]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
accel: Replace target_ulong with vaddr in probe_*()
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96 size_t max_entries)
97 {
98 desc->window_begin_ns = ns;
99 desc->window_max_entries = max_entries;
100 }
101
102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
103 {
104 CPUJumpCache *jc = cpu->tb_jmp_cache;
105 int i, i0;
106
107 if (unlikely(!jc)) {
108 return;
109 }
110
111 i0 = tb_jmp_cache_hash_page(page_addr);
112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113 qatomic_set(&jc->array[i0 + i].tb, NULL);
114 }
115 }
116
117 /**
118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119 * @desc: The CPUTLBDesc portion of the TLB
120 * @fast: The CPUTLBDescFast portion of the same TLB
121 *
122 * Called with tlb_lock_held.
123 *
124 * We have two main constraints when resizing a TLB: (1) we only resize it
125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126 * the array or unnecessarily flushing it), which means we do not control how
127 * frequently the resizing can occur; (2) we don't have access to the guest's
128 * future scheduling decisions, and therefore have to decide the magnitude of
129 * the resize based on past observations.
130 *
131 * In general, a memory-hungry process can benefit greatly from an appropriately
132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133 * we just have to make the TLB as large as possible; while an oversized TLB
134 * results in minimal TLB miss rates, it also takes longer to be flushed
135 * (flushes can be _very_ frequent), and the reduced locality can also hurt
136 * performance.
137 *
138 * To achieve near-optimal performance for all kinds of workloads, we:
139 *
140 * 1. Aggressively increase the size of the TLB when the use rate of the
141 * TLB being flushed is high, since it is likely that in the near future this
142 * memory-hungry process will execute again, and its memory hungriness will
143 * probably be similar.
144 *
145 * 2. Slowly reduce the size of the TLB as the use rate declines over a
146 * reasonably large time window. The rationale is that if in such a time window
147 * we have not observed a high TLB use rate, it is likely that we won't observe
148 * it in the near future. In that case, once a time window expires we downsize
149 * the TLB to match the maximum use rate observed in the window.
150 *
151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152 * since in that range performance is likely near-optimal. Recall that the TLB
153 * is direct mapped, so we want the use rate to be low (or at least not too
154 * high), since otherwise we are likely to have a significant amount of
155 * conflict misses.
156 */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158 int64_t now)
159 {
160 size_t old_size = tlb_n_entries(fast);
161 size_t rate;
162 size_t new_size = old_size;
163 int64_t window_len_ms = 100;
164 int64_t window_len_ns = window_len_ms * 1000 * 1000;
165 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166
167 if (desc->n_used_entries > desc->window_max_entries) {
168 desc->window_max_entries = desc->n_used_entries;
169 }
170 rate = desc->window_max_entries * 100 / old_size;
171
172 if (rate > 70) {
173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174 } else if (rate < 30 && window_expired) {
175 size_t ceil = pow2ceil(desc->window_max_entries);
176 size_t expected_rate = desc->window_max_entries * 100 / ceil;
177
178 /*
179 * Avoid undersizing when the max number of entries seen is just below
180 * a pow2. For instance, if max_entries == 1025, the expected use rate
181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183 * later. Thus, make sure that the expected use rate remains below 70%.
184 * (and since we double the size, that means the lowest rate we'd
185 * expect to get is 35%, which is still in the 30-70% range where
186 * we consider that the size is appropriate.)
187 */
188 if (expected_rate > 70) {
189 ceil *= 2;
190 }
191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192 }
193
194 if (new_size == old_size) {
195 if (window_expired) {
196 tlb_window_reset(desc, now, desc->n_used_entries);
197 }
198 return;
199 }
200
201 g_free(fast->table);
202 g_free(desc->fulltlb);
203
204 tlb_window_reset(desc, now, 0);
205 /* desc->n_used_entries is cleared by the caller */
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 fast->table = g_try_new(CPUTLBEntry, new_size);
208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209
210 /*
211 * If the allocations fail, try smaller sizes. We just freed some
212 * memory, so going back to half of new_size has a good chance of working.
213 * Increased memory pressure elsewhere in the system might cause the
214 * allocations to fail though, so we progressively reduce the allocation
215 * size, aborting if we cannot even allocate the smallest TLB we support.
216 */
217 while (fast->table == NULL || desc->fulltlb == NULL) {
218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219 error_report("%s: %s", __func__, strerror(errno));
220 abort();
221 }
222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224
225 g_free(fast->table);
226 g_free(desc->fulltlb);
227 fast->table = g_try_new(CPUTLBEntry, new_size);
228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229 }
230 }
231
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234 desc->n_used_entries = 0;
235 desc->large_page_addr = -1;
236 desc->large_page_mask = -1;
237 desc->vindex = 0;
238 memset(fast->table, -1, sizeof_tlb(fast));
239 memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243 int64_t now)
244 {
245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247
248 tlb_mmu_resize_locked(desc, fast, now);
249 tlb_mmu_flush_locked(desc, fast);
250 }
251
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255
256 tlb_window_reset(desc, now, 0);
257 desc->n_used_entries = 0;
258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259 fast->table = g_new(CPUTLBEntry, n_entries);
260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261 tlb_mmu_flush_locked(desc, fast);
262 }
263
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266 env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271 env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273
274 void tlb_init(CPUState *cpu)
275 {
276 CPUArchState *env = cpu->env_ptr;
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&env_tlb(env)->c.lock);
281
282 /* All tlbs are initialized flushed. */
283 env_tlb(env)->c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294
295 qemu_spin_destroy(&env_tlb(env)->c.lock);
296 for (i = 0; i < NB_MMU_MODES; i++) {
297 CPUTLBDesc *desc = &env_tlb(env)->d[i];
298 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299
300 g_free(fast->table);
301 g_free(desc->fulltlb);
302 }
303 }
304
305 /* flush_all_helper: run fn across all cpus
306 *
307 * If the wait flag is set then the src cpu's helper will be queued as
308 * "safe" work and the loop exited creating a synchronisation point
309 * where all queued work will be finished before execution starts
310 * again.
311 */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313 run_on_cpu_data d)
314 {
315 CPUState *cpu;
316
317 CPU_FOREACH(cpu) {
318 if (cpu != src) {
319 async_run_on_cpu(cpu, fn, d);
320 }
321 }
322 }
323
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326 CPUState *cpu;
327 size_t full = 0, part = 0, elide = 0;
328
329 CPU_FOREACH(cpu) {
330 CPUArchState *env = cpu->env_ptr;
331
332 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 }
336 *pfull = full;
337 *ppart = part;
338 *pelide = elide;
339 }
340
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343 CPUArchState *env = cpu->env_ptr;
344 uint16_t asked = data.host_int;
345 uint16_t all_dirty, work, to_clean;
346 int64_t now = get_clock_realtime();
347
348 assert_cpu_is_self(cpu);
349
350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351
352 qemu_spin_lock(&env_tlb(env)->c.lock);
353
354 all_dirty = env_tlb(env)->c.dirty;
355 to_clean = asked & all_dirty;
356 all_dirty &= ~to_clean;
357 env_tlb(env)->c.dirty = all_dirty;
358
359 for (work = to_clean; work != 0; work &= work - 1) {
360 int mmu_idx = ctz32(work);
361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362 }
363
364 qemu_spin_unlock(&env_tlb(env)->c.lock);
365
366 tcg_flush_jmp_cache(cpu);
367
368 if (to_clean == ALL_MMUIDX_BITS) {
369 qatomic_set(&env_tlb(env)->c.full_flush_count,
370 env_tlb(env)->c.full_flush_count + 1);
371 } else {
372 qatomic_set(&env_tlb(env)->c.part_flush_count,
373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374 if (to_clean != asked) {
375 qatomic_set(&env_tlb(env)->c.elide_flush_count,
376 env_tlb(env)->c.elide_flush_count +
377 ctpop16(asked & ~to_clean));
378 }
379 }
380 }
381
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385
386 if (cpu->created && !qemu_cpu_is_self(cpu)) {
387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388 RUN_ON_CPU_HOST_INT(idxmap));
389 } else {
390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391 }
392 }
393
394 void tlb_flush(CPUState *cpu)
395 {
396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402
403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404
405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417
418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419
420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430 vaddr page, vaddr mask)
431 {
432 page &= mask;
433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434
435 return (page == (tlb_entry->addr_read & mask) ||
436 page == (tlb_addr_write(tlb_entry) & mask) ||
437 page == (tlb_entry->addr_code & mask));
438 }
439
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
441 {
442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444
445 /**
446 * tlb_entry_is_empty - return true if the entry is not in use
447 * @te: pointer to CPUTLBEntry
448 */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456 vaddr page,
457 vaddr mask)
458 {
459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460 memset(tlb_entry, -1, sizeof(*tlb_entry));
461 return true;
462 }
463 return false;
464 }
465
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
467 {
468 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
469 }
470
471 /* Called with tlb_c.lock held */
472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
473 vaddr page,
474 vaddr mask)
475 {
476 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
477 int k;
478
479 assert_cpu_is_self(env_cpu(env));
480 for (k = 0; k < CPU_VTLB_SIZE; k++) {
481 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
482 tlb_n_used_entries_dec(env, mmu_idx);
483 }
484 }
485 }
486
487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
488 vaddr page)
489 {
490 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
491 }
492
493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
494 {
495 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
496 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
497
498 /* Check if we need to flush due to large pages. */
499 if ((page & lp_mask) == lp_addr) {
500 tlb_debug("forcing full flush midx %d (%"
501 VADDR_PRIx "/%" VADDR_PRIx ")\n",
502 midx, lp_addr, lp_mask);
503 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
504 } else {
505 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
506 tlb_n_used_entries_dec(env, midx);
507 }
508 tlb_flush_vtlb_page_locked(env, midx, page);
509 }
510 }
511
512 /**
513 * tlb_flush_page_by_mmuidx_async_0:
514 * @cpu: cpu on which to flush
515 * @addr: page of virtual address to flush
516 * @idxmap: set of mmu_idx to flush
517 *
518 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
519 * at @addr from the tlbs indicated by @idxmap from @cpu.
