]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
trace/mem: Pass MemOpIdx to trace_mem_get_info
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace/trace-root.h"
37 #include "trace/mem.h"
38 #include "tb-hash.h"
39 #include "internal.h"
40 #ifdef CONFIG_PLUGIN
41 #include "qemu/plugin-memory.h"
42 #endif
43
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
47
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 # define DEBUG_TLB_LOG_GATE 1
52 # else
53 # define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
59
60 #define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63 ## __VA_ARGS__); \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66 } \
67 } while (0)
68
69 #define assert_cpu_is_self(cpu) do { \
70 if (DEBUG_TLB_GATE) { \
71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
72 } \
73 } while (0)
74
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80 */
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 {
86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
87 }
88
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 {
91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
92 }
93
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95 size_t max_entries)
96 {
97 desc->window_begin_ns = ns;
98 desc->window_max_entries = max_entries;
99 }
100
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102 {
103 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
104
105 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
106 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
107 }
108 }
109
110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
111 {
112 /* Discard jump cache entries for any tb which might potentially
113 overlap the flushed page. */
114 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
115 tb_jmp_cache_clear_page(cpu, addr);
116 }
117
118 /**
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
122 *
123 * Called with tlb_lock_held.
124 *
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
131 *
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
138 *
139 * To achieve near-optimal performance for all kinds of workloads, we:
140 *
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
145 *
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
151 *
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
157 */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
160 {
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
167
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
170 }
171 rate = desc->window_max_entries * 100 / old_size;
172
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
178
179 /*
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
188 */
189 if (expected_rate > 70) {
190 ceil *= 2;
191 }
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 }
194
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
198 }
199 return;
200 }
201
202 g_free(fast->table);
203 g_free(desc->iotlb);
204
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
210
211 /*
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
217 */
218 while (fast->table == NULL || desc->iotlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
222 }
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225
226 g_free(fast->table);
227 g_free(desc->iotlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
230 }
231 }
232
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
245 {
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
251 }
252
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
263 }
264
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267 env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272 env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274
275 void tlb_init(CPUState *cpu)
276 {
277 CPUArchState *env = cpu->env_ptr;
278 int64_t now = get_clock_realtime();
279 int i;
280
281 qemu_spin_init(&env_tlb(env)->c.lock);
282
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
285
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288 }
289 }
290
291 void tlb_destroy(CPUState *cpu)
292 {
293 CPUArchState *env = cpu->env_ptr;
294 int i;
295
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300
301 g_free(fast->table);
302 g_free(desc->iotlb);
303 }
304 }
305
306 /* flush_all_helper: run fn across all cpus
307 *
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
312 */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
315 {
316 CPUState *cpu;
317
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
321 }
322 }
323 }
324
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327 CPUState *cpu;
328 size_t full = 0, part = 0, elide = 0;
329
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu->env_ptr;
332
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336 }
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
340 }
341
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344 CPUArchState *env = cpu->env_ptr;
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
347 int64_t now = get_clock_realtime();
348
349 assert_cpu_is_self(cpu);
350
351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352
353 qemu_spin_lock(&env_tlb(env)->c.lock);
354
355 all_dirty = env_tlb(env)->c.dirty;
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
358 env_tlb(env)->c.dirty = all_dirty;
359
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363 }
364
365 qemu_spin_unlock(&env_tlb(env)->c.lock);
366
367 cpu_tb_jmp_cache_clear(cpu);
368
369 if (to_clean == ALL_MMUIDX_BITS) {
370 qatomic_set(&env_tlb(env)->c.full_flush_count,
371 env_tlb(env)->c.full_flush_count + 1);
372 } else {
373 qatomic_set(&env_tlb(env)->c.part_flush_count,
374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375 if (to_clean != asked) {
376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
377 env_tlb(env)->c.elide_flush_count +
378 ctpop16(asked & ~to_clean));
379 }
380 }
381 }
382
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386
387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
390 } else {
391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392 }
393 }
394
395 void tlb_flush(CPUState *cpu)
396 {
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 target_ulong page, target_ulong mask)
432 {
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
439 }
440
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
442 target_ulong page)
443 {
444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
445 }
446
447 /**
448 * tlb_entry_is_empty - return true if the entry is not in use
449 * @te: pointer to CPUTLBEntry
450 */
451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
452 {
453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
454 }
455
456 /* Called with tlb_c.lock held */
457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
458 target_ulong page,
459 target_ulong mask)
460 {
461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
462 memset(tlb_entry, -1, sizeof(*tlb_entry));
463 return true;
464 }
465 return false;
466 }
467
468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
469 target_ulong page)
470 {
471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
472 }
473
474 /* Called with tlb_c.lock held */
475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
476 target_ulong page,
477 target_ulong mask)
478 {
479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
480 int k;
481
482 assert_cpu_is_self(env_cpu(env));
483 for (k = 0; k < CPU_VTLB_SIZE; k++) {
484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
485 tlb_n_used_entries_dec(env, mmu_idx);
486 }
487 }
488 }
489
490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
491 target_ulong page)
492 {
493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
494 }
495
496 static void tlb_flush_page_locked(CPUArchState *env, int midx,
497 target_ulong page)
498 {
499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
501
502 /* Check if we need to flush due to large pages. */
503 if ((page & lp_mask) == lp_addr) {
504 tlb_debug("forcing full flush midx %d ("
505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
506 midx, lp_addr, lp_mask);
507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
508 } else {
509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
510 tlb_n_used_entries_dec(env, midx);
511 }
512 tlb_flush_vtlb_page_locked(env, midx, page);
513 }
514 }
515
516 /**
517 * tlb_flush_page_by_mmuidx_async_0:
518 * @cpu: cpu on which to flush
519 * @addr: page of virtual address to flush
520 * @idxmap: set of mmu_idx to flush
521 *
522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
523 * at @addr from the tlbs indicated by @idxmap from @cpu.
524 */
525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
526 target_ulong addr,
527 uint16_t idxmap)
528 {
529 CPUArchState *env = cpu->env_ptr;
530 int mmu_idx;
531
532 assert_cpu_is_self(cpu);
533
534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
535
536 qemu_spin_lock(&env_tlb(env)->c.lock);
537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
538 if ((idxmap >> mmu_idx) & 1) {
539 tlb_flush_page_locked(env, mmu_idx, addr);
540 }
541 }
542 qemu_spin_unlock(&env_tlb(env)->c.lock);
543
544 tb_flush_jmp_cache(cpu, addr);
545 }
546
547 /**
548 * tlb_flush_page_by_mmuidx_async_1:
549 * @cpu: cpu on which to flush
550 * @data: encoded addr + idxmap
551 *
552 * Helper for tlb_flush_page_by_mmuidx and friends, called through
553 * async_run_on_cpu. The idxmap parameter is encoded in the page
554 * offset of the target_ptr field. This limits the set of mmu_idx
555 * that can be passed via this method.
556 */
557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
558 run_on_cpu_data data)
559 {
560 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
561 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
562 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
563
564 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
565 }
566
567 typedef struct {
568 target_ulong addr;
569 uint16_t idxmap;
570 } TLBFlushPageByMMUIdxData;
571
572 /**
573 * tlb_flush_page_by_mmuidx_async_2:
574 * @cpu: cpu on which to flush
575 * @data: allocated addr + idxmap
576 *
577 * Helper for tlb_flush_page_by_mmuidx and friends, called through
578 * async_run_on_cpu. The addr+idxmap parameters are stored in a
579 * TLBFlushPageByMMUIdxData structure that has been allocated
580 * specifically for this helper. Free the structure when done.
581 */
582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
583 run_on_cpu_data data)
584 {
585 TLBFlushPageByMMUIdxData *d = data.host_ptr;
586
587 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
588 g_free(d);
589 }
590
591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
592 {
593 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
594
595 /* This should already be page aligned */
596 addr &= TARGET_PAGE_MASK;
597
598 if (qemu_cpu_is_self(cpu)) {
599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
600 } else if (idxmap < TARGET_PAGE_SIZE) {
601 /*
602 * Most targets have only a few mmu_idx. In the case where
603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
604 * allocating memory for this operation.
605 */
606 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
607 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
608 } else {
609 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
610
611 /* Otherwise allocate a structure, freed by the worker. */
612 d->addr = addr;
613 d->idxmap = idxmap;
614 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
615 RUN_ON_CPU_HOST_PTR(d));
616 }
617 }
618
619 void tlb_flush_page(CPUState *cpu, target_ulong addr)
620 {
621 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
622 }
623
624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
625 uint16_t idxmap)
626 {
627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
628
629 /* This should already be page aligned */
630 addr &= TARGET_PAGE_MASK;
631
632 /*
633 * Allocate memory to hold addr+idxmap only when needed.
