]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
39
40 #ifdef DEBUG_TLB
41 # define DEBUG_TLB_GATE 1
42 # ifdef DEBUG_TLB_LOG
43 # define DEBUG_TLB_LOG_GATE 1
44 # else
45 # define DEBUG_TLB_LOG_GATE 0
46 # endif
47 #else
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
50 #endif
51
52 #define tlb_debug(fmt, ...) do { \
53 if (DEBUG_TLB_LOG_GATE) { \
54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
55 ## __VA_ARGS__); \
56 } else if (DEBUG_TLB_GATE) { \
57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
58 } \
59 } while (0)
60
61 #define assert_cpu_is_self(this_cpu) do { \
62 if (DEBUG_TLB_GATE) { \
63 g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \
64 } \
65 } while (0)
66
67 /* run_on_cpu_data.target_ptr should always be big enough for a
68 * target_ulong even on 32 bit builds */
69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
70
71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
72 */
73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
75
76 /* flush_all_helper: run fn across all cpus
77 *
78 * If the wait flag is set then the src cpu's helper will be queued as
79 * "safe" work and the loop exited creating a synchronisation point
80 * where all queued work will be finished before execution starts
81 * again.
82 */
83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
84 run_on_cpu_data d)
85 {
86 CPUState *cpu;
87
88 CPU_FOREACH(cpu) {
89 if (cpu != src) {
90 async_run_on_cpu(cpu, fn, d);
91 }
92 }
93 }
94
95 size_t tlb_flush_count(void)
96 {
97 CPUState *cpu;
98 size_t count = 0;
99
100 CPU_FOREACH(cpu) {
101 CPUArchState *env = cpu->env_ptr;
102
103 count += atomic_read(&env->tlb_flush_count);
104 }
105 return count;
106 }
107
108 /* This is OK because CPU architectures generally permit an
109 * implementation to drop entries from the TLB at any time, so
110 * flushing more entries than required is only an efficiency issue,
111 * not a correctness issue.
112 */
113 static void tlb_flush_nocheck(CPUState *cpu)
114 {
115 CPUArchState *env = cpu->env_ptr;
116
117 /* The QOM tests will trigger tlb_flushes without setting up TCG
118 * so we bug out here in that case.
119 */
120 if (!tcg_enabled()) {
121 return;
122 }
123
124 assert_cpu_is_self(cpu);
125 atomic_set(&env->tlb_flush_count, env->tlb_flush_count + 1);
126 tlb_debug("(count: %zu)\n", tlb_flush_count());
127
128 memset(env->tlb_table, -1, sizeof(env->tlb_table));
129 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
130 cpu_tb_jmp_cache_clear(cpu);
131
132 env->vtlb_index = 0;
133 env->tlb_flush_addr = -1;
134 env->tlb_flush_mask = 0;
135
136 atomic_mb_set(&cpu->pending_tlb_flush, 0);
137 }
138
139 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
140 {
141 tlb_flush_nocheck(cpu);
142 }
143
144 void tlb_flush(CPUState *cpu)
145 {
146 if (cpu->created && !qemu_cpu_is_self(cpu)) {
147 if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
148 atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
149 async_run_on_cpu(cpu, tlb_flush_global_async_work,
150 RUN_ON_CPU_NULL);
151 }
152 } else {
153 tlb_flush_nocheck(cpu);
154 }
155 }
156
157 void tlb_flush_all_cpus(CPUState *src_cpu)
158 {
159 const run_on_cpu_func fn = tlb_flush_global_async_work;
160 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
161 fn(src_cpu, RUN_ON_CPU_NULL);
162 }
163
164 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
165 {
166 const run_on_cpu_func fn = tlb_flush_global_async_work;
167 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
168 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
169 }
170
171 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
172 {
173 CPUArchState *env = cpu->env_ptr;
174 unsigned long mmu_idx_bitmask = data.host_int;
175 int mmu_idx;
176
177 assert_cpu_is_self(cpu);
178
179 tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
180
181 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
182
183 if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
184 tlb_debug("%d\n", mmu_idx);
185
186 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
187 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
188 }
189 }
190
191 cpu_tb_jmp_cache_clear(cpu);
192
193 tlb_debug("done\n");
194 }
195
196 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
197 {
198 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
199
200 if (!qemu_cpu_is_self(cpu)) {
201 uint16_t pending_flushes = idxmap;
202 pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
203
204 if (pending_flushes) {
205 tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
206
207 atomic_or(&cpu->pending_tlb_flush, pending_flushes);
208 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
209 RUN_ON_CPU_HOST_INT(pending_flushes));
210 }
211 } else {
212 tlb_flush_by_mmuidx_async_work(cpu,
213 RUN_ON_CPU_HOST_INT(idxmap));
214 }
215 }
216