520 */
521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
522 vaddr addr,
523 uint16_t idxmap)
524 {
525 CPUArchState *env = cpu->env_ptr;
526 int mmu_idx;
527
528 assert_cpu_is_self(cpu);
529
530 tlb_debug("page addr: %" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
531
532 qemu_spin_lock(&env_tlb(env)->c.lock);
533 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
534 if ((idxmap >> mmu_idx) & 1) {
535 tlb_flush_page_locked(env, mmu_idx, addr);
536 }
537 }
538 qemu_spin_unlock(&env_tlb(env)->c.lock);
539
540 /*
541 * Discard jump cache entries for any tb which might potentially
542 * overlap the flushed page, which includes the previous.
543 */
544 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
545 tb_jmp_cache_clear_page(cpu, addr);
546 }
547
548 /**
549 * tlb_flush_page_by_mmuidx_async_1:
550 * @cpu: cpu on which to flush
551 * @data: encoded addr + idxmap
552 *
553 * Helper for tlb_flush_page_by_mmuidx and friends, called through
554 * async_run_on_cpu. The idxmap parameter is encoded in the page
555 * offset of the target_ptr field. This limits the set of mmu_idx
556 * that can be passed via this method.
557 */
558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
559 run_on_cpu_data data)
560 {
561 vaddr addr_and_idxmap = data.target_ptr;
562 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
563 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
564
565 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
566 }
567
568 typedef struct {
569 vaddr addr;
570 uint16_t idxmap;
571 } TLBFlushPageByMMUIdxData;
572
573 /**
574 * tlb_flush_page_by_mmuidx_async_2:
575 * @cpu: cpu on which to flush
576 * @data: allocated addr + idxmap
577 *
578 * Helper for tlb_flush_page_by_mmuidx and friends, called through
579 * async_run_on_cpu. The addr+idxmap parameters are stored in a
580 * TLBFlushPageByMMUIdxData structure that has been allocated
581 * specifically for this helper. Free the structure when done.
582 */
583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
584 run_on_cpu_data data)
585 {
586 TLBFlushPageByMMUIdxData *d = data.host_ptr;
587
588 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
589 g_free(d);
590 }
591
592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
593 {
594 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
595
596 /* This should already be page aligned */
597 addr &= TARGET_PAGE_MASK;
598
599 if (qemu_cpu_is_self(cpu)) {
600 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
601 } else if (idxmap < TARGET_PAGE_SIZE) {
602 /*
603 * Most targets have only a few mmu_idx. In the case where
604 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
605 * allocating memory for this operation.
606 */
607 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
608 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
609 } else {
610 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
611
612 /* Otherwise allocate a structure, freed by the worker. */
613 d->addr = addr;
614 d->idxmap = idxmap;
615 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
616 RUN_ON_CPU_HOST_PTR(d));
617 }
618 }
619
620 void tlb_flush_page(CPUState *cpu, vaddr addr)
621 {
622 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
623 }
624
625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
626 uint16_t idxmap)
627 {
628 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
629
630 /* This should already be page aligned */
631 addr &= TARGET_PAGE_MASK;
632
633 /*
634 * Allocate memory to hold addr+idxmap only when needed.
635 * See tlb_flush_page_by_mmuidx for details.
636 */
637 if (idxmap < TARGET_PAGE_SIZE) {
638 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
639 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
640 } else {
641 CPUState *dst_cpu;
642
643 /* Allocate a separate data block for each destination cpu. */
644 CPU_FOREACH(dst_cpu) {
645 if (dst_cpu != src_cpu) {
646 TLBFlushPageByMMUIdxData *d
647 = g_new(TLBFlushPageByMMUIdxData, 1);
648
649 d->addr = addr;
650 d->idxmap = idxmap;
651 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652 RUN_ON_CPU_HOST_PTR(d));
653 }
654 }
655 }
656
657 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
658 }
659
660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
661 {
662 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
663 }
664
665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
666 vaddr addr,
667 uint16_t idxmap)
668 {
669 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
670
671 /* This should already be page aligned */
672 addr &= TARGET_PAGE_MASK;
673
674 /*
675 * Allocate memory to hold addr+idxmap only when needed.
676 * See tlb_flush_page_by_mmuidx for details.
677 */
678 if (idxmap < TARGET_PAGE_SIZE) {
679 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683 } else {
684 CPUState *dst_cpu;
685 TLBFlushPageByMMUIdxData *d;
686
687 /* Allocate a separate data block for each destination cpu. */
688 CPU_FOREACH(dst_cpu) {
689 if (dst_cpu != src_cpu) {
690 d = g_new(TLBFlushPageByMMUIdxData, 1);
691 d->addr = addr;
692 d->idxmap = idxmap;
693 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
694 RUN_ON_CPU_HOST_PTR(d));
695 }
696 }
697
698 d = g_new(TLBFlushPageByMMUIdxData, 1);
699 d->addr = addr;
700 d->idxmap = idxmap;
701 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
702 RUN_ON_CPU_HOST_PTR(d));
703 }
704 }
705
706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
707 {
708 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
709 }
710
711 static void tlb_flush_range_locked(CPUArchState *env, int midx,
712 vaddr addr, vaddr len,
713 unsigned bits)
714 {
715 CPUTLBDesc *d = &env_tlb(env)->d[midx];
716 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
717 vaddr mask = MAKE_64BIT_MASK(0, bits);
718
719 /*
720 * If @bits is smaller than the tlb size, there may be multiple entries
721 * within the TLB; otherwise all addresses that match under @mask hit
722 * the same TLB entry.
723 * TODO: Perhaps allow bits to be a few bits less than the size.
724 * For now, just flush the entire TLB.
725 *
726 * If @len is larger than the tlb size, then it will take longer to
727 * test all of the entries in the TLB than it will to flush it all.
728 */
729 if (mask < f->mask || len > f->mask) {
730 tlb_debug("forcing full flush midx %d ("
731 "%" VADDR_PRIx "/%" VADDR_PRIx "+%" VADDR_PRIx ")\n",
732 midx, addr, mask, len);
733 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
734 return;
735 }
736
737 /*
738 * Check if we need to flush due to large pages.
739 * Because large_page_mask contains all 1's from the msb,
740 * we only need to test the end of the range.
741 */
742 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
743 tlb_debug("forcing full flush midx %d ("
744 "%" VADDR_PRIx "/%" VADDR_PRIx ")\n",
745 midx, d->large_page_addr, d->large_page_mask);
746 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
747 return;
748 }
749
750 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
751 vaddr page = addr + i;
752 CPUTLBEntry *entry = tlb_entry(env, midx, page);
753
754 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
755 tlb_n_used_entries_dec(env, midx);
756 }
757 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
758 }
759 }
760
761 typedef struct {
762 vaddr addr;
763 vaddr len;
764 uint16_t idxmap;
765 uint16_t bits;
766 } TLBFlushRangeData;
767
768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
769 TLBFlushRangeData d)
770 {
771 CPUArchState *env = cpu->env_ptr;
772 int mmu_idx;
773
774 assert_cpu_is_self(cpu);
775
776 tlb_debug("range: %" VADDR_PRIx "/%u+%" VADDR_PRIx " mmu_map:0x%x\n",
777 d.addr, d.bits, d.len, d.idxmap);
778
779 qemu_spin_lock(&env_tlb(env)->c.lock);
780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781 if ((d.idxmap >> mmu_idx) & 1) {
782 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
783 }
784 }
785 qemu_spin_unlock(&env_tlb(env)->c.lock);
786
787 /*
788 * If the length is larger than the jump cache size, then it will take
789 * longer to clear each entry individually than it will to clear it all.
790 */
791 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
792 tcg_flush_jmp_cache(cpu);
793 return;
794 }
795
796 /*
797 * Discard jump cache entries for any tb which might potentially
798 * overlap the flushed pages, which includes the previous.
799 */
800 d.addr -= TARGET_PAGE_SIZE;
801 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
802 tb_jmp_cache_clear_page(cpu, d.addr);
803 d.addr += TARGET_PAGE_SIZE;
804 }
805 }
806
807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
808 run_on_cpu_data data)
809 {
810 TLBFlushRangeData *d = data.host_ptr;
811 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
812 g_free(d);
813 }
814
815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
816 vaddr len, uint16_t idxmap,
817 unsigned bits)
818 {
819 TLBFlushRangeData d;
820
821 /*
822 * If all bits are significant, and len is small,
823 * this devolves to tlb_flush_page.
824 */
825 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
826 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
827 return;
828 }
829 /* If no page bits are significant, this devolves to tlb_flush. */
830 if (bits < TARGET_PAGE_BITS) {
831 tlb_flush_by_mmuidx(cpu, idxmap);
832 return;
833 }
834
835 /* This should already be page aligned */
836 d.addr = addr & TARGET_PAGE_MASK;
837 d.len = len;
838 d.idxmap = idxmap;
839 d.bits = bits;
840
841 if (qemu_cpu_is_self(cpu)) {
842 tlb_flush_range_by_mmuidx_async_0(cpu, d);
843 } else {
844 /* Otherwise allocate a structure, freed by the worker. */
845 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
846 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
847 RUN_ON_CPU_HOST_PTR(p));
848 }
849 }
850
851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
852 uint16_t idxmap, unsigned bits)
853 {
854 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
855 }
856
857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
858 vaddr addr, vaddr len,
859 uint16_t idxmap, unsigned bits)
860 {
861 TLBFlushRangeData d;
862 CPUState *dst_cpu;
863
864 /*
865 * If all bits are significant, and len is small,
866 * this devolves to tlb_flush_page.
867 */
868 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
869 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
870 return;
871 }
872 /* If no page bits are significant, this devolves to tlb_flush. */
873 if (bits < TARGET_PAGE_BITS) {
874 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
875 return;
876 }
877
878 /* This should already be page aligned */
879 d.addr = addr & TARGET_PAGE_MASK;
880 d.len = len;
881 d.idxmap = idxmap;
882 d.bits = bits;
883
884 /* Allocate a separate data block for each destination cpu. */
885 CPU_FOREACH(dst_cpu) {
886 if (dst_cpu != src_cpu) {
887 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
888 async_run_on_cpu(dst_cpu,
889 tlb_flush_range_by_mmuidx_async_1,
890 RUN_ON_CPU_HOST_PTR(p));
891 }
892 }
893
894 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
895 }
896
897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
898 vaddr addr, uint16_t idxmap,
899 unsigned bits)
900 {
901 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
902 idxmap, bits);
903 }
904
905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
906 vaddr addr,
907 vaddr len,
908 uint16_t idxmap,
909 unsigned bits)
910 {
911 TLBFlushRangeData d, *p;
912 CPUState *dst_cpu;
913
914 /*
915 * If all bits are significant, and len is small,
916 * this devolves to tlb_flush_page.
