintptr_t retaddr)
2630 {
2631 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2632 }
2633
2634 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2635 MemOpIdx oi, uintptr_t retaddr)
2636 {
2637 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2638 }
2639
2640 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
2641 MemOpIdx oi, uintptr_t ra)
2642 {
2643 MemOp mop = get_memop(oi);
2644 int mmu_idx = get_mmuidx(oi);
2645 MemOpIdx new_oi;
2646 unsigned a_bits;
2647
2648 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128));
2649 a_bits = get_alignment_bits(mop);
2650
2651 /* Handle CPU specific unaligned behaviour */
2652 if (addr & ((1 << a_bits) - 1)) {
2653 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2654 mmu_idx, ra);
2655 }
2656
2657 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2658 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2659 new_oi = make_memop_idx(mop, mmu_idx);
2660
2661 helper_be_stq_mmu(env, addr, int128_gethi(val), new_oi, ra);
2662 helper_be_stq_mmu(env, addr + 8, int128_getlo(val), new_oi, ra);
2663
2664 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2665 }
2666
2667 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
2668 MemOpIdx oi, uintptr_t ra)
2669 {
2670 MemOp mop = get_memop(oi);
2671 int mmu_idx = get_mmuidx(oi);
2672 MemOpIdx new_oi;
2673 unsigned a_bits;
2674
2675 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128));
2676 a_bits = get_alignment_bits(mop);
2677
2678 /* Handle CPU specific unaligned behaviour */
2679 if (addr & ((1 << a_bits) - 1)) {
2680 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2681 mmu_idx, ra);
2682 }
2683
2684 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2685 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2686 new_oi = make_memop_idx(mop, mmu_idx);
2687
2688 helper_le_stq_mmu(env, addr, int128_getlo(val), new_oi, ra);
2689 helper_le_stq_mmu(env, addr + 8, int128_gethi(val), new_oi, ra);
2690
2691 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2692 }
2693
2694 #include "ldst_common.c.inc"
2695
2696 /*
2697 * First set of functions passes in OI and RETADDR.
2698 * This makes them callable from other helpers.
2699 */
2700
2701 #define ATOMIC_NAME(X) \
2702 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2703
2704 #define ATOMIC_MMU_CLEANUP
2705
2706 #include "atomic_common.c.inc"
2707
2708 #define DATA_SIZE 1
2709 #include "atomic_template.h"
2710
2711 #define DATA_SIZE 2
2712 #include "atomic_template.h"
2713
2714 #define DATA_SIZE 4
2715 #include "atomic_template.h"
2716
2717 #ifdef CONFIG_ATOMIC64
2718 #define DATA_SIZE 8
2719 #include "atomic_template.h"
2720 #endif
2721
2722 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2723 #define DATA_SIZE 16
2724 #include "atomic_template.h"
2725 #endif
2726
2727 /* Code access functions. */
2728
2729 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2730 MemOpIdx oi, uintptr_t retaddr)
2731 {
2732 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2733 }
2734
2735 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2736 {
2737 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2738 return full_ldub_code(env, addr, oi, 0);
2739 }
2740
2741 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2742 MemOpIdx oi, uintptr_t retaddr)
2743 {
2744 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2745 }
2746
2747 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2748 {
2749 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2750 return full_lduw_code(env, addr, oi, 0);
2751 }
2752
2753 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2754 MemOpIdx oi, uintptr_t retaddr)
2755 {
2756 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2757 }
2758
2759 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2760 {
2761 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2762 return full_ldl_code(env, addr, oi, 0);
2763 }
2764
2765 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2766 MemOpIdx oi, uintptr_t retaddr)
2767 {
2768 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
2769 }
2770
2771 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2772 {
2773 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2774 return full_ldq_code(env, addr, oi, 0);
2775 }
2776
2777 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2778 MemOpIdx oi, uintptr_t retaddr)
2779 {
2780 return full_ldub_code(env, addr, oi, retaddr);
2781 }
2782
2783 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2784 MemOpIdx oi, uintptr_t retaddr)
2785 {
2786 MemOp mop = get_memop(oi);
2787 int idx = get_mmuidx(oi);
2788 uint16_t ret;
2789
2790 ret = full_lduw_code(env, addr, make_memop_idx(MO_TEUW, idx), retaddr);
2791 if ((mop & MO_BSWAP) != MO_TE) {
2792 ret = bswap16(ret);
2793 }
2794 return ret;
2795 }
2796
2797 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
2798 MemOpIdx oi, uintptr_t retaddr)
2799 {
2800 MemOp mop = get_memop(oi);
2801 int idx = get_mmuidx(oi);
2802 uint32_t ret;
2803
2804 ret = full_ldl_code(env, addr, make_memop_idx(MO_TEUL, idx), retaddr);
2805 if ((mop & MO_BSWAP) != MO_TE) {
2806 ret = bswap32(ret);
2807 }
2808 return ret;
2809 }
2810
2811 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
2812 MemOpIdx oi, uintptr_t retaddr)
2813 {
2814 MemOp mop = get_memop(oi);
2815 int idx = get_mmuidx(oi);
2816 uint64_t ret;
2817
2818 ret = full_ldq_code(env, addr, make_memop_idx(MO_TEUQ, idx), retaddr);
2819 if ((mop & MO_BSWAP) != MO_TE) {
2820 ret = bswap64(ret);
2821 }
2822 return ret;
2823 }