217 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
218 {
219 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
220
221 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
222
223 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
224 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
225 }
226
227 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
228 uint16_t idxmap)
229 {
230 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
231
232 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
233
234 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
235 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
236 }
237
238 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
239 target_ulong page)
240 {
241 return tlb_hit_page(tlb_entry->addr_read, page) ||
242 tlb_hit_page(tlb_entry->addr_write, page) ||
243 tlb_hit_page(tlb_entry->addr_code, page);
244 }
245
246 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong page)
247 {
248 if (tlb_hit_page_anyprot(tlb_entry, page)) {
249 memset(tlb_entry, -1, sizeof(*tlb_entry));
250 }
251 }
252
253 static inline void tlb_flush_vtlb_page(CPUArchState *env, int mmu_idx,
254 target_ulong page)
255 {
256 int k;
257 for (k = 0; k < CPU_VTLB_SIZE; k++) {
258 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], page);
259 }
260 }
261
262 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
263 {
264 CPUArchState *env = cpu->env_ptr;
265 target_ulong addr = (target_ulong) data.target_ptr;
266 int i;
267 int mmu_idx;
268
269 assert_cpu_is_self(cpu);
270
271 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
272
273 /* Check if we need to flush due to large pages. */
274 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
275 tlb_debug("forcing full flush ("
276 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
277 env->tlb_flush_addr, env->tlb_flush_mask);
278
279 tlb_flush(cpu);
280 return;
281 }
282
283 addr &= TARGET_PAGE_MASK;
284 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
285 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
286 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
287 tlb_flush_vtlb_page(env, mmu_idx, addr);
288 }
289
290 tb_flush_jmp_cache(cpu, addr);
291 }
292
293 void tlb_flush_page(CPUState *cpu, target_ulong addr)
294 {
295 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
296
297 if (!qemu_cpu_is_self(cpu)) {
298 async_run_on_cpu(cpu, tlb_flush_page_async_work,
299 RUN_ON_CPU_TARGET_PTR(addr));
300 } else {
301 tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
302 }
303 }
304
305 /* As we are going to hijack the bottom bits of the page address for a
306 * mmuidx bit mask we need to fail to build if we can't do that
307 */
308 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
309
310 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
311 run_on_cpu_data data)
312 {
313 CPUArchState *env = cpu->env_ptr;
314 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
315 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
316 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
317 int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
318 int mmu_idx;
319
320 assert_cpu_is_self(cpu);
321
322 tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
323 page, addr, mmu_idx_bitmap);
324
325 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
326 if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
327 tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
328 tlb_flush_vtlb_page(env, mmu_idx, addr);
329 }
330 }
331
332 tb_flush_jmp_cache(cpu, addr);
333 }
334
335 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
336 run_on_cpu_data data)
337 {
338 CPUArchState *env = cpu->env_ptr;
339 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
340 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
341 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
342
343 tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
344
345 /* Check if we need to flush due to large pages. */
346 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
347 tlb_debug("forced full flush ("
348 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
349 env->tlb_flush_addr, env->tlb_flush_mask);
350
351 tlb_flush_by_mmuidx_async_work(cpu,
352 RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
353 } else {
354 tlb_flush_page_by_mmuidx_async_work(cpu, data);
355 }
356 }
357
358 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
359 {
360 target_ulong addr_and_mmu_idx;
361
362 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
363
364 /* This should already be page aligned */
365 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
366 addr_and_mmu_idx |= idxmap;
367
368 if (!qemu_cpu_is_self(cpu)) {
369 async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
370 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
371 } else {
372 tlb_check_page_and_flush_by_mmuidx_async_work(