917 */
918 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
919 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
920 return;
921 }
922 /* If no page bits are significant, this devolves to tlb_flush. */
923 if (bits < TARGET_PAGE_BITS) {
924 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
925 return;
926 }
927
928 /* This should already be page aligned */
929 d.addr = addr & TARGET_PAGE_MASK;
930 d.len = len;
931 d.idxmap = idxmap;
932 d.bits = bits;
933
934 /* Allocate a separate data block for each destination cpu. */
935 CPU_FOREACH(dst_cpu) {
936 if (dst_cpu != src_cpu) {
937 p = g_memdup(&d, sizeof(d));
938 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
939 RUN_ON_CPU_HOST_PTR(p));
940 }
941 }
942
943 p = g_memdup(&d, sizeof(d));
944 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
945 RUN_ON_CPU_HOST_PTR(p));
946 }
947
948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
949 vaddr addr,
950 uint16_t idxmap,
951 unsigned bits)
952 {
953 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
954 idxmap, bits);
955 }
956
957 /* update the TLBs so that writes to code in the virtual page 'addr'
958 can be detected */
959 void tlb_protect_code(ram_addr_t ram_addr)
960 {
961 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
962 TARGET_PAGE_SIZE,
963 DIRTY_MEMORY_CODE);
964 }
965
966 /* update the TLB so that writes in physical page 'phys_addr' are no longer
967 tested for self modifying code */
968 void tlb_unprotect_code(ram_addr_t ram_addr)
969 {
970 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
971 }
972
973
974 /*
975 * Dirty write flag handling
976 *
977 * When the TCG code writes to a location it looks up the address in
978 * the TLB and uses that data to compute the final address. If any of
979 * the lower bits of the address are set then the slow path is forced.
980 * There are a number of reasons to do this but for normal RAM the
981 * most usual is detecting writes to code regions which may invalidate
982 * generated code.
983 *
984 * Other vCPUs might be reading their TLBs during guest execution, so we update
985 * te->addr_write with qatomic_set. We don't need to worry about this for
986 * oversized guests as MTTCG is disabled for them.
987 *
988 * Called with tlb_c.lock held.
989 */
990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
991 uintptr_t start, uintptr_t length)
992 {
993 uintptr_t addr = tlb_entry->addr_write;
994
995 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
996 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
997 addr &= TARGET_PAGE_MASK;
998 addr += tlb_entry->addend;
999 if ((addr - start) < length) {
1000 #if TARGET_LONG_BITS == 32
1001 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1002 ptr_write += HOST_BIG_ENDIAN;
1003 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1004 #elif TCG_OVERSIZED_GUEST
1005 tlb_entry->addr_write |= TLB_NOTDIRTY;
1006 #else
1007 qatomic_set(&tlb_entry->addr_write,
1008 tlb_entry->addr_write | TLB_NOTDIRTY);
1009 #endif
1010 }
1011 }
1012 }
1013
1014 /*
1015 * Called with tlb_c.lock held.
1016 * Called only from the vCPU context, i.e. the TLB's owner thread.
1017 */
1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1019 {
1020 *d = *s;
1021 }
1022
1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1024 * the target vCPU).
1025 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1026 * thing actually updated is the target TLB entry ->addr_write flags.
1027 */
1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1029 {
1030 CPUArchState *env;
1031
1032 int mmu_idx;
1033
1034 env = cpu->env_ptr;
1035 qemu_spin_lock(&env_tlb(env)->c.lock);
1036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1037 unsigned int i;
1038 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1039
1040 for (i = 0; i < n; i++) {
1041 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1042 start1, length);
1043 }
1044
1045 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1046 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1047 start1, length);
1048 }
1049 }
1050 qemu_spin_unlock(&env_tlb(env)->c.lock);
1051 }
1052
1053 /* Called with tlb_c.lock held */
1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1055 vaddr addr)
1056 {
1057 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1058 tlb_entry->addr_write = addr;
1059 }
1060 }
1061
1062 /* update the TLB corresponding to virtual page vaddr
1063 so that it is no longer dirty */
1064 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1065 {
1066 CPUArchState *env = cpu->env_ptr;
1067 int mmu_idx;
1068
1069 assert_cpu_is_self(cpu);
1070
1071 addr &= TARGET_PAGE_MASK;
1072 qemu_spin_lock(&env_tlb(env)->c.lock);
1073 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1074 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1075 }
1076
1077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1078 int k;
1079 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1080 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1081 }
1082 }
1083 qemu_spin_unlock(&env_tlb(env)->c.lock);
1084 }
1085
1086 /* Our TLB does not support large pages, so remember the area covered by
1087 large pages and trigger a full TLB flush if these are invalidated. */
1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1089 vaddr addr, uint64_t size)
1090 {
1091 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1092 vaddr lp_mask = ~(size - 1);
1093
1094 if (lp_addr == (vaddr)-1) {
1095 /* No previous large page. */
1096 lp_addr = addr;
1097 } else {
1098 /* Extend the existing region to include the new page.
1099 This is a compromise between unnecessary flushes and
1100 the cost of maintaining a full variable size TLB. */
1101 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1102 while (((lp_addr ^ addr) & lp_mask) != 0) {
1103 lp_mask <<= 1;
1104 }
1105 }
1106 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1107 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1108 }
1109
1110 /*
1111 * Add a new TLB entry. At most one entry for a given virtual address
1112 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1113 * supplied size is only used by tlb_flush_page.
1114 *
1115 * Called from TCG-generated code, which is under an RCU read-side
1116 * critical section.
1117 */
1118 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1119 vaddr addr, CPUTLBEntryFull *full)
1120 {
1121 CPUArchState *env = cpu->env_ptr;
1122 CPUTLB *tlb = env_tlb(env);
1123 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1124 MemoryRegionSection *section;
1125 unsigned int index;
1126 vaddr address;
1127 vaddr write_address;
1128 uintptr_t addend;
1129 CPUTLBEntry *te, tn;
1130 hwaddr iotlb, xlat, sz, paddr_page;
1131 vaddr addr_page;
1132 int asidx, wp_flags, prot;
1133 bool is_ram, is_romd;
1134
1135 assert_cpu_is_self(cpu);
1136
1137 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1138 sz = TARGET_PAGE_SIZE;
1139 } else {
1140 sz = (hwaddr)1 << full->lg_page_size;
1141 tlb_add_large_page(env, mmu_idx, addr, sz);
1142 }
1143 addr_page = addr & TARGET_PAGE_MASK;
1144 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1145
1146 prot = full->prot;
1147 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1148 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1149 &xlat, &sz, full->attrs, &prot);
1150 assert(sz >= TARGET_PAGE_SIZE);
1151
1152 tlb_debug("vaddr=%" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1153 " prot=%x idx=%d\n",
1154 addr, full->phys_addr, prot, mmu_idx);
1155
1156 address = addr_page;
1157 if (full->lg_page_size < TARGET_PAGE_BITS) {
1158 /* Repeat the MMU check and TLB fill on every access. */
1159 address |= TLB_INVALID_MASK;
1160 }
1161 if (full->attrs.byte_swap) {
1162 address |= TLB_BSWAP;
1163 }
1164
1165 is_ram = memory_region_is_ram(section->mr);
1166 is_romd = memory_region_is_romd(section->mr);
1167
1168 if (is_ram || is_romd) {
1169 /* RAM and ROMD both have associated host memory. */
1170 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1171 } else {
1172 /* I/O does not; force the host address to NULL. */
1173 addend = 0;
1174 }
1175
1176 write_address = address;
1177 if (is_ram) {
1178 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1179 /*
1180 * Computing is_clean is expensive; avoid all that unless
1181 * the page is actually writable.
1182 */
1183 if (prot & PAGE_WRITE) {
1184 if (section->readonly) {
1185 write_address |= TLB_DISCARD_WRITE;
1186 } else if (cpu_physical_memory_is_clean(iotlb)) {
1187 write_address |= TLB_NOTDIRTY;
1188 }
1189 }
1190 } else {
1191 /* I/O or ROMD */
1192 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1193 /*
1194 * Writes to romd devices must go through MMIO to enable write.
1195 * Reads to romd devices go through the ram_ptr found above,
1196 * but of course reads to I/O must go through MMIO.
1197 */
1198 write_address |= TLB_MMIO;
1199 if (!is_romd) {
1200 address = write_address;
1201 }
1202 }
1203
1204 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1205 TARGET_PAGE_SIZE);
1206
1207 index = tlb_index(env, mmu_idx, addr_page);
1208 te = tlb_entry(env, mmu_idx, addr_page);
1209
1210 /*
1211 * Hold the TLB lock for the rest of the function. We could acquire/release
1212 * the lock several times in the function, but it is faster to amortize the
1213 * acquisition cost by acquiring it just once. Note that this leads to
1214 * a longer critical section, but this is not a concern since the TLB lock
1215 * is unlikely to be contended.
1216 */
1217 qemu_spin_lock(&tlb->c.lock);
1218
1219 /* Note that the tlb is no longer clean. */
1220 tlb->c.dirty |= 1 << mmu_idx;
1221
1222 /* Make sure there's no cached translation for the new page. */
1223 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1224
1225 /*
1226 * Only evict the old entry to the victim tlb if it's for a
1227 * different page; otherwise just overwrite the stale data.