634 * See tlb_flush_page_by_mmuidx for details.
635 */
636 if (idxmap < TARGET_PAGE_SIZE) {
637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
638 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
639 } else {
640 CPUState *dst_cpu;
641
642 /* Allocate a separate data block for each destination cpu. */
643 CPU_FOREACH(dst_cpu) {
644 if (dst_cpu != src_cpu) {
645 TLBFlushPageByMMUIdxData *d
646 = g_new(TLBFlushPageByMMUIdxData, 1);
647
648 d->addr = addr;
649 d->idxmap = idxmap;
650 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
651 RUN_ON_CPU_HOST_PTR(d));
652 }
653 }
654 }
655
656 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
657 }
658
659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
660 {
661 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
662 }
663
664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
665 target_ulong addr,
666 uint16_t idxmap)
667 {
668 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
669
670 /* This should already be page aligned */
671 addr &= TARGET_PAGE_MASK;
672
673 /*
674 * Allocate memory to hold addr+idxmap only when needed.
675 * See tlb_flush_page_by_mmuidx for details.
676 */
677 if (idxmap < TARGET_PAGE_SIZE) {
678 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
679 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
680 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 } else {
683 CPUState *dst_cpu;
684 TLBFlushPageByMMUIdxData *d;
685
686 /* Allocate a separate data block for each destination cpu. */
687 CPU_FOREACH(dst_cpu) {
688 if (dst_cpu != src_cpu) {
689 d = g_new(TLBFlushPageByMMUIdxData, 1);
690 d->addr = addr;
691 d->idxmap = idxmap;
692 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
693 RUN_ON_CPU_HOST_PTR(d));
694 }
695 }
696
697 d = g_new(TLBFlushPageByMMUIdxData, 1);
698 d->addr = addr;
699 d->idxmap = idxmap;
700 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
701 RUN_ON_CPU_HOST_PTR(d));
702 }
703 }
704
705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
706 {
707 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
708 }
709
710 static void tlb_flush_range_locked(CPUArchState *env, int midx,
711 target_ulong addr, target_ulong len,
712 unsigned bits)
713 {
714 CPUTLBDesc *d = &env_tlb(env)->d[midx];
715 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
716 target_ulong mask = MAKE_64BIT_MASK(0, bits);
717
718 /*
719 * If @bits is smaller than the tlb size, there may be multiple entries
720 * within the TLB; otherwise all addresses that match under @mask hit
721 * the same TLB entry.
722 * TODO: Perhaps allow bits to be a few bits less than the size.
723 * For now, just flush the entire TLB.
724 *
725 * If @len is larger than the tlb size, then it will take longer to
726 * test all of the entries in the TLB than it will to flush it all.
727 */
728 if (mask < f->mask || len > f->mask) {
729 tlb_debug("forcing full flush midx %d ("
730 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
731 midx, addr, mask, len);
732 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
733 return;
734 }
735
736 /*
737 * Check if we need to flush due to large pages.
738 * Because large_page_mask contains all 1's from the msb,
739 * we only need to test the end of the range.
740 */
741 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
742 tlb_debug("forcing full flush midx %d ("
743 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
744 midx, d->large_page_addr, d->large_page_mask);
745 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
746 return;
747 }
748
749 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
750 target_ulong page = addr + i;
751 CPUTLBEntry *entry = tlb_entry(env, midx, page);
752
753 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
754 tlb_n_used_entries_dec(env, midx);
755 }
756 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
757 }
758 }
759
760 typedef struct {
761 target_ulong addr;
762 target_ulong len;
763 uint16_t idxmap;
764 uint16_t bits;
765 } TLBFlushRangeData;
766
767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
768 TLBFlushRangeData d)
769 {
770 CPUArchState *env = cpu->env_ptr;
771 int mmu_idx;
772
773 assert_cpu_is_self(cpu);
774
775 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
776 d.addr, d.bits, d.len, d.idxmap);
777
778 qemu_spin_lock(&env_tlb(env)->c.lock);
779 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
780 if ((d.idxmap >> mmu_idx) & 1) {
781 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
782 }
783 }
784 qemu_spin_unlock(&env_tlb(env)->c.lock);
785
786 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
787 tb_flush_jmp_cache(cpu, d.addr + i);
788 }
789 }
790
791 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
792 run_on_cpu_data data)
793 {
794 TLBFlushRangeData *d = data.host_ptr;
795 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
796 g_free(d);
797 }
798
799 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
800 target_ulong len, uint16_t idxmap,
801 unsigned bits)
802 {
803 TLBFlushRangeData d;
804
805 /*
806 * If all bits are significant, and len is small,
807 * this devolves to tlb_flush_page.
808 */
809 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
810 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
811 return;
812 }
813 /* If no page bits are significant, this devolves to tlb_flush. */
814 if (bits < TARGET_PAGE_BITS) {
815 tlb_flush_by_mmuidx(cpu, idxmap);
816 return;
817 }
818
819 /* This should already be page aligned */
820 d.addr = addr & TARGET_PAGE_MASK;
821 d.len = len;
822 d.idxmap = idxmap;
823 d.bits = bits;
824
825 if (qemu_cpu_is_self(cpu)) {
826 tlb_flush_range_by_mmuidx_async_0(cpu, d);
827 } else {
828 /* Otherwise allocate a structure, freed by the worker. */
829 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
830 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
831 RUN_ON_CPU_HOST_PTR(p));
832 }
833 }
834
835 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
836 uint16_t idxmap, unsigned bits)
837 {
838 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
839 }
840
841 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
842 target_ulong addr, target_ulong len,
843 uint16_t idxmap, unsigned bits)
844 {
845 TLBFlushRangeData d;
846 CPUState *dst_cpu;
847
848 /*
849 * If all bits are significant, and len is small,
850 * this devolves to tlb_flush_page.
851 */
852 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
853 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
854 return;
855 }
856 /* If no page bits are significant, this devolves to tlb_flush. */
857 if (bits < TARGET_PAGE_BITS) {
858 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
859 return;
860 }
861
862 /* This should already be page aligned */
863 d.addr = addr & TARGET_PAGE_MASK;
864 d.len = len;
865 d.idxmap = idxmap;
866 d.bits = bits;
867
868 /* Allocate a separate data block for each destination cpu. */
869 CPU_FOREACH(dst_cpu) {
870 if (dst_cpu != src_cpu) {
871 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
872 async_run_on_cpu(dst_cpu,
873 tlb_flush_range_by_mmuidx_async_1,
874 RUN_ON_CPU_HOST_PTR(p));
875 }
876 }
877
878 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
879 }
880
881 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
882 target_ulong addr,
883 uint16_t idxmap, unsigned bits)
884 {
885 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
886 idxmap, bits);
887 }
888
889 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
890 target_ulong addr,
891 target_ulong len,
892 uint16_t idxmap,
893 unsigned bits)
894 {
895 TLBFlushRangeData d, *p;
896 CPUState *dst_cpu;
897
898 /*
899 * If all bits are significant, and len is small,
900 * this devolves to tlb_flush_page.
901 */
902 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
903 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
904 return;
905 }
906 /* If no page bits are significant, this devolves to tlb_flush. */
907 if (bits < TARGET_PAGE_BITS) {
908 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
909 return;
910 }
911
912 /* This should already be page aligned */
913 d.addr = addr & TARGET_PAGE_MASK;
914 d.len = len;
915 d.idxmap = idxmap;
916 d.bits = bits;
917
918 /* Allocate a separate data block for each destination cpu. */
919 CPU_FOREACH(dst_cpu) {
920 if (dst_cpu != src_cpu) {
921 p = g_memdup(&d, sizeof(d));
922 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
923 RUN_ON_CPU_HOST_PTR(p));
924 }
925 }
926
927 p = g_memdup(&d, sizeof(d));
928 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
929 RUN_ON_CPU_HOST_PTR(p));
930 }
931
932 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
933 target_ulong addr,
934 uint16_t idxmap,
935 unsigned bits)
936 {
937 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
938 idxmap, bits);
939 }
940
941 /* update the TLBs so that writes to code in the virtual page 'addr'
942 can be detected */
943 void tlb_protect_code(ram_addr_t ram_addr)
944 {
945 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
946 DIRTY_MEMORY_CODE);
947 }
948
949 /* update the TLB so that writes in physical page 'phys_addr' are no longer
950 tested for self modifying code */
951 void tlb_unprotect_code(ram_addr_t ram_addr)
952 {
953 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
954 }
955
956
957 /*
958 * Dirty write flag handling
959 *
960 * When the TCG code writes to a location it looks up the address in
961 * the TLB and uses that data to compute the final address. If any of
962 * the lower bits of the address are set then the slow path is forced.