373 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
374 }
375 }
376
377 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
378 uint16_t idxmap)
379 {
380 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
381 target_ulong addr_and_mmu_idx;
382
383 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
384
385 /* This should already be page aligned */
386 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
387 addr_and_mmu_idx |= idxmap;
388
389 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
390 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
391 }
392
393 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
394 target_ulong addr,
395 uint16_t idxmap)
396 {
397 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
398 target_ulong addr_and_mmu_idx;
399
400 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
401
402 /* This should already be page aligned */
403 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
404 addr_and_mmu_idx |= idxmap;
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
407 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
408 }
409
410 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
411 {
412 const run_on_cpu_func fn = tlb_flush_page_async_work;
413
414 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
415 fn(src, RUN_ON_CPU_TARGET_PTR(addr));
416 }
417
418 void tlb_flush_page_all_cpus_synced(CPUState *src,
419 target_ulong addr)
420 {
421 const run_on_cpu_func fn = tlb_flush_page_async_work;
422
423 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
424 async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
425 }
426
427 /* update the TLBs so that writes to code in the virtual page 'addr'
428 can be detected */
429 void tlb_protect_code(ram_addr_t ram_addr)
430 {
431 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
432 DIRTY_MEMORY_CODE);
433 }
434
435 /* update the TLB so that writes in physical page 'phys_addr' are no longer
436 tested for self modifying code */
437 void tlb_unprotect_code(ram_addr_t ram_addr)
438 {
439 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
440 }
441
442
443 /*
444 * Dirty write flag handling
445 *
446 * When the TCG code writes to a location it looks up the address in
447 * the TLB and uses that data to compute the final address. If any of
448 * the lower bits of the address are set then the slow path is forced.
449 * There are a number of reasons to do this but for normal RAM the
450 * most usual is detecting writes to code regions which may invalidate
451 * generated code.
452 *
453 * Because we want other vCPUs to respond to changes straight away we
454 * update the te->addr_write field atomically. If the TLB entry has
455 * been changed by the vCPU in the mean time we skip the update.
456 *
457 * As this function uses atomic accesses we also need to ensure
458 * updates to tlb_entries follow the same access rules. We don't need
459 * to worry about this for oversized guests as MTTCG is disabled for
460 * them.
461 */
462
463 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
464 uintptr_t length)
465 {
466 #if TCG_OVERSIZED_GUEST
467 uintptr_t addr = tlb_entry->addr_write;
468
469 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
470 addr &= TARGET_PAGE_MASK;
471 addr += tlb_entry->addend;
472 if ((addr - start) < length) {
473 tlb_entry->addr_write |= TLB_NOTDIRTY;
474 }
475 }
476 #else
477 /* paired with atomic_mb_set in tlb_set_page_with_attrs */
478 uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
479 uintptr_t addr = orig_addr;
480
481 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
482 addr &= TARGET_PAGE_MASK;
483 addr += atomic_read(&tlb_entry->addend);
484 if ((addr - start) < length) {
485 uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
486 atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
487 }
488 }
489 #endif
490 }
491
492 /* For atomic correctness when running MTTCG we need to use the right
493 * primitives when copying entries */
494 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
495 bool atomic_set)
496 {
497 #if TCG_OVERSIZED_GUEST
498 *d = *s;
499 #else
500 if (atomic_set) {
501 d->addr_read = s->addr_read;
502 d->addr_code = s->addr_code;
503 atomic_set(&d->addend, atomic_read(&s->addend));
504 /* Pairs with flag setting in tlb_reset_dirty_range */
505 atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
506 } else {
507 d->addr_read = s->addr_read;
508 d->addr_write = atomic_read(&s->addr_write);
509 d->addr_code = s->addr_code;
510 d->addend = atomic_read(&s->addend);
511 }
512 #endif
513 }
514
515 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
516 * the target vCPU). As such care needs to be taken that we don't
517 * dangerously race with another vCPU update. The only thing actually
518 * updated is the target TLB entry ->addr_write flags.