1228 */
1229 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1230 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1231 CPUTLBEntry *tv = &desc->vtable[vidx];
1232
1233 /* Evict the old entry into the victim tlb. */
1234 copy_tlb_helper_locked(tv, te);
1235 desc->vfulltlb[vidx] = desc->fulltlb[index];
1236 tlb_n_used_entries_dec(env, mmu_idx);
1237 }
1238
1239 /* refill the tlb */
1240 /*
1241 * At this point iotlb contains a physical section number in the lower
1242 * TARGET_PAGE_BITS, and either
1243 * + the ram_addr_t of the page base of the target RAM (RAM)
1244 * + the offset within section->mr of the page base (I/O, ROMD)
1245 * We subtract the vaddr_page (which is page aligned and thus won't
1246 * disturb the low bits) to give an offset which can be added to the
1247 * (non-page-aligned) vaddr of the eventual memory access to get
1248 * the MemoryRegion offset for the access. Note that the vaddr we
1249 * subtract here is that of the page base, and not the same as the
1250 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1251 */
1252 desc->fulltlb[index] = *full;
1253 desc->fulltlb[index].xlat_section = iotlb - addr_page;
1254 desc->fulltlb[index].phys_addr = paddr_page;
1255
1256 /* Now calculate the new entry */
1257 tn.addend = addend - addr_page;
1258 if (prot & PAGE_READ) {
1259 tn.addr_read = address;
1260 if (wp_flags & BP_MEM_READ) {
1261 tn.addr_read |= TLB_WATCHPOINT;
1262 }
1263 } else {
1264 tn.addr_read = -1;
1265 }
1266
1267 if (prot & PAGE_EXEC) {
1268 tn.addr_code = address;
1269 } else {
1270 tn.addr_code = -1;
1271 }
1272
1273 tn.addr_write = -1;
1274 if (prot & PAGE_WRITE) {
1275 tn.addr_write = write_address;
1276 if (prot & PAGE_WRITE_INV) {
1277 tn.addr_write |= TLB_INVALID_MASK;
1278 }
1279 if (wp_flags & BP_MEM_WRITE) {
1280 tn.addr_write |= TLB_WATCHPOINT;
1281 }
1282 }
1283
1284 copy_tlb_helper_locked(te, &tn);
1285 tlb_n_used_entries_inc(env, mmu_idx);
1286 qemu_spin_unlock(&tlb->c.lock);
1287 }
1288
1289 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1290 hwaddr paddr, MemTxAttrs attrs, int prot,
1291 int mmu_idx, uint64_t size)
1292 {
1293 CPUTLBEntryFull full = {
1294 .phys_addr = paddr,
1295 .attrs = attrs,
1296 .prot = prot,
1297 .lg_page_size = ctz64(size)
1298 };
1299
1300 assert(is_power_of_2(size));
1301 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1302 }
1303
1304 void tlb_set_page(CPUState *cpu, vaddr addr,
1305 hwaddr paddr, int prot,
1306 int mmu_idx, uint64_t size)
1307 {
1308 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1309 prot, mmu_idx, size);
1310 }
1311
1312 /*
1313 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1314 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1315 * be discarded and looked up again (e.g. via tlb_entry()).
1316 */
1317 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1318 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1319 {
1320 bool ok;
1321
1322 /*
1323 * This is not a probe, so only valid return is success; failure
1324 * should result in exception + longjmp to the cpu loop.
1325 */
1326 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1327 access_type, mmu_idx, false, retaddr);
1328 assert(ok);
1329 }
1330
1331 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1332 MMUAccessType access_type,
1333 int mmu_idx, uintptr_t retaddr)
1334 {
1335 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1336 mmu_idx, retaddr);
1337 }
1338
1339 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1340 vaddr addr, unsigned size,
1341 MMUAccessType access_type,
1342 int mmu_idx, MemTxAttrs attrs,
1343 MemTxResult response,
1344 uintptr_t retaddr)
1345 {
1346 CPUClass *cc = CPU_GET_CLASS(cpu);
1347
1348 if (!cpu->ignore_memory_transaction_failures &&
1349 cc->tcg_ops->do_transaction_failed) {
1350 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1351 access_type, mmu_idx, attrs,
1352 response, retaddr);
1353 }
1354 }
1355
1356 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1357 int mmu_idx, vaddr addr, uintptr_t retaddr,
1358 MMUAccessType access_type, MemOp op)
1359 {
1360 CPUState *cpu = env_cpu(env);
1361 hwaddr mr_offset;
1362 MemoryRegionSection *section;
1363 MemoryRegion *mr;
1364 uint64_t val;
1365 MemTxResult r;
1366
1367 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1368 mr = section->mr;
1369 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1370 cpu->mem_io_pc = retaddr;
1371 if (!cpu->can_do_io) {
1372 cpu_io_recompile(cpu, retaddr);
1373 }
1374
1375 {
1376 QEMU_IOTHREAD_LOCK_GUARD();
1377 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1378 }
1379
1380 if (r != MEMTX_OK) {
1381 hwaddr physaddr = mr_offset +
1382 section->offset_within_address_space -
1383 section->offset_within_region;
1384
1385 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1386 mmu_idx, full->attrs, r, retaddr);
1387 }
1388 return val;
1389 }
1390
1391 /*
1392 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1393 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1394 * because of the side effect of io_writex changing memory layout.
1395 */
1396 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1397 hwaddr mr_offset)
1398 {
1399 #ifdef CONFIG_PLUGIN
1400 SavedIOTLB *saved = &cs->saved_iotlb;
1401 saved->section = section;
1402 saved->mr_offset = mr_offset;
1403 #endif
1404 }
1405
1406 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1407 int mmu_idx, uint64_t val, vaddr addr,
1408 uintptr_t retaddr, MemOp op)
1409 {
1410 CPUState *cpu = env_cpu(env);
1411 hwaddr mr_offset;
1412 MemoryRegionSection *section;
1413 MemoryRegion *mr;
1414 MemTxResult r;
1415
1416 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1417 mr = section->mr;
1418 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1419 if (!cpu->can_do_io) {
1420 cpu_io_recompile(cpu, retaddr);
1421 }
1422 cpu->mem_io_pc = retaddr;
1423
1424 /*
1425 * The memory_region_dispatch may trigger a flush/resize
1426 * so for plugins we save the iotlb_data just in case.
1427 */
1428 save_iotlb_data(cpu, section, mr_offset);
1429
1430 {
1431 QEMU_IOTHREAD_LOCK_GUARD();
1432 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1433 }
1434
1435 if (r != MEMTX_OK) {
1436 hwaddr physaddr = mr_offset +
1437 section->offset_within_address_space -
1438 section->offset_within_region;
1439
1440 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1441 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1442 retaddr);
1443 }
1444 }
1445
1446 /* Return true if ADDR is present in the victim tlb, and has been copied
1447 back to the main tlb. */
1448 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1449 MMUAccessType access_type, vaddr page)
1450 {
1451 size_t vidx;
1452
1453 assert_cpu_is_self(env_cpu(env));
1454 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1455 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1456 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1457
1458 if (cmp == page) {
1459 /* Found entry in victim tlb, swap tlb and iotlb. */
1460 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1461
1462 qemu_spin_lock(&env_tlb(env)->c.lock);
1463 copy_tlb_helper_locked(&tmptlb, tlb);
1464 copy_tlb_helper_locked(tlb, vtlb);
1465 copy_tlb_helper_locked(vtlb, &tmptlb);
1466 qemu_spin_unlock(&env_tlb(env)->c.lock);
1467
1468 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1469 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1470 CPUTLBEntryFull tmpf;
1471 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1472 return true;
1473 }
1474 }
1475 return false;
1476 }
1477
1478 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1479 CPUTLBEntryFull *full, uintptr_t retaddr)
1480 {
1481 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1482
1483 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1484
1485 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1486 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1487 }
1488
1489 /*
1490 * Set both VGA and migration bits for simplicity and to remove
1491 * the notdirty callback faster.
1492 */
1493 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1494
1495 /* We remove the notdirty callback only if the code has been flushed. */
1496 if (!cpu_physical_memory_is_clean(ram_addr)) {
1497 trace_memory_notdirty_set_dirty(mem_vaddr);
1498 tlb_set_dirty(cpu, mem_vaddr);
1499 }
1500 }
1501
1502 static int probe_access_internal(CPUArchState *env, vaddr addr,
1503 int fault_size, MMUAccessType access_type,
1504 int mmu_idx, bool nonfault,
1505 void **phost, CPUTLBEntryFull **pfull,
1506 uintptr_t retaddr)
1507 {
1508 uintptr_t index = tlb_index(env, mmu_idx, addr);
1509 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1510 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1511 vaddr page_addr = addr & TARGET_PAGE_MASK;
1512 int flags = TLB_FLAGS_MASK;
1513
1514 if (!tlb_hit_page(tlb_addr, page_addr)) {
1515 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1516 CPUState *cs = env_cpu(env);
1517
1518 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1519 mmu_idx, nonfault, retaddr)) {
1520 /* Non-faulting page table read failed. */
1521 *phost = NULL;
1522 *pfull = NULL;
1523 return TLB_INVALID_MASK;
1524 }
1525
1526 /* TLB resize via tlb_fill may have moved the entry. */
1527 index = tlb_index(env, mmu_idx, addr);
1528 entry = tlb_entry(env, mmu_idx, addr);
1529
1530 /*
1531 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1532 * to force the next access through tlb_fill. We've just
1533 * called tlb_fill, so we know that this entry *is* valid.
1534 */
1535 flags &= ~TLB_INVALID_MASK;
1536 }
1537 tlb_addr = tlb_read_idx(entry, access_type);
1538 }
1539 flags &= tlb_addr;
1540
1541 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1542
1543 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1544 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1545 *phost = NULL;
1546 return TLB_MMIO;
1547 }
1548
1549 /* Everything else is RAM. */
1550 *phost = (void *)((uintptr_t)addr + entry->addend);
1551 return flags;
1552 }
1553
1554 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1555 MMUAccessType access_type, int mmu_idx,
1556 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1557 uintptr_t retaddr)
1558 {
1559 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1560 nonfault, phost, pfull, retaddr);
1561
1562 /* Handle clean RAM pages. */
1563 if (unlikely(flags & TLB_NOTDIRTY)) {
1564 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1565 flags &= ~TLB_NOTDIRTY;
1566 }
1567
1568 return flags;
1569 }
1570
1571 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1572 MMUAccessType access_type, int mmu_idx,
1573 bool nonfault, void **phost, uintptr_t retaddr)
1574 {
1575 CPUTLBEntryFull *full;
1576 int flags;
1577
1578 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1579
1580 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1581 nonfault, phost, &full, retaddr);
1582
1583 /* Handle clean RAM pages. */
1584 if (unlikely(flags & TLB_NOTDIRTY)) {
1585 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1586 flags &= ~TLB_NOTDIRTY;
1587 }
1588
1589 return flags;
1590 }
1591
1592 void *probe_access(CPUArchState *env, vaddr addr, int size,
1593 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1594 {
1595 CPUTLBEntryFull *full;
1596 void *host;
1597 int flags;
1598
1599 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1600
1601 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1602 false, &host, &full, retaddr);
1603
1604 /* Per the interface, size == 0 merely faults the access. */
1605 if (size == 0) {
1606 return NULL;
1607 }
1608
1609 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1610 /* Handle watchpoints. */
1611 if (flags & TLB_WATCHPOINT) {
1612 int wp_access = (access_type == MMU_DATA_STORE
1613 ? BP_MEM_WRITE : BP_MEM_READ);
1614 cpu_check_watchpoint(env_cpu(env), addr, size,
1615 full->attrs, wp_access, retaddr);
1616 }
1617
1618 /* Handle clean RAM pages. */
1619 if (flags & TLB_NOTDIRTY) {
1620 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1621 }
1622 }
1623
1624 return host;
1625 }
1626
1627 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1628 MMUAccessType access_type, int mmu_idx)
1629 {
1630 CPUTLBEntryFull *full;
1631 void *host;
1632 int flags;
1633
1634 flags = probe_access_internal(env, addr, 0, access_type,
1635 mmu_idx, true, &host, &full, 0);
1636
1637 /* No combination of flags are expected by the caller. */
1638 return flags ? NULL : host;
1639 }
1640
1641 /*
1642 * Return a ram_addr_t for the virtual address for execution.
