]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
Merge remote-tracking branch 'remotes/kraxel/tags/usb-20180126-v3-pull-request' into...
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
39
40 #ifdef DEBUG_TLB
41 # define DEBUG_TLB_GATE 1
42 # ifdef DEBUG_TLB_LOG
43 # define DEBUG_TLB_LOG_GATE 1
44 # else
45 # define DEBUG_TLB_LOG_GATE 0
46 # endif
47 #else
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
50 #endif
51
52 #define tlb_debug(fmt, ...) do { \
53 if (DEBUG_TLB_LOG_GATE) { \
54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
55 ## __VA_ARGS__); \
56 } else if (DEBUG_TLB_GATE) { \
57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
58 } \
59 } while (0)
60
61 #define assert_cpu_is_self(this_cpu) do { \
62 if (DEBUG_TLB_GATE) { \
63 g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \
64 } \
65 } while (0)
66
67 /* run_on_cpu_data.target_ptr should always be big enough for a
68 * target_ulong even on 32 bit builds */
69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
70
71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
72 */
73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
75
76 /* flush_all_helper: run fn across all cpus
77 *
78 * If the wait flag is set then the src cpu's helper will be queued as
79 * "safe" work and the loop exited creating a synchronisation point
80 * where all queued work will be finished before execution starts
81 * again.
82 */
83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
84 run_on_cpu_data d)
85 {
86 CPUState *cpu;
87
88 CPU_FOREACH(cpu) {
89 if (cpu != src) {
90 async_run_on_cpu(cpu, fn, d);
91 }
92 }
93 }
94
95 size_t tlb_flush_count(void)
96 {
97 CPUState *cpu;
98 size_t count = 0;
99
100 CPU_FOREACH(cpu) {
101 CPUArchState *env = cpu->env_ptr;
102
103 count += atomic_read(&env->tlb_flush_count);
104 }
105 return count;
106 }
107
108 /* This is OK because CPU architectures generally permit an
109 * implementation to drop entries from the TLB at any time, so
110 * flushing more entries than required is only an efficiency issue,
111 * not a correctness issue.
112 */
113 static void tlb_flush_nocheck(CPUState *cpu)
114 {
115 CPUArchState *env = cpu->env_ptr;
116
117 /* The QOM tests will trigger tlb_flushes without setting up TCG
118 * so we bug out here in that case.
119 */
120 if (!tcg_enabled()) {
121 return;
122 }
123
124 assert_cpu_is_self(cpu);
125 atomic_set(&env->tlb_flush_count, env->tlb_flush_count + 1);
126 tlb_debug("(count: %zu)\n", tlb_flush_count());
127
128 tb_lock();
129
130 memset(env->tlb_table, -1, sizeof(env->tlb_table));
131 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
132 cpu_tb_jmp_cache_clear(cpu);
133
134 env->vtlb_index = 0;
135 env->tlb_flush_addr = -1;
136 env->tlb_flush_mask = 0;
137
138 tb_unlock();
139
140 atomic_mb_set(&cpu->pending_tlb_flush, 0);
141 }
142
143 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
144 {
145 tlb_flush_nocheck(cpu);
146 }
147
148 void tlb_flush(CPUState *cpu)
149 {
150 if (cpu->created && !qemu_cpu_is_self(cpu)) {
151 if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
152 atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
153 async_run_on_cpu(cpu, tlb_flush_global_async_work,
154 RUN_ON_CPU_NULL);
155 }
156 } else {
157 tlb_flush_nocheck(cpu);
158 }
159 }
160
161 void tlb_flush_all_cpus(CPUState *src_cpu)
162 {
163 const run_on_cpu_func fn = tlb_flush_global_async_work;
164 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
165 fn(src_cpu, RUN_ON_CPU_NULL);
166 }
167
168 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
169 {
170 const run_on_cpu_func fn = tlb_flush_global_async_work;
171 flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
172 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
173 }
174
175 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
176 {
177 CPUArchState *env = cpu->env_ptr;
178 unsigned long mmu_idx_bitmask = data.host_int;
179 int mmu_idx;
180
181 assert_cpu_is_self(cpu);
182
183 tb_lock();
184
185 tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
186
187 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
188
189 if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
190 tlb_debug("%d\n", mmu_idx);
191
192 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
193 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
194 }
195 }
196
197 cpu_tb_jmp_cache_clear(cpu);
198
199 tlb_debug("done\n");
200
201 tb_unlock();
202 }
203
204 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
205 {
206 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
207
208 if (!qemu_cpu_is_self(cpu)) {
209 uint16_t pending_flushes = idxmap;
210 pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
211
212 if (pending_flushes) {
213 tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
214
215 atomic_or(&cpu->pending_tlb_flush, pending_flushes);
216 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
217 RUN_ON_CPU_HOST_INT(pending_flushes));
218 }
219 } else {
220 tlb_flush_by_mmuidx_async_work(cpu,
221 RUN_ON_CPU_HOST_INT(idxmap));
222 }
223 }
224
225 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
226 {
227 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
228
229 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
230
231 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
232 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
233 }
234
235 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
236 uint16_t idxmap)
237 {
238 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
239
240 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
241
242 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
243 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
244 }
245
246
247
248 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
249 {
250 if (addr == (tlb_entry->addr_read &
251 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
252 addr == (tlb_entry->addr_write &
253 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
254 addr == (tlb_entry->addr_code &
255 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
256 memset(tlb_entry, -1, sizeof(*tlb_entry));
257 }
258 }
259
260 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
261 {
262 CPUArchState *env = cpu->env_ptr;