519 */
520 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
521 {
522 CPUArchState *env;
523
524 int mmu_idx;
525
526 env = cpu->env_ptr;
527 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
528 unsigned int i;
529
530 for (i = 0; i < CPU_TLB_SIZE; i++) {
531 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
532 start1, length);
533 }
534
535 for (i = 0; i < CPU_VTLB_SIZE; i++) {
536 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
537 start1, length);
538 }
539 }
540 }
541
542 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
543 {
544 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
545 tlb_entry->addr_write = vaddr;
546 }
547 }
548
549 /* update the TLB corresponding to virtual page vaddr
550 so that it is no longer dirty */
551 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
552 {
553 CPUArchState *env = cpu->env_ptr;
554 int i;
555 int mmu_idx;
556
557 assert_cpu_is_self(cpu);
558
559 vaddr &= TARGET_PAGE_MASK;
560 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
561 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
562 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
563 }
564
565 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
566 int k;
567 for (k = 0; k < CPU_VTLB_SIZE; k++) {
568 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
569 }
570 }
571 }
572
573 /* Our TLB does not support large pages, so remember the area covered by
574 large pages and trigger a full TLB flush if these are invalidated. */
575 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
576 target_ulong size)
577 {
578 target_ulong mask = ~(size - 1);
579
580 if (env->tlb_flush_addr == (target_ulong)-1) {
581 env->tlb_flush_addr = vaddr & mask;
582 env->tlb_flush_mask = mask;
583 return;
584 }
585 /* Extend the existing region to include the new page.
586 This is a compromise between unnecessary flushes and the cost
587 of maintaining a full variable size TLB. */
588 mask &= env->tlb_flush_mask;
589 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
590 mask <<= 1;
591 }
592 env->tlb_flush_addr &= mask;
593 env->tlb_flush_mask = mask;
594 }
595
596 /* Add a new TLB entry. At most one entry for a given virtual address
597 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
598 * supplied size is only used by tlb_flush_page.
599 *
600 * Called from TCG-generated code, which is under an RCU read-side
601 * critical section.
602 */
603 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
604 hwaddr paddr, MemTxAttrs attrs, int prot,
605 int mmu_idx, target_ulong size)
606 {
607 CPUArchState *env = cpu->env_ptr;
608 MemoryRegionSection *section;
609 unsigned int index;
610 target_ulong address;
611 target_ulong code_address;
612 uintptr_t addend;
613 CPUTLBEntry *te, tn;
614 hwaddr iotlb, xlat, sz, paddr_page;
615 target_ulong vaddr_page;
616 int asidx = cpu_asidx_from_attrs(cpu, attrs);
617
618 assert_cpu_is_self(cpu);
619
620 if (size < TARGET_PAGE_SIZE) {
621 sz = TARGET_PAGE_SIZE;
622 } else {
623 if (size > TARGET_PAGE_SIZE) {
624 tlb_add_large_page(env, vaddr, size);
625 }
626 sz = size;
627 }
628 vaddr_page = vaddr & TARGET_PAGE_MASK;
629 paddr_page = paddr & TARGET_PAGE_MASK;
630
631 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
632 &xlat, &sz, attrs, &prot);
633 assert(sz >= TARGET_PAGE_SIZE);
634
635 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
636 " prot=%x idx=%d\n",
637 vaddr, paddr, prot, mmu_idx);
638
639 address = vaddr_page;
640 if (size < TARGET_PAGE_SIZE) {
641 /*
642 * Slow-path the TLB entries; we will repeat the MMU check and TLB
643 * fill on every access.