1643 *
1644 * Return -1 if we can't translate and execute from an entire page
1645 * of RAM. This will force us to execute by loading and translating
1646 * one insn at a time, without caching.
1647 *
1648 * NOTE: This function will trigger an exception if the page is
1649 * not executable.
1650 */
1651 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1652 void **hostp)
1653 {
1654 CPUTLBEntryFull *full;
1655 void *p;
1656
1657 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1658 cpu_mmu_index(env, true), false, &p, &full, 0);
1659 if (p == NULL) {
1660 return -1;
1661 }
1662
1663 if (full->lg_page_size < TARGET_PAGE_BITS) {
1664 return -1;
1665 }
1666
1667 if (hostp) {
1668 *hostp = p;
1669 }
1670 return qemu_ram_addr_from_host_nofail(p);
1671 }
1672
1673 /* Load/store with atomicity primitives. */
1674 #include "ldst_atomicity.c.inc"
1675
1676 #ifdef CONFIG_PLUGIN
1677 /*
1678 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1679 * This should be a hot path as we will have just looked this path up
1680 * in the softmmu lookup code (or helper). We don't handle re-fills or
1681 * checking the victim table. This is purely informational.
1682 *
1683 * This almost never fails as the memory access being instrumented
1684 * should have just filled the TLB. The one corner case is io_writex
1685 * which can cause TLB flushes and potential resizing of the TLBs
1686 * losing the information we need. In those cases we need to recover
1687 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1688 * from the same thread (which a mem callback will be) this is safe.
1689 */
1690
1691 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1692 bool is_store, struct qemu_plugin_hwaddr *data)
1693 {
1694 CPUArchState *env = cpu->env_ptr;
1695 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1696 uintptr_t index = tlb_index(env, mmu_idx, addr);
1697 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1698
1699 if (likely(tlb_hit(tlb_addr, addr))) {
1700 /* We must have an iotlb entry for MMIO */
1701 if (tlb_addr & TLB_MMIO) {
1702 CPUTLBEntryFull *full;
1703 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1704 data->is_io = true;
1705 data->v.io.section =
1706 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1707 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1708 } else {
1709 data->is_io = false;
1710 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1711 }
1712 return true;
1713 } else {
1714 SavedIOTLB *saved = &cpu->saved_iotlb;
1715 data->is_io = true;
1716 data->v.io.section = saved->section;
1717 data->v.io.offset = saved->mr_offset;
1718 return true;
1719 }
1720 }
1721
1722 #endif
1723
1724 /*
1725 * Probe for a load/store operation.
1726 * Return the host address and into @flags.
1727 */
1728
1729 typedef struct MMULookupPageData {
1730 CPUTLBEntryFull *full;
1731 void *haddr;
1732 vaddr addr;
1733 int flags;
1734 int size;
1735 } MMULookupPageData;
1736
1737 typedef struct MMULookupLocals {
1738 MMULookupPageData page[2];
1739 MemOp memop;
1740 int mmu_idx;
1741 } MMULookupLocals;
1742
1743 /**
1744 * mmu_lookup1: translate one page
1745 * @env: cpu context
1746 * @data: lookup parameters
1747 * @mmu_idx: virtual address context
1748 * @access_type: load/store/code
1749 * @ra: return address into tcg generated code, or 0
1750 *
1751 * Resolve the translation for the one page at @data.addr, filling in
1752 * the rest of @data with the results. If the translation fails,
1753 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1754 * @mmu_idx may have resized.
1755 */
1756 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1757 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1758 {
1759 vaddr addr = data->addr;
1760 uintptr_t index = tlb_index(env, mmu_idx, addr);
1761 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1762 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1763 bool maybe_resized = false;
1764
1765 /* If the TLB entry is for a different page, reload and try again. */
1766 if (!tlb_hit(tlb_addr, addr)) {
1767 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1768 addr & TARGET_PAGE_MASK)) {
1769 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1770 maybe_resized = true;
1771 index = tlb_index(env, mmu_idx, addr);
1772 entry = tlb_entry(env, mmu_idx, addr);
1773 }
1774 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1775 }
1776
1777 data->flags = tlb_addr & TLB_FLAGS_MASK;
1778 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1779 /* Compute haddr speculatively; depending on flags it might be invalid. */
1780 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1781
1782 return maybe_resized;
1783 }
1784
1785 /**
1786 * mmu_watch_or_dirty
1787 * @env: cpu context
1788 * @data: lookup parameters
1789 * @access_type: load/store/code
1790 * @ra: return address into tcg generated code, or 0
1791 *
1792 * Trigger watchpoints for @data.addr:@data.size;
1793 * record writes to protected clean pages.
1794 */
1795 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1796 MMUAccessType access_type, uintptr_t ra)
1797 {
1798 CPUTLBEntryFull *full = data->full;
1799 vaddr addr = data->addr;
1800 int flags = data->flags;
1801 int size = data->size;
1802
1803 /* On watchpoint hit, this will longjmp out. */
1804 if (flags & TLB_WATCHPOINT) {
1805 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1806 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1807 flags &= ~TLB_WATCHPOINT;
1808 }
1809
1810 /* Note that notdirty is only set for writes. */
1811 if (flags & TLB_NOTDIRTY) {
1812 notdirty_write(env_cpu(env), addr, size, full, ra);
1813 flags &= ~TLB_NOTDIRTY;
1814 }
1815 data->flags = flags;
1816 }
1817
1818 /**
1819 * mmu_lookup: translate page(s)
1820 * @env: cpu context
1821 * @addr: virtual address
1822 * @oi: combined mmu_idx and MemOp
1823 * @ra: return address into tcg generated code, or 0
1824 * @access_type: load/store/code
1825 * @l: output result
1826 *
1827 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1828 * bytes. Return true if the lookup crosses a page boundary.
1829 */
1830 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1831 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1832 {
1833 unsigned a_bits;
1834 bool crosspage;
1835 int flags;
1836
1837 l->memop = get_memop(oi);
1838 l->mmu_idx = get_mmuidx(oi);
1839
1840 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1841
1842 /* Handle CPU specific unaligned behaviour */
1843 a_bits = get_alignment_bits(l->memop);
1844 if (addr & ((1 << a_bits) - 1)) {
1845 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1846 }
1847
1848 l->page[0].addr = addr;
1849 l->page[0].size = memop_size(l->memop);
1850 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1851 l->page[1].size = 0;
1852 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1853
1854 if (likely(!crosspage)) {
1855 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1856
1857 flags = l->page[0].flags;
1858 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1859 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1860 }
1861 if (unlikely(flags & TLB_BSWAP)) {
1862 l->memop ^= MO_BSWAP;
1863 }
1864 } else {
1865 /* Finish compute of page crossing. */
1866 int size0 = l->page[1].addr - addr;
1867 l->page[1].size = l->page[0].size - size0;
1868 l->page[0].size = size0;
1869
1870 /*
1871 * Lookup both pages, recognizing exceptions from either. If the
1872 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1873 */
1874 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1875 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1876 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1877 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1878 }
1879
1880 flags = l->page[0].flags | l->page[1].flags;
1881 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1882 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1883 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1884 }
1885
1886 /*
1887 * Since target/sparc is the only user of TLB_BSWAP, and all
1888 * Sparc accesses are aligned, any treatment across two pages
1889 * would be arbitrary. Refuse it until there's a use.
1890 */
1891 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1892 }
1893
1894 return crosspage;
1895 }
1896
1897 /*
1898 * Probe for an atomic operation. Do not allow unaligned operations,
1899 * or io operations to proceed. Return the host address.
1900 */
1901 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1902 MemOpIdx oi, int size, uintptr_t retaddr)
1903 {
1904 uintptr_t mmu_idx = get_mmuidx(oi);
1905 MemOp mop = get_memop(oi);
1906 int a_bits = get_alignment_bits(mop);
1907 uintptr_t index;
1908 CPUTLBEntry *tlbe;
1909 target_ulong tlb_addr;
1910 void *hostaddr;
1911 CPUTLBEntryFull *full;
1912
1913 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1914
1915 /* Adjust the given return address. */
1916 retaddr -= GETPC_ADJ;
1917
1918 /* Enforce guest required alignment. */
1919 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1920 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1921 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1922 mmu_idx, retaddr);
1923 }
1924
1925 /* Enforce qemu required alignment. */
1926 if (unlikely(addr & (size - 1))) {
1927 /* We get here if guest alignment was not requested,
1928 or was not enforced by cpu_unaligned_access above.
1929 We might widen the access and emulate, but for now
1930 mark an exception and exit the cpu loop. */
1931 goto stop_the_world;
1932 }
1933
1934 index = tlb_index(env, mmu_idx, addr);
1935 tlbe = tlb_entry(env, mmu_idx, addr);
1936
1937 /* Check TLB entry and enforce page permissions. */
1938 tlb_addr = tlb_addr_write(tlbe);
1939 if (!tlb_hit(tlb_addr, addr)) {
1940 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1941 addr & TARGET_PAGE_MASK)) {
1942 tlb_fill(env_cpu(env), addr, size,
1943 MMU_DATA_STORE, mmu_idx, retaddr);
1944 index = tlb_index(env, mmu_idx, addr);
1945 tlbe = tlb_entry(env, mmu_idx, addr);
1946 }
1947 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1948 }
1949
1950 /*
1951 * Let the guest notice RMW on a write-only page.