963 * There are a number of reasons to do this but for normal RAM the
964 * most usual is detecting writes to code regions which may invalidate
965 * generated code.
966 *
967 * Other vCPUs might be reading their TLBs during guest execution, so we update
968 * te->addr_write with qatomic_set. We don't need to worry about this for
969 * oversized guests as MTTCG is disabled for them.
970 *
971 * Called with tlb_c.lock held.
972 */
973 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
974 uintptr_t start, uintptr_t length)
975 {
976 uintptr_t addr = tlb_entry->addr_write;
977
978 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
979 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
980 addr &= TARGET_PAGE_MASK;
981 addr += tlb_entry->addend;
982 if ((addr - start) < length) {
983 #if TCG_OVERSIZED_GUEST
984 tlb_entry->addr_write |= TLB_NOTDIRTY;
985 #else
986 qatomic_set(&tlb_entry->addr_write,
987 tlb_entry->addr_write | TLB_NOTDIRTY);
988 #endif
989 }
990 }
991 }
992
993 /*
994 * Called with tlb_c.lock held.
995 * Called only from the vCPU context, i.e. the TLB's owner thread.
996 */
997 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
998 {
999 *d = *s;
1000 }
1001
1002 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1003 * the target vCPU).
1004 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1005 * thing actually updated is the target TLB entry ->addr_write flags.
1006 */
1007 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1008 {
1009 CPUArchState *env;
1010
1011 int mmu_idx;
1012
1013 env = cpu->env_ptr;
1014 qemu_spin_lock(&env_tlb(env)->c.lock);
1015 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1016 unsigned int i;
1017 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1018
1019 for (i = 0; i < n; i++) {
1020 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1021 start1, length);
1022 }
1023
1024 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1025 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1026 start1, length);
1027 }
1028 }
1029 qemu_spin_unlock(&env_tlb(env)->c.lock);
1030 }
1031
1032 /* Called with tlb_c.lock held */
1033 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1034 target_ulong vaddr)
1035 {
1036 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1037 tlb_entry->addr_write = vaddr;
1038 }
1039 }
1040
1041 /* update the TLB corresponding to virtual page vaddr
1042 so that it is no longer dirty */
1043 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1044 {
1045 CPUArchState *env = cpu->env_ptr;
1046 int mmu_idx;
1047
1048 assert_cpu_is_self(cpu);
1049
1050 vaddr &= TARGET_PAGE_MASK;
1051 qemu_spin_lock(&env_tlb(env)->c.lock);
1052 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1053 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1054 }
1055
1056 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1057 int k;
1058 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1059 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1060 }
1061 }
1062 qemu_spin_unlock(&env_tlb(env)->c.lock);
1063 }
1064
1065 /* Our TLB does not support large pages, so remember the area covered by
1066 large pages and trigger a full TLB flush if these are invalidated. */
1067 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1068 target_ulong vaddr, target_ulong size)
1069 {
1070 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1071 target_ulong lp_mask = ~(size - 1);
1072
1073 if (lp_addr == (target_ulong)-1) {
1074 /* No previous large page. */
1075 lp_addr = vaddr;
1076 } else {
1077 /* Extend the existing region to include the new page.
1078 This is a compromise between unnecessary flushes and
1079 the cost of maintaining a full variable size TLB. */
1080 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1081 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1082 lp_mask <<= 1;
1083 }
1084 }
1085 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1086 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1087 }
1088
1089 /* Add a new TLB entry. At most one entry for a given virtual address
1090 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1091 * supplied size is only used by tlb_flush_page.
1092 *
1093 * Called from TCG-generated code, which is under an RCU read-side
1094 * critical section.
1095 */
1096 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1097 hwaddr paddr, MemTxAttrs attrs, int prot,
1098 int mmu_idx, target_ulong size)
1099 {
1100 CPUArchState *env = cpu->env_ptr;
1101 CPUTLB *tlb = env_tlb(env);
1102 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1103 MemoryRegionSection *section;
1104 unsigned int index;
1105 target_ulong address;
1106 target_ulong write_address;
1107 uintptr_t addend;
1108 CPUTLBEntry *te, tn;
1109 hwaddr iotlb, xlat, sz, paddr_page;
1110 target_ulong vaddr_page;
1111 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1112 int wp_flags;
1113 bool is_ram, is_romd;
1114
1115 assert_cpu_is_self(cpu);
1116
1117 if (size <= TARGET_PAGE_SIZE) {
1118 sz = TARGET_PAGE_SIZE;
1119 } else {
1120 tlb_add_large_page(env, mmu_idx, vaddr, size);
1121 sz = size;
1122 }
1123 vaddr_page = vaddr & TARGET_PAGE_MASK;
1124 paddr_page = paddr & TARGET_PAGE_MASK;
1125
1126 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1127 &xlat, &sz, attrs, &prot);
1128 assert(sz >= TARGET_PAGE_SIZE);
1129
1130 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
1131 " prot=%x idx=%d\n",
1132 vaddr, paddr, prot, mmu_idx);
1133
1134 address = vaddr_page;
1135 if (size < TARGET_PAGE_SIZE) {
1136 /* Repeat the MMU check and TLB fill on every access. */
1137 address |= TLB_INVALID_MASK;
1138 }
1139 if (attrs.byte_swap) {
1140 address |= TLB_BSWAP;
1141 }
1142
1143 is_ram = memory_region_is_ram(section->mr);
1144 is_romd = memory_region_is_romd(section->mr);
1145
1146 if (is_ram || is_romd) {
1147 /* RAM and ROMD both have associated host memory. */
1148 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1149 } else {
1150 /* I/O does not; force the host address to NULL. */
1151 addend = 0;
1152 }
1153
1154 write_address = address;
1155 if (is_ram) {
1156 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1157 /*
1158 * Computing is_clean is expensive; avoid all that unless
1159 * the page is actually writable.
1160 */
1161 if (prot & PAGE_WRITE) {
1162 if (section->readonly) {
1163 write_address |= TLB_DISCARD_WRITE;
1164 } else if (cpu_physical_memory_is_clean(iotlb)) {
1165 write_address |= TLB_NOTDIRTY;
1166 }
1167 }
1168 } else {
1169 /* I/O or ROMD */
1170 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1171 /*
1172 * Writes to romd devices must go through MMIO to enable write.
1173 * Reads to romd devices go through the ram_ptr found above,
1174 * but of course reads to I/O must go through MMIO.
1175 */
1176 write_address |= TLB_MMIO;
1177 if (!is_romd) {
1178 address = write_address;
1179 }
1180 }
1181
1182 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1183 TARGET_PAGE_SIZE);
1184
1185 index = tlb_index(env, mmu_idx, vaddr_page);
1186 te = tlb_entry(env, mmu_idx, vaddr_page);
1187
1188 /*
1189 * Hold the TLB lock for the rest of the function. We could acquire/release
1190 * the lock several times in the function, but it is faster to amortize the
1191 * acquisition cost by acquiring it just once. Note that this leads to
1192 * a longer critical section, but this is not a concern since the TLB lock
1193 * is unlikely to be contended.
1194 */
1195 qemu_spin_lock(&tlb->c.lock);
1196
1197 /* Note that the tlb is no longer clean. */
1198 tlb->c.dirty |= 1 << mmu_idx;
1199
1200 /* Make sure there's no cached translation for the new page. */
1201 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1202
1203 /*
1204 * Only evict the old entry to the victim tlb if it's for a
1205 * different page; otherwise just overwrite the stale data.