644 */
645 address |= TLB_RECHECK;
646 }
647 if (!memory_region_is_ram(section->mr) &&
648 !memory_region_is_romd(section->mr)) {
649 /* IO memory case */
650 address |= TLB_MMIO;
651 addend = 0;
652 } else {
653 /* TLB_MMIO for rom/romd handled below */
654 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
655 }
656
657 /* Make sure there's no cached translation for the new page. */
658 tlb_flush_vtlb_page(env, mmu_idx, vaddr_page);
659
660 code_address = address;
661 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
662 paddr_page, xlat, prot, &address);
663
664 index = (vaddr_page >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
665 te = &env->tlb_table[mmu_idx][index];
666
667 /*
668 * Only evict the old entry to the victim tlb if it's for a
669 * different page; otherwise just overwrite the stale data.
670 */
671 if (!tlb_hit_page_anyprot(te, vaddr_page)) {
672 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
673 CPUTLBEntry *tv = &env->tlb_v_table[mmu_idx][vidx];
674
675 /* Evict the old entry into the victim tlb. */
676 copy_tlb_helper(tv, te, true);
677 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
678 }
679
680 /* refill the tlb */
681 /*
682 * At this point iotlb contains a physical section number in the lower
683 * TARGET_PAGE_BITS, and either
684 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
685 * + the offset within section->mr of the page base (otherwise)
686 * We subtract the vaddr_page (which is page aligned and thus won't
687 * disturb the low bits) to give an offset which can be added to the
688 * (non-page-aligned) vaddr of the eventual memory access to get
689 * the MemoryRegion offset for the access. Note that the vaddr we
690 * subtract here is that of the page base, and not the same as the
691 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
692 */
693 env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page;
694 env->iotlb[mmu_idx][index].attrs = attrs;
695
696 /* Now calculate the new entry */
697 tn.addend = addend - vaddr_page;
698 if (prot & PAGE_READ) {
699 tn.addr_read = address;
700 } else {
701 tn.addr_read = -1;
702 }
703
704 if (prot & PAGE_EXEC) {
705 tn.addr_code = code_address;
706 } else {
707 tn.addr_code = -1;
708 }
709
710 tn.addr_write = -1;
711 if (prot & PAGE_WRITE) {
712 if ((memory_region_is_ram(section->mr) && section->readonly)
713 || memory_region_is_romd(section->mr)) {
714 /* Write access calls the I/O callback. */
715 tn.addr_write = address | TLB_MMIO;
716 } else if (memory_region_is_ram(section->mr)
717 && cpu_physical_memory_is_clean(
718 memory_region_get_ram_addr(section->mr) + xlat)) {
719 tn.addr_write = address | TLB_NOTDIRTY;
720 } else {
721 tn.addr_write = address;
722 }
723 if (prot & PAGE_WRITE_INV) {
724 tn.addr_write |= TLB_INVALID_MASK;
725 }
726 }
727
728 /* Pairs with flag setting in tlb_reset_dirty_range */
729 copy_tlb_helper(te, &tn, true);
730 /* atomic_mb_set(&te->addr_write, write_address); */
731 }
732
733 /* Add a new TLB entry, but without specifying the memory
734 * transaction attributes to be used.
735 */
736 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
737 hwaddr paddr, int prot,
738 int mmu_idx, target_ulong size)
739 {
740 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
741 prot, mmu_idx, size);
742 }
743
744 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
745 {
746 ram_addr_t ram_addr;
747
748 ram_addr = qemu_ram_addr_from_host(ptr);
749 if (ram_addr == RAM_ADDR_INVALID) {
750 error_report("Bad ram pointer %p", ptr);
751 abort();
752 }
753 return ram_addr;
754 }
755
756 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
757 int mmu_idx,
758 target_ulong addr, uintptr_t retaddr,
759 bool recheck, MMUAccessType access_type, int size)
760 {
761 CPUState *cpu = ENV_GET_CPU(env);
762 hwaddr mr_offset;
763 MemoryRegionSection *section;
764 MemoryRegion *mr;
765 uint64_t val;
766 bool locked = false;
767 MemTxResult r;
768
769 if (recheck) {
770 /*
771 * This is a TLB_RECHECK access, where the MMU protection
772 * covers a smaller range than a target page, and we must
773 * repeat the MMU check here. This tlb_fill() call might
774 * longjump out if this access should cause a guest exception.