1952 * We have just verified that the page is writable.
1953 * Subpage lookups may have left TLB_INVALID_MASK set,
1954 * but addr_read will only be -1 if PAGE_READ was unset.
1955 */
1956 if (unlikely(tlbe->addr_read == -1)) {
1957 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1958 /*
1959 * Since we don't support reads and writes to different
1960 * addresses, and we do have the proper page loaded for
1961 * write, this shouldn't ever return. But just in case,
1962 * handle via stop-the-world.
1963 */
1964 goto stop_the_world;
1965 }
1966 /* Collect TLB_WATCHPOINT for read. */
1967 tlb_addr |= tlbe->addr_read;
1968
1969 /* Notice an IO access or a needs-MMU-lookup access */
1970 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1971 /* There's really nothing that can be done to
1972 support this apart from stop-the-world. */
1973 goto stop_the_world;
1974 }
1975
1976 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1977 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1978
1979 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1980 notdirty_write(env_cpu(env), addr, size, full, retaddr);
1981 }
1982
1983 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1984 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs,
1985 BP_MEM_READ | BP_MEM_WRITE, retaddr);
1986 }
1987
1988 return hostaddr;
1989
1990 stop_the_world:
1991 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1992 }
1993
1994 /*
1995 * Load Helpers
1996 *
1997 * We support two different access types. SOFTMMU_CODE_ACCESS is
1998 * specifically for reading instructions from system memory. It is
1999 * called by the translation loop and in some helpers where the code
2000 * is disassembled. It shouldn't be called directly by guest code.
2001 *
2002 * For the benefit of TCG generated code, we want to avoid the
2003 * complication of ABI-specific return type promotion and always
2004 * return a value extended to the register size of the host. This is
2005 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2006 * data, and for that we always have uint64_t.
2007 *
2008 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2009 */
2010
2011 /**
2012 * do_ld_mmio_beN:
2013 * @env: cpu context
2014 * @p: translation parameters
2015 * @ret_be: accumulated data
2016 * @mmu_idx: virtual address context
2017 * @ra: return address into tcg generated code, or 0
2018 *
2019 * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2020 * The bytes are concatenated in big-endian order with @ret_be.
2021 */
2022 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2023 uint64_t ret_be, int mmu_idx,
2024 MMUAccessType type, uintptr_t ra)
2025 {
2026 CPUTLBEntryFull *full = p->full;
2027 vaddr addr = p->addr;
2028 int i, size = p->size;
2029
2030 QEMU_IOTHREAD_LOCK_GUARD();
2031 for (i = 0; i < size; i++) {
2032 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2033 ret_be = (ret_be << 8) | x;
2034 }
2035 return ret_be;
2036 }
2037
2038 /**
2039 * do_ld_bytes_beN
2040 * @p: translation parameters
2041 * @ret_be: accumulated data
2042 *
2043 * Load @p->size bytes from @p->haddr, which is RAM.
2044 * The bytes to concatenated in big-endian order with @ret_be.
2045 */
2046 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2047 {
2048 uint8_t *haddr = p->haddr;
2049 int i, size = p->size;
2050
2051 for (i = 0; i < size; i++) {
2052 ret_be = (ret_be << 8) | haddr[i];
2053 }
2054 return ret_be;
2055 }
2056
2057 /**
2058 * do_ld_parts_beN
2059 * @p: translation parameters
2060 * @ret_be: accumulated data
2061 *
2062 * As do_ld_bytes_beN, but atomically on each aligned part.
2063 */
2064 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2065 {
2066 void *haddr = p->haddr;
2067 int size = p->size;
2068
2069 do {
2070 uint64_t x;
2071 int n;
2072
2073 /*
2074 * Find minimum of alignment and size.
2075 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2076 * would have only checked the low bits of addr|size once at the start,
2077 * but is just as easy.
2078 */
2079 switch (((uintptr_t)haddr | size) & 7) {
2080 case 4:
2081 x = cpu_to_be32(load_atomic4(haddr));
2082 ret_be = (ret_be << 32) | x;
2083 n = 4;
2084 break;
2085 case 2:
2086 case 6:
2087 x = cpu_to_be16(load_atomic2(haddr));
2088 ret_be = (ret_be << 16) | x;
2089 n = 2;
2090 break;
2091 default:
2092 x = *(uint8_t *)haddr;
2093 ret_be = (ret_be << 8) | x;
2094 n = 1;
2095 break;
2096 case 0:
2097 g_assert_not_reached();
2098 }
2099 haddr += n;
2100 size -= n;
2101 } while (size != 0);
2102 return ret_be;
2103 }
2104
2105 /**
2106 * do_ld_parts_be4
2107 * @p: translation parameters
2108 * @ret_be: accumulated data
2109 *
2110 * As do_ld_bytes_beN, but with one atomic load.
2111 * Four aligned bytes are guaranteed to cover the load.
2112 */
2113 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2114 {
2115 int o = p->addr & 3;
2116 uint32_t x = load_atomic4(p->haddr - o);
2117
2118 x = cpu_to_be32(x);
2119 x <<= o * 8;
2120 x >>= (4 - p->size) * 8;
2121 return (ret_be << (p->size * 8)) | x;
2122 }
2123
2124 /**
2125 * do_ld_parts_be8
2126 * @p: translation parameters
2127 * @ret_be: accumulated data
2128 *
2129 * As do_ld_bytes_beN, but with one atomic load.
2130 * Eight aligned bytes are guaranteed to cover the load.
2131 */
2132 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2133 MMULookupPageData *p, uint64_t ret_be)
2134 {
2135 int o = p->addr & 7;
2136 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2137
2138 x = cpu_to_be64(x);
2139 x <<= o * 8;
2140 x >>= (8 - p->size) * 8;
2141 return (ret_be << (p->size * 8)) | x;
2142 }
2143
2144 /**
2145 * do_ld_parts_be16
2146 * @p: translation parameters
2147 * @ret_be: accumulated data
2148 *
2149 * As do_ld_bytes_beN, but with one atomic load.
2150 * 16 aligned bytes are guaranteed to cover the load.
2151 */
2152 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2153 MMULookupPageData *p, uint64_t ret_be)
2154 {
2155 int o = p->addr & 15;
2156 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2157 int size = p->size;
2158
2159 if (!HOST_BIG_ENDIAN) {
2160 y = bswap128(y);
2161 }
2162 y = int128_lshift(y, o * 8);
2163 y = int128_urshift(y, (16 - size) * 8);
2164 x = int128_make64(ret_be);
2165 x = int128_lshift(x, size * 8);
2166 return int128_or(x, y);
2167 }
2168
2169 /*
2170 * Wrapper for the above.
2171 */
2172 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2173 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2174 MemOp mop, uintptr_t ra)
2175 {
2176 MemOp atom;
2177 unsigned tmp, half_size;
2178
2179 if (unlikely(p->flags & TLB_MMIO)) {
2180 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2181 }
2182
2183 /*
2184 * It is a given that we cross a page and therefore there is no
2185 * atomicity for the load as a whole, but subobjects may need attention.
2186 */
2187 atom = mop & MO_ATOM_MASK;
2188 switch (atom) {
2189 case MO_ATOM_SUBALIGN:
2190 return do_ld_parts_beN(p, ret_be);
2191
2192 case MO_ATOM_IFALIGN_PAIR:
2193 case MO_ATOM_WITHIN16_PAIR:
2194 tmp = mop & MO_SIZE;
2195 tmp = tmp ? tmp - 1 : 0;
2196 half_size = 1 << tmp;
2197 if (atom == MO_ATOM_IFALIGN_PAIR
2198 ? p->size == half_size
2199 : p->size >= half_size) {
2200 if (!HAVE_al8_fast && p->size < 4) {
2201 return do_ld_whole_be4(p, ret_be);
2202 } else {
2203 return do_ld_whole_be8(env, ra, p, ret_be);
2204 }
2205 }
2206 /* fall through */
2207
2208 case MO_ATOM_IFALIGN:
2209 case MO_ATOM_WITHIN16:
2210 case MO_ATOM_NONE:
2211 return do_ld_bytes_beN(p, ret_be);
2212
2213 default:
2214 g_assert_not_reached();
2215 }
2216 }
2217
2218 /*
2219 * Wrapper for the above, for 8 < size < 16.
2220 */
2221 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2222 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2223 {
2224 int size = p->size;
2225 uint64_t b;
2226 MemOp atom;
2227
2228 if (unlikely(p->flags & TLB_MMIO)) {
2229 p->size = size - 8;
2230 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra);
2231 p->addr += p->size;
2232 p->size = 8;
2233 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra);
2234 return int128_make128(b, a);
2235 }
2236
2237 /*
2238 * It is a given that we cross a page and therefore there is no
2239 * atomicity for the load as a whole, but subobjects may need attention.
2240 */
2241 atom = mop & MO_ATOM_MASK;
2242 switch (atom) {
2243 case MO_ATOM_SUBALIGN:
2244 p->size = size - 8;
2245 a = do_ld_parts_beN(p, a);
2246 p->haddr += size - 8;
2247 p->size = 8;
2248 b = do_ld_parts_beN(p, 0);
2249 break;
2250
2251 case MO_ATOM_WITHIN16_PAIR:
2252 /* Since size > 8, this is the half that must be atomic. */
2253 return do_ld_whole_be16(env, ra, p, a);
2254
2255 case MO_ATOM_IFALIGN_PAIR:
2256 /*
2257 * Since size > 8, both halves are misaligned,
2258 * and so neither is atomic.