263 target_ulong addr = (target_ulong) data.target_ptr;
264 int i;
265 int mmu_idx;
266
267 assert_cpu_is_self(cpu);
268
269 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
270
271 /* Check if we need to flush due to large pages. */
272 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
273 tlb_debug("forcing full flush ("
274 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
275 env->tlb_flush_addr, env->tlb_flush_mask);
276
277 tlb_flush(cpu);
278 return;
279 }
280
281 addr &= TARGET_PAGE_MASK;
282 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
283 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
284 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
285 }
286
287 /* check whether there are entries that need to be flushed in the vtlb */
288 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
289 int k;
290 for (k = 0; k < CPU_VTLB_SIZE; k++) {
291 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
292 }
293 }
294
295 tb_flush_jmp_cache(cpu, addr);
296 }
297
298 void tlb_flush_page(CPUState *cpu, target_ulong addr)
299 {
300 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
301
302 if (!qemu_cpu_is_self(cpu)) {
303 async_run_on_cpu(cpu, tlb_flush_page_async_work,
304 RUN_ON_CPU_TARGET_PTR(addr));
305 } else {
306 tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
307 }
308 }
309
310 /* As we are going to hijack the bottom bits of the page address for a
311 * mmuidx bit mask we need to fail to build if we can't do that
312 */
313 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
314
315 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
316 run_on_cpu_data data)
317 {
318 CPUArchState *env = cpu->env_ptr;
319 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
320 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
321 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
322 int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
323 int mmu_idx;
324 int i;
325
326 assert_cpu_is_self(cpu);
327
328 tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
329 page, addr, mmu_idx_bitmap);
330
331 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
332 if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
333 tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
334
335 /* check whether there are vltb entries that need to be flushed */
336 for (i = 0; i < CPU_VTLB_SIZE; i++) {
337 tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
338 }
339 }
340 }
341
342 tb_flush_jmp_cache(cpu, addr);
343 }
344
345 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
346 run_on_cpu_data data)
347 {
348 CPUArchState *env = cpu->env_ptr;
349 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
350 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
351 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
352
353 tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
354
355 /* Check if we need to flush due to large pages. */
356 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
357 tlb_debug("forced full flush ("
358 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
359 env->tlb_flush_addr, env->tlb_flush_mask);
360
361 tlb_flush_by_mmuidx_async_work(cpu,
362 RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
363 } else {
364 tlb_flush_page_by_mmuidx_async_work(cpu, data);
365 }
366 }
367
368 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
369 {
370 target_ulong addr_and_mmu_idx;
371
372 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
373
374 /* This should already be page aligned */
375 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
376 addr_and_mmu_idx |= idxmap;
377
378 if (!qemu_cpu_is_self(cpu)) {
379 async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
380 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
381 } else {
382 tlb_check_page_and_flush_by_mmuidx_async_work(
383 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
384 }
385 }
386
387 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
388 uint16_t idxmap)
389 {
390 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
391 target_ulong addr_and_mmu_idx;
392
393 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
394
395 /* This should already be page aligned */
396 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
397 addr_and_mmu_idx |= idxmap;
398
399 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
400 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
401 }
402
403 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
404 target_ulong addr,
405 uint16_t idxmap)
406 {
407 const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
408 target_ulong addr_and_mmu_idx;
409
410 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
411
412 /* This should already be page aligned */
413 addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
414 addr_and_mmu_idx |= idxmap;
415
416 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
417 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
418 }
419
420 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
421 {
422 const run_on_cpu_func fn = tlb_flush_page_async_work;
423
424 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
425 fn(src, RUN_ON_CPU_TARGET_PTR(addr));
426 }
427
428 void tlb_flush_page_all_cpus_synced(CPUState *src,
429 target_ulong addr)
430 {
431 const run_on_cpu_func fn = tlb_flush_page_async_work;
432
433 flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
434 async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
435 }
436
437 /* update the TLBs so that writes to code in the virtual page 'addr'
438 can be detected */
439 void tlb_protect_code(ram_addr_t ram_addr)
440 {
441 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
442 DIRTY_MEMORY_CODE);
443 }
444
445 /* update the TLB so that writes in physical page 'phys_addr' are no longer
446 tested for self modifying code */
447 void tlb_unprotect_code(ram_addr_t ram_addr)
448 {
449 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
450 }
451
452
453 /*
454 * Dirty write flag handling
455 *
456 * When the TCG code writes to a location it looks up the address in
457 * the TLB and uses that data to compute the final address. If any of
458 * the lower bits of the address are set then the slow path is forced.