1206 */
1207 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1208 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1209 CPUTLBEntry *tv = &desc->vtable[vidx];
1210
1211 /* Evict the old entry into the victim tlb. */
1212 copy_tlb_helper_locked(tv, te);
1213 desc->viotlb[vidx] = desc->iotlb[index];
1214 tlb_n_used_entries_dec(env, mmu_idx);
1215 }
1216
1217 /* refill the tlb */
1218 /*
1219 * At this point iotlb contains a physical section number in the lower
1220 * TARGET_PAGE_BITS, and either
1221 * + the ram_addr_t of the page base of the target RAM (RAM)
1222 * + the offset within section->mr of the page base (I/O, ROMD)
1223 * We subtract the vaddr_page (which is page aligned and thus won't
1224 * disturb the low bits) to give an offset which can be added to the
1225 * (non-page-aligned) vaddr of the eventual memory access to get
1226 * the MemoryRegion offset for the access. Note that the vaddr we
1227 * subtract here is that of the page base, and not the same as the
1228 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1229 */
1230 desc->iotlb[index].addr = iotlb - vaddr_page;
1231 desc->iotlb[index].attrs = attrs;
1232
1233 /* Now calculate the new entry */
1234 tn.addend = addend - vaddr_page;
1235 if (prot & PAGE_READ) {
1236 tn.addr_read = address;
1237 if (wp_flags & BP_MEM_READ) {
1238 tn.addr_read |= TLB_WATCHPOINT;
1239 }
1240 } else {
1241 tn.addr_read = -1;
1242 }
1243
1244 if (prot & PAGE_EXEC) {
1245 tn.addr_code = address;
1246 } else {
1247 tn.addr_code = -1;
1248 }
1249
1250 tn.addr_write = -1;
1251 if (prot & PAGE_WRITE) {
1252 tn.addr_write = write_address;
1253 if (prot & PAGE_WRITE_INV) {
1254 tn.addr_write |= TLB_INVALID_MASK;
1255 }
1256 if (wp_flags & BP_MEM_WRITE) {
1257 tn.addr_write |= TLB_WATCHPOINT;
1258 }
1259 }
1260
1261 copy_tlb_helper_locked(te, &tn);
1262 tlb_n_used_entries_inc(env, mmu_idx);
1263 qemu_spin_unlock(&tlb->c.lock);
1264 }
1265
1266 /* Add a new TLB entry, but without specifying the memory
1267 * transaction attributes to be used.
1268 */
1269 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1270 hwaddr paddr, int prot,
1271 int mmu_idx, target_ulong size)
1272 {
1273 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1274 prot, mmu_idx, size);
1275 }
1276
1277 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1278 {
1279 ram_addr_t ram_addr;
1280
1281 ram_addr = qemu_ram_addr_from_host(ptr);
1282 if (ram_addr == RAM_ADDR_INVALID) {
1283 error_report("Bad ram pointer %p", ptr);
1284 abort();
1285 }
1286 return ram_addr;
1287 }
1288
1289 /*
1290 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1291 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1292 * be discarded and looked up again (e.g. via tlb_entry()).
1293 */
1294 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1295 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1296 {
1297 CPUClass *cc = CPU_GET_CLASS(cpu);
1298 bool ok;
1299
1300 /*
1301 * This is not a probe, so only valid return is success; failure
1302 * should result in exception + longjmp to the cpu loop.
1303 */
1304 ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
1305 access_type, mmu_idx, false, retaddr);
1306 assert(ok);
1307 }
1308
1309 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1310 MMUAccessType access_type,
1311 int mmu_idx, uintptr_t retaddr)
1312 {
1313 CPUClass *cc = CPU_GET_CLASS(cpu);
1314
1315 cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
1316 }
1317
1318 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1319 vaddr addr, unsigned size,
1320 MMUAccessType access_type,
1321 int mmu_idx, MemTxAttrs attrs,
1322 MemTxResult response,
1323 uintptr_t retaddr)
1324 {
1325 CPUClass *cc = CPU_GET_CLASS(cpu);
1326
1327 if (!cpu->ignore_memory_transaction_failures &&
1328 cc->tcg_ops->do_transaction_failed) {
1329 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1330 access_type, mmu_idx, attrs,
1331 response, retaddr);
1332 }
1333 }
1334
1335 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1336 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1337 MMUAccessType access_type, MemOp op)
1338 {
1339 CPUState *cpu = env_cpu(env);
1340 hwaddr mr_offset;
1341 MemoryRegionSection *section;
1342 MemoryRegion *mr;
1343 uint64_t val;
1344 bool locked = false;
1345 MemTxResult r;
1346
1347 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1348 mr = section->mr;
1349 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1350 cpu->mem_io_pc = retaddr;
1351 if (!cpu->can_do_io) {
1352 cpu_io_recompile(cpu, retaddr);
1353 }
1354
1355 if (!qemu_mutex_iothread_locked()) {
1356 qemu_mutex_lock_iothread();
1357 locked = true;
1358 }
1359 r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
1360 if (r != MEMTX_OK) {
1361 hwaddr physaddr = mr_offset +
1362 section->offset_within_address_space -
1363 section->offset_within_region;
1364
1365 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1366 mmu_idx, iotlbentry->attrs, r, retaddr);
1367 }
1368 if (locked) {
1369 qemu_mutex_unlock_iothread();
1370 }
1371
1372 return val;
1373 }
1374
1375 /*
1376 * Save a potentially trashed IOTLB entry for later lookup by plugin.
1377 * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
1378 * because of the side effect of io_writex changing memory layout.
1379 */
1380 static void save_iotlb_data(CPUState *cs, hwaddr addr,
1381 MemoryRegionSection *section, hwaddr mr_offset)
1382 {
1383 #ifdef CONFIG_PLUGIN
1384 SavedIOTLB *saved = &cs->saved_iotlb;
1385 saved->addr = addr;
1386 saved->section = section;
1387 saved->mr_offset = mr_offset;
1388 #endif
1389 }
1390
1391 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
1392 int mmu_idx, uint64_t val, target_ulong addr,
1393 uintptr_t retaddr, MemOp op)
1394 {
1395 CPUState *cpu = env_cpu(env);
1396 hwaddr mr_offset;
1397 MemoryRegionSection *section;
1398 MemoryRegion *mr;
1399 bool locked = false;
1400 MemTxResult r;
1401
1402 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1403 mr = section->mr;
1404 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1405 if (!cpu->can_do_io) {
1406 cpu_io_recompile(cpu, retaddr);
1407 }
1408 cpu->mem_io_pc = retaddr;
1409
1410 /*
1411 * The memory_region_dispatch may trigger a flush/resize
1412 * so for plugins we save the iotlb_data just in case.
1413 */
1414 save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
1415
1416 if (!qemu_mutex_iothread_locked()) {
1417 qemu_mutex_lock_iothread();
1418 locked = true;
1419 }
1420 r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
1421 if (r != MEMTX_OK) {
1422 hwaddr physaddr = mr_offset +
1423 section->offset_within_address_space -
1424 section->offset_within_region;
1425
1426 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1427 MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
1428 retaddr);
1429 }
1430 if (locked) {
1431 qemu_mutex_unlock_iothread();
1432 }
1433 }
1434
1435 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1436 {
1437 #if TCG_OVERSIZED_GUEST
1438 return *(target_ulong *)((uintptr_t)entry + ofs);
1439 #else
1440 /* ofs might correspond to .addr_write, so use qatomic_read */
1441 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1442 #endif
1443 }
1444
1445 /* Return true if ADDR is present in the victim tlb, and has been copied
1446 back to the main tlb. */
1447 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1448 size_t elt_ofs, target_ulong page)
1449 {
1450 size_t vidx;
1451
1452 assert_cpu_is_self(env_cpu(env));
1453 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1454 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1455 target_ulong cmp;
1456
1457 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1458 #if TCG_OVERSIZED_GUEST
1459 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1460 #else
1461 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1462 #endif
1463
1464 if (cmp == page) {
1465 /* Found entry in victim tlb, swap tlb and iotlb. */
1466 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1467
1468 qemu_spin_lock(&env_tlb(env)->c.lock);
1469 copy_tlb_helper_locked(&tmptlb, tlb);
1470 copy_tlb_helper_locked(tlb, vtlb);
1471 copy_tlb_helper_locked(vtlb, &tmptlb);
1472 qemu_spin_unlock(&env_tlb(env)->c.lock);
1473
1474 CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1475 CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1476 tmpio = *io; *io = *vio; *vio = tmpio;
1477 return true;
1478 }
1479 }
1480 return false;
1481 }
1482
1483 /* Macro to call the above, with local variables from the use context. */
1484 #define VICTIM_TLB_HIT(TY, ADDR) \
1485 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1486 (ADDR) & TARGET_PAGE_MASK)
1487
1488 /*
1489 * Return a ram_addr_t for the virtual address for execution.
1490 *
1491 * Return -1 if we can't translate and execute from an entire page
1492 * of RAM. This will force us to execute by loading and translating
1493 * one insn at a time, without caching.
1494 *
1495 * NOTE: This function will trigger an exception if the page is
1496 * not executable.
1497 */
1498 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1499 void **hostp)
1500 {
1501 uintptr_t mmu_idx = cpu_mmu_index(env, true);
1502 uintptr_t index = tlb_index(env, mmu_idx, addr);
1503 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1504 void *p;
1505
1506 if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1507 if (!VICTIM_TLB_HIT(addr_code, addr)) {
1508 tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1509 index = tlb_index(env, mmu_idx, addr);
1510 entry = tlb_entry(env, mmu_idx, addr);
1511
1512 if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1513 /*
1514 * The MMU protection covers a smaller range than a target
1515 * page, so we must redo the MMU check for every insn.