775 */
776 int index;
777 target_ulong tlb_addr;
778
779 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
780
781 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
782 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
783 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
784 /* RAM access */
785 uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend;
786
787 return ldn_p((void *)haddr, size);
788 }
789 /* Fall through for handling IO accesses */
790 }
791
792 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
793 mr = section->mr;
794 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
795 cpu->mem_io_pc = retaddr;
796 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
797 cpu_io_recompile(cpu, retaddr);
798 }
799
800 cpu->mem_io_vaddr = addr;
801 cpu->mem_io_access_type = access_type;
802
803 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
804 qemu_mutex_lock_iothread();
805 locked = true;
806 }
807 r = memory_region_dispatch_read(mr, mr_offset,
808 &val, size, iotlbentry->attrs);
809 if (r != MEMTX_OK) {
810 hwaddr physaddr = mr_offset +
811 section->offset_within_address_space -
812 section->offset_within_region;
813
814 cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
815 mmu_idx, iotlbentry->attrs, r, retaddr);
816 }
817 if (locked) {
818 qemu_mutex_unlock_iothread();
819 }
820
821 return val;
822 }
823
824 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
825 int mmu_idx,
826 uint64_t val, target_ulong addr,
827 uintptr_t retaddr, bool recheck, int size)
828 {
829 CPUState *cpu = ENV_GET_CPU(env);
830 hwaddr mr_offset;
831 MemoryRegionSection *section;
832 MemoryRegion *mr;
833 bool locked = false;
834 MemTxResult r;
835
836 if (recheck) {
837 /*
838 * This is a TLB_RECHECK access, where the MMU protection
839 * covers a smaller range than a target page, and we must
840 * repeat the MMU check here. This tlb_fill() call might
841 * longjump out if this access should cause a guest exception.
842 */
843 int index;
844 target_ulong tlb_addr;
845
846 tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
847
848 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
849 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
850 if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
851 /* RAM access */
852 uintptr_t haddr = addr + env->tlb_table[mmu_idx][index].addend;
853
854 stn_p((void *)haddr, size, val);
855 return;
856 }
857 /* Fall through for handling IO accesses */
858 }
859
860 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
861 mr = section->mr;
862 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
863 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
864 cpu_io_recompile(cpu, retaddr);
865 }
866 cpu->mem_io_vaddr = addr;
867 cpu->mem_io_pc = retaddr;
868
869 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
870 qemu_mutex_lock_iothread();
871 locked = true;
872 }
873 r = memory_region_dispatch_write(mr, mr_offset,
874 val, size, iotlbentry->attrs);
875 if (r != MEMTX_OK) {
876 hwaddr physaddr = mr_offset +
877 section->offset_within_address_space -
878 section->offset_within_region;
879
880 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
881 mmu_idx, iotlbentry->attrs, r, retaddr);
882 }
883 if (locked) {
884 qemu_mutex_unlock_iothread();
885 }
886 }
887
888 /* Return true if ADDR is present in the victim tlb, and has been copied
889 back to the main tlb. */
890 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
891 size_t elt_ofs, target_ulong page)
892 {
893 size_t vidx;
894 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
895 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
896 target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
897
898 if (cmp == page) {
899 /* Found entry in victim tlb, swap tlb and iotlb. */
900 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
901
902 copy_tlb_helper(&tmptlb, tlb, false);
903 copy_tlb_helper(tlb, vtlb, true);
904 copy_tlb_helper(vtlb, &tmptlb, true);
905
906 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
907 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
908 tmpio = *io; *io = *vio; *vio = tmpio;
909 return true;
910 }
911 }
912 return false;
913 }
914
915 /* Macro to call the above, with local variables from the use context. */
916 #define VICTIM_TLB_HIT(TY, ADDR) \
917 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
918 (ADDR) & TARGET_PAGE_MASK)
919
920 /* NOTE: this function can trigger an exception */
921 /* NOTE2: the returned address is not exactly the physical address: it
922 * is actually a ram_addr_t (in system mode; the user mode emulation
923 * version of this function returns a guest virtual address).