459 * There are a number of reasons to do this but for normal RAM the
460 * most usual is detecting writes to code regions which may invalidate
461 * generated code.
462 *
463 * Because we want other vCPUs to respond to changes straight away we
464 * update the te->addr_write field atomically. If the TLB entry has
465 * been changed by the vCPU in the mean time we skip the update.
466 *
467 * As this function uses atomic accesses we also need to ensure
468 * updates to tlb_entries follow the same access rules. We don't need
469 * to worry about this for oversized guests as MTTCG is disabled for
470 * them.
471 */
472
473 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
474 uintptr_t length)
475 {
476 #if TCG_OVERSIZED_GUEST
477 uintptr_t addr = tlb_entry->addr_write;
478
479 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
480 addr &= TARGET_PAGE_MASK;
481 addr += tlb_entry->addend;
482 if ((addr - start) < length) {
483 tlb_entry->addr_write |= TLB_NOTDIRTY;
484 }
485 }
486 #else
487 /* paired with atomic_mb_set in tlb_set_page_with_attrs */
488 uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
489 uintptr_t addr = orig_addr;
490
491 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
492 addr &= TARGET_PAGE_MASK;
493 addr += atomic_read(&tlb_entry->addend);
494 if ((addr - start) < length) {
495 uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
496 atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
497 }
498 }
499 #endif
500 }
501
502 /* For atomic correctness when running MTTCG we need to use the right
503 * primitives when copying entries */
504 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
505 bool atomic_set)
506 {
507 #if TCG_OVERSIZED_GUEST
508 *d = *s;
509 #else
510 if (atomic_set) {
511 d->addr_read = s->addr_read;
512 d->addr_code = s->addr_code;
513 atomic_set(&d->addend, atomic_read(&s->addend));
514 /* Pairs with flag setting in tlb_reset_dirty_range */
515 atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
516 } else {
517 d->addr_read = s->addr_read;
518 d->addr_write = atomic_read(&s->addr_write);
519 d->addr_code = s->addr_code;
520 d->addend = atomic_read(&s->addend);
521 }
522 #endif
523 }
524
525 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
526 * the target vCPU). As such care needs to be taken that we don't
527 * dangerously race with another vCPU update. The only thing actually
528 * updated is the target TLB entry ->addr_write flags.
529 */
530 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
531 {
532 CPUArchState *env;
533
534 int mmu_idx;
535
536 env = cpu->env_ptr;
537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
538 unsigned int i;
539
540 for (i = 0; i < CPU_TLB_SIZE; i++) {
541 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
542 start1, length);
543 }
544
545 for (i = 0; i < CPU_VTLB_SIZE; i++) {
546 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
547 start1, length);
548 }
549 }
550 }
551
552 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
553 {
554 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
555 tlb_entry->addr_write = vaddr;
556 }
557 }
558
559 /* update the TLB corresponding to virtual page vaddr
560 so that it is no longer dirty */
561 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
562 {
563 CPUArchState *env = cpu->env_ptr;
564 int i;
565 int mmu_idx;
566
567 assert_cpu_is_self(cpu);
568
569 vaddr &= TARGET_PAGE_MASK;
570 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
571 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
572 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
573 }
574
575 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
576 int k;
577 for (k = 0; k < CPU_VTLB_SIZE; k++) {
578 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
579 }
580 }
581 }
582
583 /* Our TLB does not support large pages, so remember the area covered by
584 large pages and trigger a full TLB flush if these are invalidated. */
585 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
586 target_ulong size)
587 {
588 target_ulong mask = ~(size - 1);
589
590 if (env->tlb_flush_addr == (target_ulong)-1) {
591 env->tlb_flush_addr = vaddr & mask;
592 env->tlb_flush_mask = mask;
593 return;
594 }
595 /* Extend the existing region to include the new page.