1516 */
1517 return -1;
1518 }
1519 }
1520 assert(tlb_hit(entry->addr_code, addr));
1521 }
1522
1523 if (unlikely(entry->addr_code & TLB_MMIO)) {
1524 /* The region is not backed by RAM. */
1525 if (hostp) {
1526 *hostp = NULL;
1527 }
1528 return -1;
1529 }
1530
1531 p = (void *)((uintptr_t)addr + entry->addend);
1532 if (hostp) {
1533 *hostp = p;
1534 }
1535 return qemu_ram_addr_from_host_nofail(p);
1536 }
1537
1538 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1539 {
1540 return get_page_addr_code_hostp(env, addr, NULL);
1541 }
1542
1543 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1544 CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
1545 {
1546 ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
1547
1548 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1549
1550 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1551 struct page_collection *pages
1552 = page_collection_lock(ram_addr, ram_addr + size);
1553 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
1554 page_collection_unlock(pages);
1555 }
1556
1557 /*
1558 * Set both VGA and migration bits for simplicity and to remove
1559 * the notdirty callback faster.
1560 */
1561 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1562
1563 /* We remove the notdirty callback only if the code has been flushed. */
1564 if (!cpu_physical_memory_is_clean(ram_addr)) {
1565 trace_memory_notdirty_set_dirty(mem_vaddr);
1566 tlb_set_dirty(cpu, mem_vaddr);
1567 }
1568 }
1569
1570 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1571 int fault_size, MMUAccessType access_type,
1572 int mmu_idx, bool nonfault,
1573 void **phost, uintptr_t retaddr)
1574 {
1575 uintptr_t index = tlb_index(env, mmu_idx, addr);
1576 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1577 target_ulong tlb_addr, page_addr;
1578 size_t elt_ofs;
1579 int flags;
1580
1581 switch (access_type) {
1582 case MMU_DATA_LOAD:
1583 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1584 break;
1585 case MMU_DATA_STORE:
1586 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1587 break;
1588 case MMU_INST_FETCH:
1589 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1590 break;
1591 default:
1592 g_assert_not_reached();
1593 }
1594 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1595
1596 page_addr = addr & TARGET_PAGE_MASK;
1597 if (!tlb_hit_page(tlb_addr, page_addr)) {
1598 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1599 CPUState *cs = env_cpu(env);
1600 CPUClass *cc = CPU_GET_CLASS(cs);
1601
1602 if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1603 mmu_idx, nonfault, retaddr)) {
1604 /* Non-faulting page table read failed. */
1605 *phost = NULL;
1606 return TLB_INVALID_MASK;
1607 }
1608
1609 /* TLB resize via tlb_fill may have moved the entry. */
1610 entry = tlb_entry(env, mmu_idx, addr);
1611 }
1612 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1613 }
1614 flags = tlb_addr & TLB_FLAGS_MASK;
1615
1616 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1617 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1618 *phost = NULL;
1619 return TLB_MMIO;
1620 }
1621
1622 /* Everything else is RAM. */
1623 *phost = (void *)((uintptr_t)addr + entry->addend);
1624 return flags;
1625 }
1626
1627 int probe_access_flags(CPUArchState *env, target_ulong addr,
1628 MMUAccessType access_type, int mmu_idx,
1629 bool nonfault, void **phost, uintptr_t retaddr)
1630 {
1631 int flags;
1632
1633 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1634 nonfault, phost, retaddr);
1635
1636 /* Handle clean RAM pages. */
1637 if (unlikely(flags & TLB_NOTDIRTY)) {
1638 uintptr_t index = tlb_index(env, mmu_idx, addr);
1639 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1640
1641 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1642 flags &= ~TLB_NOTDIRTY;
1643 }
1644
1645 return flags;
1646 }
1647
1648 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1649 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1650 {
1651 void *host;
1652 int flags;
1653
1654 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1655
1656 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1657 false, &host, retaddr);
1658
1659 /* Per the interface, size == 0 merely faults the access. */
1660 if (size == 0) {
1661 return NULL;
1662 }
1663
1664 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1665 uintptr_t index = tlb_index(env, mmu_idx, addr);
1666 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1667
1668 /* Handle watchpoints. */
1669 if (flags & TLB_WATCHPOINT) {
1670 int wp_access = (access_type == MMU_DATA_STORE
1671 ? BP_MEM_WRITE : BP_MEM_READ);
1672 cpu_check_watchpoint(env_cpu(env), addr, size,
1673 iotlbentry->attrs, wp_access, retaddr);
1674 }
1675
1676 /* Handle clean RAM pages. */
1677 if (flags & TLB_NOTDIRTY) {
1678 notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
1679 }
1680 }
1681
1682 return host;
1683 }
1684
1685 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1686 MMUAccessType access_type, int mmu_idx)
1687 {
1688 void *host;
1689 int flags;
1690
1691 flags = probe_access_internal(env, addr, 0, access_type,
1692 mmu_idx, true, &host, 0);
1693
1694 /* No combination of flags are expected by the caller. */
1695 return flags ? NULL : host;
1696 }
1697
1698 #ifdef CONFIG_PLUGIN
1699 /*
1700 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1701 * This should be a hot path as we will have just looked this path up
1702 * in the softmmu lookup code (or helper). We don't handle re-fills or
1703 * checking the victim table. This is purely informational.
1704 *
1705 * This almost never fails as the memory access being instrumented
1706 * should have just filled the TLB. The one corner case is io_writex
1707 * which can cause TLB flushes and potential resizing of the TLBs
1708 * losing the information we need. In those cases we need to recover
1709 * data from a copy of the iotlbentry. As long as this always occurs
1710 * from the same thread (which a mem callback will be) this is safe.
1711 */
1712
1713 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1714 bool is_store, struct qemu_plugin_hwaddr *data)
1715 {
1716 CPUArchState *env = cpu->env_ptr;
1717 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1718 uintptr_t index = tlb_index(env, mmu_idx, addr);
1719 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1720
1721 if (likely(tlb_hit(tlb_addr, addr))) {
1722 /* We must have an iotlb entry for MMIO */
1723 if (tlb_addr & TLB_MMIO) {
1724 CPUIOTLBEntry *iotlbentry;
1725 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1726 data->is_io = true;
1727 data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
1728 data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
1729 } else {
1730 data->is_io = false;
1731 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1732 }
1733 return true;
1734 } else {
1735 SavedIOTLB *saved = &cpu->saved_iotlb;
1736 data->is_io = true;
1737 data->v.io.section = saved->section;
1738 data->v.io.offset = saved->mr_offset;
1739 return true;
1740 }
1741 }
1742
1743 #endif
1744
1745 /*
1746 * Probe for an atomic operation. Do not allow unaligned operations,
1747 * or io operations to proceed. Return the host address.
1748 *
1749 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1750 */
1751 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1752 MemOpIdx oi, int size, int prot,
1753 uintptr_t retaddr)
1754 {
1755 size_t mmu_idx = get_mmuidx(oi);
1756 MemOp mop = get_memop(oi);
1757 int a_bits = get_alignment_bits(mop);
1758 uintptr_t index;
1759 CPUTLBEntry *tlbe;
1760 target_ulong tlb_addr;
1761 void *hostaddr;
1762
1763 /* Adjust the given return address. */
1764 retaddr -= GETPC_ADJ;
1765
1766 /* Enforce guest required alignment. */
1767 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1768 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1769 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1770 mmu_idx, retaddr);
1771 }
1772
1773 /* Enforce qemu required alignment. */
1774 if (unlikely(addr & (size - 1))) {
1775 /* We get here if guest alignment was not requested,
1776 or was not enforced by cpu_unaligned_access above.
1777 We might widen the access and emulate, but for now
1778 mark an exception and exit the cpu loop. */
1779 goto stop_the_world;
1780 }
1781
1782 index = tlb_index(env, mmu_idx, addr);
1783 tlbe = tlb_entry(env, mmu_idx, addr);
1784
1785 /* Check TLB entry and enforce page permissions. */
1786 if (prot & PAGE_WRITE) {
1787 tlb_addr = tlb_addr_write(tlbe);
1788 if (!tlb_hit(tlb_addr, addr)) {
1789 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1790 tlb_fill(env_cpu(env), addr, size,
1791 MMU_DATA_STORE, mmu_idx, retaddr);
1792 index = tlb_index(env, mmu_idx, addr);
1793 tlbe = tlb_entry(env, mmu_idx, addr);
1794 }
1795 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1796 }
1797
1798 /* Let the guest notice RMW on a write-only page. */
1799 if ((prot & PAGE_READ) &&
1800 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1801 tlb_fill(env_cpu(env), addr, size,
1802 MMU_DATA_LOAD, mmu_idx, retaddr);
1803 /*
1804 * Since we don't support reads and writes to different addresses,
1805 * and we do have the proper page loaded for write, this shouldn't
1806 * ever return. But just in case, handle via stop-the-world.