924 */
925 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
926 {
927 int mmu_idx, index;
928 void *p;
929
930 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
931 mmu_idx = cpu_mmu_index(env, true);
932 if (unlikely(!tlb_hit(env->tlb_table[mmu_idx][index].addr_code, addr))) {
933 if (!VICTIM_TLB_HIT(addr_code, addr)) {
934 tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
935 }
936 assert(tlb_hit(env->tlb_table[mmu_idx][index].addr_code, addr));
937 }
938
939 if (unlikely(env->tlb_table[mmu_idx][index].addr_code &
940 (TLB_RECHECK | TLB_MMIO))) {
941 /*
942 * Return -1 if we can't translate and execute from an entire
943 * page of RAM here, which will cause us to execute by loading
944 * and translating one insn at a time, without caching:
945 * - TLB_RECHECK: means the MMU protection covers a smaller range
946 * than a target page, so we must redo the MMU check every insn
947 * - TLB_MMIO: region is not backed by RAM
948 */
949 return -1;
950 }
951
952 p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
953 return qemu_ram_addr_from_host_nofail(p);
954 }
955
956 /* Probe for whether the specified guest write access is permitted.
957 * If it is not permitted then an exception will be taken in the same
958 * way as if this were a real write access (and we will not return).
959 * Otherwise the function will return, and there will be a valid
960 * entry in the TLB for this access.
961 */
962 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
963 uintptr_t retaddr)
964 {
965 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
966 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
967
968 if (!tlb_hit(tlb_addr, addr)) {
969 /* TLB entry is for a different page */
970 if (!VICTIM_TLB_HIT(addr_write, addr)) {
971 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
972 mmu_idx, retaddr);
973 }
974 }
975 }
976
977 /* Probe for a read-modify-write atomic operation. Do not allow unaligned
978 * operations, or io operations to proceed. Return the host address. */
979 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
980 TCGMemOpIdx oi, uintptr_t retaddr,
981 NotDirtyInfo *ndi)
982 {
983 size_t mmu_idx = get_mmuidx(oi);
984 size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
985 CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
986 target_ulong tlb_addr = tlbe->addr_write;
987 TCGMemOp mop = get_memop(oi);
988 int a_bits = get_alignment_bits(mop);
989 int s_bits = mop & MO_SIZE;
990 void *hostaddr;
991
992 /* Adjust the given return address. */
993 retaddr -= GETPC_ADJ;
994
995 /* Enforce guest required alignment. */
996 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
997 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
998 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
999 mmu_idx, retaddr);
1000 }
1001
1002 /* Enforce qemu required alignment. */
1003 if (unlikely(addr & ((1 << s_bits) - 1))) {
1004 /* We get here if guest alignment was not requested,
1005 or was not enforced by cpu_unaligned_access above.