2259 */
2260 case MO_ATOM_IFALIGN:
2261 case MO_ATOM_WITHIN16:
2262 case MO_ATOM_NONE:
2263 p->size = size - 8;
2264 a = do_ld_bytes_beN(p, a);
2265 b = ldq_be_p(p->haddr + size - 8);
2266 break;
2267
2268 default:
2269 g_assert_not_reached();
2270 }
2271
2272 return int128_make128(b, a);
2273 }
2274
2275 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2276 MMUAccessType type, uintptr_t ra)
2277 {
2278 if (unlikely(p->flags & TLB_MMIO)) {
2279 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2280 } else {
2281 return *(uint8_t *)p->haddr;
2282 }
2283 }
2284
2285 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2286 MMUAccessType type, MemOp memop, uintptr_t ra)
2287 {
2288 uint64_t ret;
2289
2290 if (unlikely(p->flags & TLB_MMIO)) {
2291 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2292 }
2293
2294 /* Perform the load host endian, then swap if necessary. */
2295 ret = load_atom_2(env, ra, p->haddr, memop);
2296 if (memop & MO_BSWAP) {
2297 ret = bswap16(ret);
2298 }
2299 return ret;
2300 }
2301
2302 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2303 MMUAccessType type, MemOp memop, uintptr_t ra)
2304 {
2305 uint32_t ret;
2306
2307 if (unlikely(p->flags & TLB_MMIO)) {
2308 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2309 }
2310
2311 /* Perform the load host endian. */
2312 ret = load_atom_4(env, ra, p->haddr, memop);
2313 if (memop & MO_BSWAP) {
2314 ret = bswap32(ret);
2315 }
2316 return ret;
2317 }
2318
2319 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2320 MMUAccessType type, MemOp memop, uintptr_t ra)
2321 {
2322 uint64_t ret;
2323
2324 if (unlikely(p->flags & TLB_MMIO)) {
2325 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2326 }
2327
2328 /* Perform the load host endian. */
2329 ret = load_atom_8(env, ra, p->haddr, memop);
2330 if (memop & MO_BSWAP) {
2331 ret = bswap64(ret);
2332 }
2333 return ret;
2334 }
2335
2336 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2337 uintptr_t ra, MMUAccessType access_type)
2338 {
2339 MMULookupLocals l;
2340 bool crosspage;
2341
2342 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2343 tcg_debug_assert(!crosspage);
2344
2345 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2346 }
2347
2348 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2349 MemOpIdx oi, uintptr_t retaddr)
2350 {
2351 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2352 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2353 }
2354
2355 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2356 uintptr_t ra, MMUAccessType access_type)
2357 {
2358 MMULookupLocals l;
2359 bool crosspage;
2360 uint16_t ret;
2361 uint8_t a, b;
2362
2363 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2364 if (likely(!crosspage)) {
2365 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2366 }
2367
2368 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2369 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2370
2371 if ((l.memop & MO_BSWAP) == MO_LE) {
2372 ret = a | (b << 8);
2373 } else {
2374 ret = b | (a << 8);
2375 }
2376 return ret;
2377 }
2378
2379 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2380 MemOpIdx oi, uintptr_t retaddr)
2381 {
2382 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2383 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2384 }
2385
2386 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2387 uintptr_t ra, MMUAccessType access_type)
2388 {
2389 MMULookupLocals l;
2390 bool crosspage;
2391 uint32_t ret;
2392
2393 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2394 if (likely(!crosspage)) {
2395 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2396 }
2397
2398 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2399 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2400 if ((l.memop & MO_BSWAP) == MO_LE) {
2401 ret = bswap32(ret);
2402 }
2403 return ret;
2404 }
2405
2406 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2407 MemOpIdx oi, uintptr_t retaddr)
2408 {
2409 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2410 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2411 }
2412
2413 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2414 uintptr_t ra, MMUAccessType access_type)
2415 {
2416 MMULookupLocals l;
2417 bool crosspage;
2418 uint64_t ret;
2419
2420 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2421 if (likely(!crosspage)) {
2422 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2423 }
2424
2425 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2426 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2427 if ((l.memop & MO_BSWAP) == MO_LE) {
2428 ret = bswap64(ret);
2429 }
2430 return ret;
2431 }
2432
2433 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2434 MemOpIdx oi, uintptr_t retaddr)
2435 {
2436 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2437 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2438 }
2439
2440 /*
2441 * Provide signed versions of the load routines as well. We can of course
2442 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2443 */
2444
2445 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2446 MemOpIdx oi, uintptr_t retaddr)
2447 {
2448 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2449 }
2450
2451 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2452 MemOpIdx oi, uintptr_t retaddr)
2453 {
2454 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2455 }
2456
2457 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2458 MemOpIdx oi, uintptr_t retaddr)
2459 {
2460 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2461 }
2462
2463 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2464 MemOpIdx oi, uintptr_t ra)
2465 {
2466 MMULookupLocals l;
2467 bool crosspage;
2468 uint64_t a, b;
2469 Int128 ret;
2470 int first;
2471
2472 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2473 if (likely(!crosspage)) {
2474 /* Perform the load host endian. */
2475 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2476 QEMU_IOTHREAD_LOCK_GUARD();
2477 a = io_readx(env, l.page[0].full, l.mmu_idx, addr,
2478 ra, MMU_DATA_LOAD, MO_64);
2479 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8,
2480 ra, MMU_DATA_LOAD, MO_64);
2481 ret = int128_make128(HOST_BIG_ENDIAN ? b : a,
2482 HOST_BIG_ENDIAN ? a : b);
2483 } else {
2484 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2485 }
2486 if (l.memop & MO_BSWAP) {
2487 ret = bswap128(ret);
2488 }
2489 return ret;
2490 }
2491
2492 first = l.page[0].size;
2493 if (first == 8) {
2494 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2495
2496 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2497 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2498 if ((mop8 & MO_BSWAP) == MO_LE) {
2499 ret = int128_make128(a, b);
2500 } else {
2501 ret = int128_make128(b, a);
2502 }
2503 return ret;
2504 }
2505
2506 if (first < 8) {
2507 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2508 MMU_DATA_LOAD, l.memop, ra);
2509 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2510 } else {
2511 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2512 b = int128_getlo(ret);
2513 ret = int128_lshift(ret, l.page[1].size * 8);
2514 a = int128_gethi(ret);
2515 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2516 MMU_DATA_LOAD, l.memop, ra);
2517 ret = int128_make128(b, a);
2518 }
2519 if ((l.memop & MO_BSWAP) == MO_LE) {
2520 ret = bswap128(ret);
2521 }
2522 return ret;
2523 }
2524
2525 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2526 uint32_t oi, uintptr_t retaddr)
2527 {
2528 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2529 return do_ld16_mmu(env, addr, oi, retaddr);
2530 }
2531
2532 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2533 {
2534 return helper_ld16_mmu(env, addr, oi, GETPC());
2535 }
2536
2537 /*
2538 * Load helpers for cpu_ldst.h.
2539 */
2540
2541 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2542 {
2543 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2544 }
2545
2546 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2547 {
2548 uint8_t ret;
2549
2550 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2551 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2552 plugin_load_cb(env, addr, oi);
2553 return ret;
2554 }
2555
2556 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2557 MemOpIdx oi, uintptr_t ra)
2558 {
2559 uint16_t ret;
2560
2561 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2562 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2563 plugin_load_cb(env, addr, oi);
2564 return ret;
2565 }
2566
2567 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2568 MemOpIdx oi, uintptr_t ra)
2569 {
2570 uint32_t ret;
2571
2572 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2573 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2574 plugin_load_cb(env, addr, oi);
2575 return ret;
2576 }
2577
2578 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2579 MemOpIdx oi, uintptr_t ra)
2580 {
2581 uint64_t ret;
2582
2583 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2584 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2585 plugin_load_cb(env, addr, oi);
2586 return ret;
2587 }
2588
2589 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2590 MemOpIdx oi, uintptr_t ra)
2591 {
2592 Int128 ret;
2593
2594 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2595 ret = do_ld16_mmu(env, addr, oi, ra);
2596 plugin_load_cb(env, addr, oi);
2597 return ret;
2598 }
2599
2600 /*
2601 * Store Helpers
2602 */
2603
2604 /**
2605 * do_st_mmio_leN:
2606 * @env: cpu context
2607 * @p: translation parameters
2608 * @val_le: data to store
2609 * @mmu_idx: virtual address context
2610 * @ra: return address into tcg generated code, or 0
2611 *
2612 * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2613 * The bytes to store are extracted in little-endian order from @val_le;
2614 * return the bytes of @val_le beyond @p->size that have not been stored.
2615 */
2616 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2617 uint64_t val_le, int mmu_idx, uintptr_t ra)
2618 {
2619 CPUTLBEntryFull *full = p->full;
2620 vaddr addr = p->addr;
2621 int i, size = p->size;
2622
2623 QEMU_IOTHREAD_LOCK_GUARD();
2624 for (i = 0; i < size; i++, val_le >>= 8) {
2625 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2626 }
2627 return val_le;
2628 }
2629
2630 /*
2631 * Wrapper for the above.
2632 */
2633 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2634 uint64_t val_le, int mmu_idx,
2635 MemOp mop, uintptr_t ra)
2636 {
2637 MemOp atom;
2638 unsigned tmp, half_size;
2639
2640 if (unlikely(p->flags & TLB_MMIO)) {
2641 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2642 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2643 return val_le >> (p->size * 8);
2644 }
2645
2646 /*
2647 * It is a given that we cross a page and therefore there is no atomicity
2648 * for the store as a whole, but subobjects may need attention.
2649 */
2650 atom = mop & MO_ATOM_MASK;
2651 switch (atom) {
2652 case MO_ATOM_SUBALIGN:
2653 return store_parts_leN(p->haddr, p->size, val_le);
2654
2655 case MO_ATOM_IFALIGN_PAIR:
2656 case MO_ATOM_WITHIN16_PAIR:
2657 tmp = mop & MO_SIZE;
2658 tmp = tmp ? tmp - 1 : 0;
2659 half_size = 1 << tmp;
2660 if (atom == MO_ATOM_IFALIGN_PAIR
2661 ? p->size == half_size
2662 : p->size >= half_size) {
2663 if (!HAVE_al8_fast && p->size <= 4) {
2664 return store_whole_le4(p->haddr, p->size, val_le);
2665 } else if (HAVE_al8) {
2666 return store_whole_le8(p->haddr, p->size, val_le);
2667 } else {
2668 cpu_loop_exit_atomic(env_cpu(env), ra);
2669 }
2670 }
2671 /* fall through */
2672
2673 case MO_ATOM_IFALIGN:
2674 case MO_ATOM_WITHIN16:
2675 case MO_ATOM_NONE:
2676 return store_bytes_leN(p->haddr, p->size, val_le);
2677
2678 default:
2679 g_assert_not_reached();
2680 }
2681 }
2682
2683 /*
2684 * Wrapper for the above, for 8 < size < 16.