1807 */
1808 goto stop_the_world;
1809 }
1810 } else /* if (prot & PAGE_READ) */ {
1811 tlb_addr = tlbe->addr_read;
1812 if (!tlb_hit(tlb_addr, addr)) {
1813 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1814 tlb_fill(env_cpu(env), addr, size,
1815 MMU_DATA_LOAD, mmu_idx, retaddr);
1816 index = tlb_index(env, mmu_idx, addr);
1817 tlbe = tlb_entry(env, mmu_idx, addr);
1818 }
1819 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1820 }
1821 }
1822
1823 /* Notice an IO access or a needs-MMU-lookup access */
1824 if (unlikely(tlb_addr & TLB_MMIO)) {
1825 /* There's really nothing that can be done to
1826 support this apart from stop-the-world. */
1827 goto stop_the_world;
1828 }
1829
1830 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1831
1832 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1833 notdirty_write(env_cpu(env), addr, size,
1834 &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
1835 }
1836
1837 return hostaddr;
1838
1839 stop_the_world:
1840 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1841 }
1842
1843 /*
1844 * Load Helpers
1845 *
1846 * We support two different access types. SOFTMMU_CODE_ACCESS is
1847 * specifically for reading instructions from system memory. It is
1848 * called by the translation loop and in some helpers where the code
1849 * is disassembled. It shouldn't be called directly by guest code.
1850 */
1851
1852 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1853 MemOpIdx oi, uintptr_t retaddr);
1854
1855 static inline uint64_t QEMU_ALWAYS_INLINE
1856 load_memop(const void *haddr, MemOp op)
1857 {
1858 switch (op) {
1859 case MO_UB:
1860 return ldub_p(haddr);
1861 case MO_BEUW:
1862 return lduw_be_p(haddr);
1863 case MO_LEUW:
1864 return lduw_le_p(haddr);
1865 case MO_BEUL:
1866 return (uint32_t)ldl_be_p(haddr);
1867 case MO_LEUL:
1868 return (uint32_t)ldl_le_p(haddr);
1869 case MO_BEQ:
1870 return ldq_be_p(haddr);
1871 case MO_LEQ:
1872 return ldq_le_p(haddr);
1873 default:
1874 qemu_build_not_reached();
1875 }
1876 }
1877
1878 static inline uint64_t QEMU_ALWAYS_INLINE
1879 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1880 uintptr_t retaddr, MemOp op, bool code_read,
1881 FullLoadHelper *full_load)
1882 {
1883 uintptr_t mmu_idx = get_mmuidx(oi);
1884 uintptr_t index = tlb_index(env, mmu_idx, addr);
1885 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1886 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1887 const size_t tlb_off = code_read ?
1888 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1889 const MMUAccessType access_type =
1890 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1891 unsigned a_bits = get_alignment_bits(get_memop(oi));
1892 void *haddr;
1893 uint64_t res;
1894 size_t size = memop_size(op);
1895
1896 /* Handle CPU specific unaligned behaviour */
1897 if (addr & ((1 << a_bits) - 1)) {
1898 cpu_unaligned_access(env_cpu(env), addr, access_type,
1899 mmu_idx, retaddr);
1900 }
1901
1902 /* If the TLB entry is for a different page, reload and try again. */
1903 if (!tlb_hit(tlb_addr, addr)) {
1904 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1905 addr & TARGET_PAGE_MASK)) {
1906 tlb_fill(env_cpu(env), addr, size,
1907 access_type, mmu_idx, retaddr);
1908 index = tlb_index(env, mmu_idx, addr);
1909 entry = tlb_entry(env, mmu_idx, addr);
1910 }
1911 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1912 tlb_addr &= ~TLB_INVALID_MASK;
1913 }
1914
1915 /* Handle anything that isn't just a straight memory access. */
1916 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1917 CPUIOTLBEntry *iotlbentry;
1918 bool need_swap;
1919
1920 /* For anything that is unaligned, recurse through full_load. */
1921 if ((addr & (size - 1)) != 0) {
1922 goto do_unaligned_access;
1923 }
1924
1925 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1926
1927 /* Handle watchpoints. */
1928 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1929 /* On watchpoint hit, this will longjmp out. */
1930 cpu_check_watchpoint(env_cpu(env), addr, size,
1931 iotlbentry->attrs, BP_MEM_READ, retaddr);
1932 }
1933
1934 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1935
1936 /* Handle I/O access. */
1937 if (likely(tlb_addr & TLB_MMIO)) {
1938 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
1939 access_type, op ^ (need_swap * MO_BSWAP));
1940 }
1941
1942 haddr = (void *)((uintptr_t)addr + entry->addend);
1943
1944 /*
1945 * Keep these two load_memop separate to ensure that the compiler
1946 * is able to fold the entire function to a single instruction.
1947 * There is a build-time assert inside to remind you of this. ;-)
1948 */
1949 if (unlikely(need_swap)) {
1950 return load_memop(haddr, op ^ MO_BSWAP);
1951 }
1952 return load_memop(haddr, op);
1953 }
1954
1955 /* Handle slow unaligned access (it spans two pages or IO). */
1956 if (size > 1
1957 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1958 >= TARGET_PAGE_SIZE)) {
1959 target_ulong addr1, addr2;
1960 uint64_t r1, r2;
1961 unsigned shift;
1962 do_unaligned_access:
1963 addr1 = addr & ~((target_ulong)size - 1);
1964 addr2 = addr1 + size;
1965 r1 = full_load(env, addr1, oi, retaddr);
1966 r2 = full_load(env, addr2, oi, retaddr);
1967 shift = (addr & (size - 1)) * 8;
1968
1969 if (memop_big_endian(op)) {
1970 /* Big-endian combine. */
1971 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1972 } else {
1973 /* Little-endian combine. */
1974 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1975 }
1976 return res & MAKE_64BIT_MASK(0, size * 8);
1977 }
1978
1979 haddr = (void *)((uintptr_t)addr + entry->addend);
1980 return load_memop(haddr, op);
1981 }
1982
1983 /*
1984 * For the benefit of TCG generated code, we want to avoid the
1985 * complication of ABI-specific return type promotion and always
1986 * return a value extended to the register size of the host. This is
1987 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1988 * data, and for that we always have uint64_t.
1989 *
1990 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1991 */
1992
1993 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1994 MemOpIdx oi, uintptr_t retaddr)
1995 {
1996 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1997 }
1998
1999 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2000 MemOpIdx oi, uintptr_t retaddr)
2001 {
2002 return full_ldub_mmu(env, addr, oi, retaddr);
2003 }
2004
2005 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2006 MemOpIdx oi, uintptr_t retaddr)
2007 {
2008 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2009 full_le_lduw_mmu);
2010 }
2011
2012 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2013 MemOpIdx oi, uintptr_t retaddr)
2014 {
2015 return full_le_lduw_mmu(env, addr, oi, retaddr);
2016 }
2017
2018 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2019 MemOpIdx oi, uintptr_t retaddr)
2020 {
2021 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2022 full_be_lduw_mmu);
2023 }
2024
2025 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2026 MemOpIdx oi, uintptr_t retaddr)
2027 {
2028 return full_be_lduw_mmu(env, addr, oi, retaddr);
2029 }
2030
2031 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2032 MemOpIdx oi, uintptr_t retaddr)
2033 {
2034 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2035 full_le_ldul_mmu);
2036 }
2037
2038 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2039 MemOpIdx oi, uintptr_t retaddr)
2040 {
2041 return full_le_ldul_mmu(env, addr, oi, retaddr);
2042 }
2043
2044 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2045 MemOpIdx oi, uintptr_t retaddr)
2046 {
2047 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2048 full_be_ldul_mmu);
2049 }
2050
2051 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2052 MemOpIdx oi, uintptr_t retaddr)
2053 {
2054 return full_be_ldul_mmu(env, addr, oi, retaddr);
2055 }
2056
2057 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2058 MemOpIdx oi, uintptr_t retaddr)
2059 {
2060 return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
2061 helper_le_ldq_mmu);
2062 }
2063
2064 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2065 MemOpIdx oi, uintptr_t retaddr)
2066 {
2067 return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
2068 helper_be_ldq_mmu);
2069 }
2070
2071 /*
2072 * Provide signed versions of the load routines as well. We can of course
2073 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2074 */
2075
2076
2077 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2078 MemOpIdx oi, uintptr_t retaddr)
2079 {
2080 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2081 }
2082
2083 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2084 MemOpIdx oi, uintptr_t retaddr)
2085 {
2086 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2087 }
2088
2089 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2090 MemOpIdx oi, uintptr_t retaddr)
2091 {
2092 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2093 }
2094
2095 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2096 MemOpIdx oi, uintptr_t retaddr)
2097 {
2098 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2099 }
2100
2101 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2102 MemOpIdx oi, uintptr_t retaddr)
2103 {
2104 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2105 }
2106
2107 /*
2108 * Load helpers for cpu_ldst.h.