1006 We might widen the access and emulate, but for now
1007 mark an exception and exit the cpu loop. */
1008 goto stop_the_world;
1009 }
1010
1011 /* Check TLB entry and enforce page permissions. */
1012 if (!tlb_hit(tlb_addr, addr)) {
1013 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1014 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
1015 mmu_idx, retaddr);
1016 }
1017 tlb_addr = tlbe->addr_write & ~TLB_INVALID_MASK;
1018 }
1019
1020 /* Notice an IO access or a needs-MMU-lookup access */
1021 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
1022 /* There's really nothing that can be done to
1023 support this apart from stop-the-world. */
1024 goto stop_the_world;
1025 }
1026
1027 /* Let the guest notice RMW on a write-only page. */
1028 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1029 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1030 mmu_idx, retaddr);
1031 /* Since we don't support reads and writes to different addresses,
1032 and we do have the proper page loaded for write, this shouldn't
1033 ever return. But just in case, handle via stop-the-world. */
1034 goto stop_the_world;
1035 }
1036
1037 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1038
1039 ndi->active = false;
1040 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1041 ndi->active = true;
1042 memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr,
1043 qemu_ram_addr_from_host_nofail(hostaddr),
1044 1 << s_bits);
1045 }
1046
1047 return hostaddr;
1048
1049 stop_the_world:
1050 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
1051 }
1052
1053 #ifdef TARGET_WORDS_BIGENDIAN
1054 # define TGT_BE(X) (X)
1055 # define TGT_LE(X) BSWAP(X)
1056 #else
1057 # define TGT_BE(X) BSWAP(X)
1058 # define TGT_LE(X) (X)
1059 #endif
1060
1061 #define MMUSUFFIX _mmu
1062
1063 #define DATA_SIZE 1
1064 #include "softmmu_template.h"
1065
1066 #define DATA_SIZE 2
1067 #include "softmmu_template.h"
1068
1069 #define DATA_SIZE 4
1070 #include "softmmu_template.h"
1071
1072 #define DATA_SIZE 8
1073 #include "softmmu_template.h"
1074
1075 /* First set of helpers allows passing in of OI and RETADDR. This makes
1076 them callable from other helpers. */
1077
1078 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1079 #define ATOMIC_NAME(X) \
1080 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1081 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1082 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1083 #define ATOMIC_MMU_CLEANUP \
1084 do { \
1085 if (unlikely(ndi.active)) { \
1086 memory_notdirty_write_complete(&ndi); \
1087 } \
1088 } while (0)
1089
1090 #define DATA_SIZE 1
1091 #include "atomic_template.h"
1092
1093 #define DATA_SIZE 2
1094 #include "atomic_template.h"
1095
1096 #define DATA_SIZE 4
1097 #include "atomic_template.h"
1098
1099 #ifdef CONFIG_ATOMIC64
1100 #define DATA_SIZE 8
1101 #include "atomic_template.h"
1102 #endif
1103
1104 #ifdef CONFIG_ATOMIC128
1105 #define DATA_SIZE 16
1106 #include "atomic_template.h"
1107 #endif
1108
1109 /* Second set of helpers are directly callable from TCG as helpers. */
1110
1111 #undef EXTRA_ARGS
1112 #undef ATOMIC_NAME
1113 #undef ATOMIC_MMU_LOOKUP
1114 #define EXTRA_ARGS , TCGMemOpIdx oi
1115 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1116 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1117
1118 #define DATA_SIZE 1
1119 #include "atomic_template.h"
1120
1121 #define DATA_SIZE 2
1122 #include "atomic_template.h"
1123
1124 #define DATA_SIZE 4
1125 #include "atomic_template.h"
1126
1127 #ifdef CONFIG_ATOMIC64
1128 #define DATA_SIZE 8
1129 #include "atomic_template.h"
1130 #endif
1131
1132 /* Code access functions. */
1133
1134 #undef MMUSUFFIX
1135 #define MMUSUFFIX _cmmu
1136 #undef GETPC
1137 #define GETPC() ((uintptr_t)0)
1138 #define SOFTMMU_CODE_ACCESS
1139
1140 #define DATA_SIZE 1
1141 #include "softmmu_template.h"
1142
1143 #define DATA_SIZE 2
1144 #include "softmmu_template.h"
1145
1146 #define DATA_SIZE 4
1147 #include "softmmu_template.h"
1148
1149 #define DATA_SIZE 8
1150 #include "softmmu_template.h"