2685 */
2686 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2687 Int128 val_le, int mmu_idx,
2688 MemOp mop, uintptr_t ra)
2689 {
2690 int size = p->size;
2691 MemOp atom;
2692
2693 if (unlikely(p->flags & TLB_MMIO)) {
2694 p->size = 8;
2695 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra);
2696 p->size = size - 8;
2697 p->addr += 8;
2698 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra);
2699 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2700 return int128_gethi(val_le) >> ((size - 8) * 8);
2701 }
2702
2703 /*
2704 * It is a given that we cross a page and therefore there is no atomicity
2705 * for the store as a whole, but subobjects may need attention.
2706 */
2707 atom = mop & MO_ATOM_MASK;
2708 switch (atom) {
2709 case MO_ATOM_SUBALIGN:
2710 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2711 return store_parts_leN(p->haddr + 8, p->size - 8,
2712 int128_gethi(val_le));
2713
2714 case MO_ATOM_WITHIN16_PAIR:
2715 /* Since size > 8, this is the half that must be atomic. */
2716 if (!HAVE_ATOMIC128_RW) {
2717 cpu_loop_exit_atomic(env_cpu(env), ra);
2718 }
2719 return store_whole_le16(p->haddr, p->size, val_le);
2720
2721 case MO_ATOM_IFALIGN_PAIR:
2722 /*
2723 * Since size > 8, both halves are misaligned,
2724 * and so neither is atomic.
2725 */
2726 case MO_ATOM_IFALIGN:
2727 case MO_ATOM_WITHIN16:
2728 case MO_ATOM_NONE:
2729 stq_le_p(p->haddr, int128_getlo(val_le));
2730 return store_bytes_leN(p->haddr + 8, p->size - 8,
2731 int128_gethi(val_le));
2732
2733 default:
2734 g_assert_not_reached();
2735 }
2736 }
2737
2738 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2739 int mmu_idx, uintptr_t ra)
2740 {
2741 if (unlikely(p->flags & TLB_MMIO)) {
2742 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2743 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2744 /* nothing */
2745 } else {
2746 *(uint8_t *)p->haddr = val;
2747 }
2748 }
2749
2750 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2751 int mmu_idx, MemOp memop, uintptr_t ra)
2752 {
2753 if (unlikely(p->flags & TLB_MMIO)) {
2754 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2755 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2756 /* nothing */
2757 } else {
2758 /* Swap to host endian if necessary, then store. */
2759 if (memop & MO_BSWAP) {
2760 val = bswap16(val);
2761 }
2762 store_atom_2(env, ra, p->haddr, memop, val);
2763 }
2764 }
2765
2766 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2767 int mmu_idx, MemOp memop, uintptr_t ra)
2768 {
2769 if (unlikely(p->flags & TLB_MMIO)) {
2770 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2771 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2772 /* nothing */
2773 } else {
2774 /* Swap to host endian if necessary, then store. */
2775 if (memop & MO_BSWAP) {
2776 val = bswap32(val);
2777 }
2778 store_atom_4(env, ra, p->haddr, memop, val);
2779 }
2780 }
2781
2782 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2783 int mmu_idx, MemOp memop, uintptr_t ra)
2784 {
2785 if (unlikely(p->flags & TLB_MMIO)) {
2786 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2787 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2788 /* nothing */
2789 } else {
2790 /* Swap to host endian if necessary, then store. */
2791 if (memop & MO_BSWAP) {
2792 val = bswap64(val);
2793 }
2794 store_atom_8(env, ra, p->haddr, memop, val);
2795 }
2796 }
2797
2798 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2799 MemOpIdx oi, uintptr_t ra)
2800 {
2801 MMULookupLocals l;
2802 bool crosspage;
2803
2804 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2805 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2806 tcg_debug_assert(!crosspage);
2807
2808 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2809 }
2810
2811 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2812 MemOpIdx oi, uintptr_t ra)
2813 {
2814 MMULookupLocals l;
2815 bool crosspage;
2816 uint8_t a, b;
2817
2818 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2819 if (likely(!crosspage)) {
2820 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2821 return;
2822 }
2823
2824 if ((l.memop & MO_BSWAP) == MO_LE) {
2825 a = val, b = val >> 8;
2826 } else {
2827 b = val, a = val >> 8;
2828 }
2829 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2830 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2831 }
2832
2833 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2834 MemOpIdx oi, uintptr_t retaddr)
2835 {
2836 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2837 do_st2_mmu(env, addr, val, oi, retaddr);
2838 }
2839
2840 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2841 MemOpIdx oi, uintptr_t ra)
2842 {
2843 MMULookupLocals l;
2844 bool crosspage;
2845
2846 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2847 if (likely(!crosspage)) {
2848 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2849 return;
2850 }
2851
2852 /* Swap to little endian for simplicity, then store by bytes. */
2853 if ((l.memop & MO_BSWAP) != MO_LE) {
2854 val = bswap32(val);
2855 }
2856 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2857 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2858 }
2859
2860 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2861 MemOpIdx oi, uintptr_t retaddr)
2862 {
2863 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2864 do_st4_mmu(env, addr, val, oi, retaddr);
2865 }
2866
2867 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
2868 MemOpIdx oi, uintptr_t ra)
2869 {
2870 MMULookupLocals l;
2871 bool crosspage;
2872
2873 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2874 if (likely(!crosspage)) {
2875 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2876 return;
2877 }
2878
2879 /* Swap to little endian for simplicity, then store by bytes. */
2880 if ((l.memop & MO_BSWAP) != MO_LE) {
2881 val = bswap64(val);
2882 }
2883 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2884 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2885 }
2886
2887 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
2888 MemOpIdx oi, uintptr_t retaddr)
2889 {
2890 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2891 do_st8_mmu(env, addr, val, oi, retaddr);
2892 }
2893
2894 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
2895 MemOpIdx oi, uintptr_t ra)
2896 {
2897 MMULookupLocals l;
2898 bool crosspage;
2899 uint64_t a, b;
2900 int first;
2901
2902 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2903 if (likely(!crosspage)) {
2904 /* Swap to host endian if necessary, then store. */
2905 if (l.memop & MO_BSWAP) {
2906 val = bswap128(val);
2907 }
2908 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2909 QEMU_IOTHREAD_LOCK_GUARD();
2910 if (HOST_BIG_ENDIAN) {
2911 b = int128_getlo(val), a = int128_gethi(val);
2912 } else {
2913 a = int128_getlo(val), b = int128_gethi(val);
2914 }
2915 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64);
2916 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64);
2917 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2918 /* nothing */
2919 } else {
2920 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
2921 }
2922 return;
2923 }
2924
2925 first = l.page[0].size;
2926 if (first == 8) {
2927 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2928
2929 if (l.memop & MO_BSWAP) {
2930 val = bswap128(val);
2931 }
2932 if (HOST_BIG_ENDIAN) {
2933 b = int128_getlo(val), a = int128_gethi(val);
2934 } else {
2935 a = int128_getlo(val), b = int128_gethi(val);
2936 }
2937 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
2938 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
2939 return;
2940 }
2941
2942 if ((l.memop & MO_BSWAP) != MO_LE) {
2943 val = bswap128(val);
2944 }
2945 if (first < 8) {
2946 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2947 val = int128_urshift(val, first * 8);
2948 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2949 } else {
2950 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2951 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
2952 }
2953 }
2954
2955 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
2956 MemOpIdx oi, uintptr_t retaddr)
2957 {
2958 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2959 do_st16_mmu(env, addr, val, oi, retaddr);
2960 }
2961
2962 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
2963 {
2964 helper_st16_mmu(env, addr, val, oi, GETPC());
2965 }
2966
2967 /*
2968 * Store Helpers for cpu_ldst.h
2969 */
2970
2971 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2972 {
2973 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2974 }
2975
2976 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2977 MemOpIdx oi, uintptr_t retaddr)
2978 {
2979 helper_stb_mmu(env, addr, val, oi, retaddr);
2980 plugin_store_cb(env, addr, oi);
2981 }
2982
2983 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2984 MemOpIdx oi, uintptr_t retaddr)
2985 {
2986 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2987 do_st2_mmu(env, addr, val, oi, retaddr);
2988 plugin_store_cb(env, addr, oi);
2989 }
2990
2991 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2992 MemOpIdx oi, uintptr_t retaddr)
2993 {
2994 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2995 do_st4_mmu(env, addr, val, oi, retaddr);
2996 plugin_store_cb(env, addr, oi);
2997 }
2998
2999 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
3000 MemOpIdx oi, uintptr_t retaddr)
3001 {
3002 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3003 do_st8_mmu(env, addr, val, oi, retaddr);
3004 plugin_store_cb(env, addr, oi);
3005 }
3006
3007 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3008 MemOpIdx oi, uintptr_t retaddr)
3009 {
3010 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3011 do_st16_mmu(env, addr, val, oi, retaddr);
3012 plugin_store_cb(env, addr, oi);
3013 }
3014
3015 #include "ldst_common.c.inc"
3016
3017 /*
3018 * First set of functions passes in OI and RETADDR.
3019 * This makes them callable from other helpers.
3020 */
3021
3022 #define ATOMIC_NAME(X) \
3023 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3024
3025 #define ATOMIC_MMU_CLEANUP
3026
3027 #include "atomic_common.c.inc"
3028
3029 #define DATA_SIZE 1
3030 #include "atomic_template.h"
3031
3032 #define DATA_SIZE 2
3033 #include "atomic_template.h"
3034
3035 #define DATA_SIZE 4
3036 #include "atomic_template.h"
3037
3038 #ifdef CONFIG_ATOMIC64
3039 #define DATA_SIZE 8
3040 #include "atomic_template.h"
3041 #endif
3042
3043 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
3044 #define DATA_SIZE 16
3045 #include "atomic_template.h"
3046 #endif
3047
3048 /* Code access functions. */
3049
3050 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3051 {
3052 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3053 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3054 }
3055
3056 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3057 {
3058 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3059 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3060 }
3061
3062 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3063 {
3064 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3065 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3066 }
3067
3068 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3069 {
3070 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3071 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3072 }
3073
3074 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3075 MemOpIdx oi, uintptr_t retaddr)
3076 {
3077 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3078 }
3079
3080 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3081 MemOpIdx oi, uintptr_t retaddr)
3082 {
3083 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3084 }
3085
3086 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3087 MemOpIdx oi, uintptr_t retaddr)
3088 {
3089 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3090 }
3091
3092 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3093 MemOpIdx oi, uintptr_t retaddr)
3094 {
3095 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3096 }