2109 */
2110
2111 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2112 int mmu_idx, uintptr_t retaddr,
2113 MemOp op, FullLoadHelper *full_load)
2114 {
2115 MemOpIdx oi = make_memop_idx(op, mmu_idx);
2116 uint16_t meminfo = trace_mem_get_info(oi, false);
2117 uint64_t ret;
2118
2119 trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
2120
2121 ret = full_load(env, addr, oi, retaddr);
2122
2123 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
2124
2125 return ret;
2126 }
2127
2128 uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2129 int mmu_idx, uintptr_t ra)
2130 {
2131 return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
2132 }
2133
2134 int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2135 int mmu_idx, uintptr_t ra)
2136 {
2137 return (int8_t)cpu_ldub_mmuidx_ra(env, addr, mmu_idx, ra);
2138 }
2139
2140 uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2141 int mmu_idx, uintptr_t ra)
2142 {
2143 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
2144 }
2145
2146 int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2147 int mmu_idx, uintptr_t ra)
2148 {
2149 return (int16_t)cpu_lduw_be_mmuidx_ra(env, addr, mmu_idx, ra);
2150 }
2151
2152 uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2153 int mmu_idx, uintptr_t ra)
2154 {
2155 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
2156 }
2157
2158 uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2159 int mmu_idx, uintptr_t ra)
2160 {
2161 return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
2162 }
2163
2164 uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2165 int mmu_idx, uintptr_t ra)
2166 {
2167 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
2168 }
2169
2170 int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2171 int mmu_idx, uintptr_t ra)
2172 {
2173 return (int16_t)cpu_lduw_le_mmuidx_ra(env, addr, mmu_idx, ra);
2174 }
2175
2176 uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2177 int mmu_idx, uintptr_t ra)
2178 {
2179 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
2180 }
2181
2182 uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
2183 int mmu_idx, uintptr_t ra)
2184 {
2185 return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
2186 }
2187
2188 uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
2189 uintptr_t retaddr)
2190 {
2191 return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2192 }
2193
2194 int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2195 {
2196 return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2197 }
2198
2199 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
2200 uintptr_t retaddr)
2201 {
2202 return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2203 }
2204
2205 int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2206 {
2207 return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2208 }
2209
2210 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
2211 uintptr_t retaddr)
2212 {
2213 return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2214 }
2215
2216 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
2217 uintptr_t retaddr)
2218 {
2219 return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2220 }
2221
2222 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
2223 uintptr_t retaddr)
2224 {
2225 return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2226 }
2227
2228 int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
2229 {
2230 return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2231 }
2232
2233 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
2234 uintptr_t retaddr)
2235 {
2236 return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2237 }
2238
2239 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
2240 uintptr_t retaddr)
2241 {
2242 return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
2243 }
2244
2245 uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
2246 {
2247 return cpu_ldub_data_ra(env, ptr, 0);
2248 }
2249
2250 int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
2251 {
2252 return cpu_ldsb_data_ra(env, ptr, 0);
2253 }
2254
2255 uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
2256 {
2257 return cpu_lduw_be_data_ra(env, ptr, 0);
2258 }
2259
2260 int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
2261 {
2262 return cpu_ldsw_be_data_ra(env, ptr, 0);
2263 }
2264
2265 uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
2266 {
2267 return cpu_ldl_be_data_ra(env, ptr, 0);
2268 }
2269
2270 uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
2271 {
2272 return cpu_ldq_be_data_ra(env, ptr, 0);
2273 }
2274
2275 uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
2276 {
2277 return cpu_lduw_le_data_ra(env, ptr, 0);
2278 }
2279
2280 int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
2281 {
2282 return cpu_ldsw_le_data_ra(env, ptr, 0);
2283 }
2284
2285 uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
2286 {
2287 return cpu_ldl_le_data_ra(env, ptr, 0);
2288 }
2289
2290 uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
2291 {
2292 return cpu_ldq_le_data_ra(env, ptr, 0);
2293 }
2294
2295 /*
2296 * Store Helpers
2297 */
2298
2299 static inline void QEMU_ALWAYS_INLINE
2300 store_memop(void *haddr, uint64_t val, MemOp op)
2301 {
2302 switch (op) {
2303 case MO_UB:
2304 stb_p(haddr, val);
2305 break;
2306 case MO_BEUW:
2307 stw_be_p(haddr, val);
2308 break;
2309 case MO_LEUW:
2310 stw_le_p(haddr, val);
2311 break;
2312 case MO_BEUL:
2313 stl_be_p(haddr, val);
2314 break;
2315 case MO_LEUL:
2316 stl_le_p(haddr, val);
2317 break;
2318 case MO_BEQ:
2319 stq_be_p(haddr, val);
2320 break;
2321 case MO_LEQ:
2322 stq_le_p(haddr, val);
2323 break;
2324 default:
2325 qemu_build_not_reached();
2326 }
2327 }
2328
2329 static void __attribute__((noinline))
2330 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2331 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2332 bool big_endian)
2333 {
2334 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2335 uintptr_t index, index2;
2336 CPUTLBEntry *entry, *entry2;
2337 target_ulong page2, tlb_addr, tlb_addr2;
2338 MemOpIdx oi;
2339 size_t size2;
2340 int i;
2341
2342 /*
2343 * Ensure the second page is in the TLB. Note that the first page
2344 * is already guaranteed to be filled, and that the second page
2345 * cannot evict the first.
2346 */
2347 page2 = (addr + size) & TARGET_PAGE_MASK;
2348 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2349 index2 = tlb_index(env, mmu_idx, page2);
2350 entry2 = tlb_entry(env, mmu_idx, page2);
2351
2352 tlb_addr2 = tlb_addr_write(entry2);
2353 if (!tlb_hit_page(tlb_addr2, page2)) {
2354 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2355 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2356 mmu_idx, retaddr);
2357 index2 = tlb_index(env, mmu_idx, page2);
2358 entry2 = tlb_entry(env, mmu_idx, page2);
2359 }
2360 tlb_addr2 = tlb_addr_write(entry2);
2361 }
2362
2363 index = tlb_index(env, mmu_idx, addr);
2364 entry = tlb_entry(env, mmu_idx, addr);
2365 tlb_addr = tlb_addr_write(entry);
2366
2367 /*
2368 * Handle watchpoints. Since this may trap, all checks
2369 * must happen before any store.
2370 */
2371 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2372 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2373 env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
2374 BP_MEM_WRITE, retaddr);
2375 }
2376 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2377 cpu_check_watchpoint(env_cpu(env), page2, size2,
2378 env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
2379 BP_MEM_WRITE, retaddr);
2380 }
2381
2382 /*
2383 * XXX: not efficient, but simple.
2384 * This loop must go in the forward direction to avoid issues
2385 * with self-modifying code in Windows 64-bit.
2386 */
2387 oi = make_memop_idx(MO_UB, mmu_idx);
2388 if (big_endian) {
2389 for (i = 0; i < size; ++i) {
2390 /* Big-endian extract. */
2391 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2392 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2393 }
2394 } else {
2395 for (i = 0; i < size; ++i) {
2396 /* Little-endian extract. */
2397 uint8_t val8 = val >> (i * 8);
2398 helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
2399 }
2400 }
2401 }
2402
2403 static inline void QEMU_ALWAYS_INLINE
2404 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2405 MemOpIdx oi, uintptr_t retaddr, MemOp op)
2406 {
2407 uintptr_t mmu_idx = get_mmuidx(oi);
2408 uintptr_t index = tlb_index(env, mmu_idx, addr);
2409 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
2410 target_ulong tlb_addr = tlb_addr_write(entry);
2411 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2412 unsigned a_bits = get_alignment_bits(get_memop(oi));
2413 void *haddr;
2414 size_t size = memop_size(op);
2415
2416 /* Handle CPU specific unaligned behaviour */
2417 if (addr & ((1 << a_bits) - 1)) {
2418 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2419 mmu_idx, retaddr);
2420 }
2421
2422 /* If the TLB entry is for a different page, reload and try again. */
2423 if (!tlb_hit(tlb_addr, addr)) {
2424 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2425 addr & TARGET_PAGE_MASK)) {
2426 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2427 mmu_idx, retaddr);
2428 index = tlb_index(env, mmu_idx, addr);
2429 entry = tlb_entry(env, mmu_idx, addr);
2430 }
2431 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2432 }
2433
2434 /* Handle anything that isn't just a straight memory access. */
2435 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2436 CPUIOTLBEntry *iotlbentry;
2437 bool need_swap;
2438
2439 /* For anything that is unaligned, recurse through byte stores. */
2440 if ((addr & (size - 1)) != 0) {
2441 goto do_unaligned_access;
2442 }
2443
2444 iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
2445
2446 /* Handle watchpoints. */
2447 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2448 /* On watchpoint hit, this will longjmp out. */
2449 cpu_check_watchpoint(env_cpu(env), addr, size,
2450 iotlbentry->attrs, BP_MEM_WRITE, retaddr);
2451 }
2452
2453 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2454
2455 /* Handle I/O access. */
2456 if (tlb_addr & TLB_MMIO) {
2457 io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
2458 op ^ (need_swap * MO_BSWAP));
2459 return;
2460 }
2461
2462 /* Ignore writes to ROM. */
2463 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2464 return;
2465 }
2466
2467 /* Handle clean RAM pages. */
2468 if (tlb_addr & TLB_NOTDIRTY) {
2469 notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
2470 }
2471
2472 haddr = (void *)((uintptr_t)addr + entry->addend);
2473
2474 /*
2475 * Keep these two store_memop separate to ensure that the compiler
2476 * is able to fold the entire function to a single instruction.
2477 * There is a build-time assert inside to remind you of this. ;-)
2478 */
2479 if (unlikely(need_swap)) {
2480 store_memop(haddr, val, op ^ MO_BSWAP);
2481 } else {
2482 store_memop(haddr, val, op);
2483 }
2484 return;
2485 }
2486
2487 /* Handle slow unaligned access (it spans two pages or IO). */
2488 if (size > 1
2489 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2490 >= TARGET_PAGE_SIZE)) {
2491 do_unaligned_access:
2492 store_helper_unaligned(env, addr, val, retaddr, size,
2493 mmu_idx, memop_big_endian(op));
2494 return;
2495 }
2496
2497 haddr = (void *)((uintptr_t)addr + entry->addend);
2498 store_memop(haddr, val, op);
2499 }
2500
2501 void __attribute__((noinline))
2502 helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2503 MemOpIdx oi, uintptr_t retaddr)
2504 {
2505 store_helper(env, addr, val, oi, retaddr, MO_UB);
2506 }
2507
2508 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2509 MemOpIdx oi, uintptr_t retaddr)
2510 {
2511 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2512 }
2513
2514 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2515 MemOpIdx oi, uintptr_t retaddr)
2516 {
2517 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2518 }
2519
2520 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2521 MemOpIdx oi, uintptr_t retaddr)
2522 {
2523 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2524 }
2525
2526 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2527 MemOpIdx oi, uintptr_t retaddr)
2528 {
2529 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2530 }
2531
2532 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2533 MemOpIdx oi, uintptr_t retaddr)
2534 {
2535 store_helper(env, addr, val, oi, retaddr, MO_LEQ);
2536 }
2537
2538 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2539 MemOpIdx oi, uintptr_t retaddr)
2540 {
2541 store_helper(env, addr, val, oi, retaddr, MO_BEQ);
2542 }
2543
2544 /*
2545 * Store Helpers for cpu_ldst.h
2546 */
2547
2548 static inline void QEMU_ALWAYS_INLINE
2549 cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2550 int mmu_idx, uintptr_t retaddr, MemOp op)
2551 {
2552 MemOpIdx oi = make_memop_idx(op, mmu_idx);
2553 uint16_t meminfo = trace_mem_get_info(oi, true);
2554
2555 trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
2556
2557 store_helper(env, addr, val, oi, retaddr, op);
2558
2559 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
2560 }
2561
2562 void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2563 int mmu_idx, uintptr_t retaddr)
2564 {
2565 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
2566 }
2567
2568 void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2569 int mmu_idx, uintptr_t retaddr)
2570 {
2571 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
2572 }
2573
2574 void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2575 int mmu_idx, uintptr_t retaddr)
2576 {
2577 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
2578 }
2579
2580 void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2581 int mmu_idx, uintptr_t retaddr)
2582 {
2583 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
2584 }
2585
2586 void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2587 int mmu_idx, uintptr_t retaddr)
2588 {
2589 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
2590 }
2591
2592 void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
2593 int mmu_idx, uintptr_t retaddr)
2594 {
2595 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
2596 }
2597
2598 void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
2599 int mmu_idx, uintptr_t retaddr)
2600 {
2601 cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
2602 }
2603
2604 void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
2605 uint32_t val, uintptr_t retaddr)
2606 {
2607 cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2608 }
2609
2610 void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
2611 uint32_t val, uintptr_t retaddr)
2612 {
2613 cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2614 }
2615
2616 void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
2617 uint32_t val, uintptr_t retaddr)
2618 {
2619 cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2620 }
2621
2622 void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
2623 uint64_t val, uintptr_t retaddr)
2624 {
2625 cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2626 }
2627
2628 void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
2629 uint32_t val, uintptr_t retaddr)
2630 {
2631 cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2632 }
2633
2634 void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
2635 uint32_t val, uintptr_t retaddr)
2636 {
2637 cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2638 }
2639
2640 void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
2641 uint64_t val, uintptr_t retaddr)
2642 {
2643 cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
2644 }
2645
2646 void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2647 {
2648 cpu_stb_data_ra(env, ptr, val, 0);
2649 }
2650
2651 void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2652 {
2653 cpu_stw_be_data_ra(env, ptr, val, 0);
2654 }
2655
2656 void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2657 {
2658 cpu_stl_be_data_ra(env, ptr, val, 0);
2659 }
2660
2661 void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2662 {
2663 cpu_stq_be_data_ra(env, ptr, val, 0);
2664 }
2665
2666 void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2667 {
2668 cpu_stw_le_data_ra(env, ptr, val, 0);
2669 }
2670
2671 void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
2672 {
2673 cpu_stl_le_data_ra(env, ptr, val, 0);
2674 }
2675
2676 void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
2677 {
2678 cpu_stq_le_data_ra(env, ptr, val, 0);
2679 }
2680
2681 /*
2682 * First set of functions passes in OI and RETADDR.
2683 * This makes them callable from other helpers.
2684 */
2685
2686 #define ATOMIC_NAME(X) \
2687 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2688
2689 #define ATOMIC_MMU_CLEANUP
2690 #define ATOMIC_MMU_IDX get_mmuidx(oi)
2691
2692 #include "atomic_common.c.inc"
2693
2694 #define DATA_SIZE 1
2695 #include "atomic_template.h"
2696
2697 #define DATA_SIZE 2
2698 #include "atomic_template.h"
2699
2700 #define DATA_SIZE 4
2701 #include "atomic_template.h"
2702
2703 #ifdef CONFIG_ATOMIC64
2704 #define DATA_SIZE 8
2705 #include "atomic_template.h"
2706 #endif
2707
2708 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2709 #define DATA_SIZE 16
2710 #include "atomic_template.h"
2711 #endif
2712
2713 /* Code access functions. */
2714
2715 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2716 MemOpIdx oi, uintptr_t retaddr)
2717 {
2718 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2719 }
2720
2721 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2722 {
2723 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2724 return full_ldub_code(env, addr, oi, 0);
2725 }
2726
2727 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2728 MemOpIdx oi, uintptr_t retaddr)
2729 {
2730 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2731 }
2732
2733 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2734 {
2735 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2736 return full_lduw_code(env, addr, oi, 0);
2737 }
2738
2739 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2740 MemOpIdx oi, uintptr_t retaddr)
2741 {
2742 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2743 }
2744
2745 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2746 {
2747 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2748 return full_ldl_code(env, addr, oi, 0);
2749 }
2750
2751 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2752 MemOpIdx oi, uintptr_t retaddr)
2753 {
2754 return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
2755 }
2756
2757 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2758 {
2759 MemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
2760 return full_ldq_code(env, addr, oi, 0);
2761 }