596 This is a compromise between unnecessary flushes and the cost
597 of maintaining a full variable size TLB. */
598 mask &= env->tlb_flush_mask;
599 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
600 mask <<= 1;
601 }
602 env->tlb_flush_addr &= mask;
603 env->tlb_flush_mask = mask;
604 }
605
606 /* Add a new TLB entry. At most one entry for a given virtual address
607 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
608 * supplied size is only used by tlb_flush_page.
609 *
610 * Called from TCG-generated code, which is under an RCU read-side
611 * critical section.
612 */
613 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
614 hwaddr paddr, MemTxAttrs attrs, int prot,
615 int mmu_idx, target_ulong size)
616 {
617 CPUArchState *env = cpu->env_ptr;
618 MemoryRegionSection *section;
619 unsigned int index;
620 target_ulong address;
621 target_ulong code_address;
622 uintptr_t addend;
623 CPUTLBEntry *te, *tv, tn;
624 hwaddr iotlb, xlat, sz;
625 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
626 int asidx = cpu_asidx_from_attrs(cpu, attrs);
627
628 assert_cpu_is_self(cpu);
629 assert(size >= TARGET_PAGE_SIZE);
630 if (size != TARGET_PAGE_SIZE) {
631 tlb_add_large_page(env, vaddr, size);
632 }
633
634 sz = size;
635 section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
636 assert(sz >= TARGET_PAGE_SIZE);
637
638 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
639 " prot=%x idx=%d\n",
640 vaddr, paddr, prot, mmu_idx);
641
642 address = vaddr;
643 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
644 /* IO memory case */
645 address |= TLB_MMIO;
646 addend = 0;
647 } else {
648 /* TLB_MMIO for rom/romd handled below */
649 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
650 }
651
652 code_address = address;
653 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
654 prot, &address);
655
656 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
657 te = &env->tlb_table[mmu_idx][index];
658 /* do not discard the translation in te, evict it into a victim tlb */
659 tv = &env->tlb_v_table[mmu_idx][vidx];
660
661 /* addr_write can race with tlb_reset_dirty_range */
662 copy_tlb_helper(tv, te, true);
663
664 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
665
666 /* refill the tlb */
667 env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
668 env->iotlb[mmu_idx][index].attrs = attrs;
669
670 /* Now calculate the new entry */
671 tn.addend = addend - vaddr;
672 if (prot & PAGE_READ) {
673 tn.addr_read = address;
674 } else {
675 tn.addr_read = -1;
676 }
677
678 if (prot & PAGE_EXEC) {
679 tn.addr_code = code_address;
680 } else {
681 tn.addr_code = -1;
682 }
683
684 tn.addr_write = -1;
685 if (prot & PAGE_WRITE) {
686 if ((memory_region_is_ram(section->mr) && section->readonly)
687 || memory_region_is_romd(section->mr)) {
688 /* Write access calls the I/O callback. */
689 tn.addr_write = address | TLB_MMIO;
690 } else if (memory_region_is_ram(section->mr)
691 && cpu_physical_memory_is_clean(
692 memory_region_get_ram_addr(section->mr) + xlat)) {
693 tn.addr_write = address | TLB_NOTDIRTY;
694 } else {
695 tn.addr_write = address;
696 }
697 if (prot & PAGE_WRITE_INV) {
698 tn.addr_write |= TLB_INVALID_MASK;
699 }
700 }
701
702 /* Pairs with flag setting in tlb_reset_dirty_range */
703 copy_tlb_helper(te, &tn, true);
704 /* atomic_mb_set(&te->addr_write, write_address); */
705 }
706
707 /* Add a new TLB entry, but without specifying the memory
708 * transaction attributes to be used.
709 */
710 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
711 hwaddr paddr, int prot,
712 int mmu_idx, target_ulong size)
713 {
714 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
715 prot, mmu_idx, size);
716 }
717
718 static void report_bad_exec(CPUState *cpu, target_ulong addr)
719 {
720 /* Accidentally executing outside RAM or ROM is quite common for
721 * several user-error situations, so report it in a way that
722 * makes it clear that this isn't a QEMU bug and provide suggestions
723 * about what a user could do to fix things.
724 */
725 error_report("Trying to execute code outside RAM or ROM at 0x"
726 TARGET_FMT_lx, addr);
727 error_printf("This usually means one of the following happened:\n\n"
728 "(1) You told QEMU to execute a kernel for the wrong machine "
729 "type, and it crashed on startup (eg trying to run a "
730 "raspberry pi kernel on a versatilepb QEMU machine)\n"
731 "(2) You didn't give QEMU a kernel or BIOS filename at all, "
732 "and QEMU executed a ROM full of no-op instructions until "
733 "it fell off the end\n"
734 "(3) Your guest kernel has a bug and crashed by jumping "
735 "off into nowhere\n\n"
736 "This is almost always one of the first two, so check your "
737 "command line and that you are using the right type of kernel "
738 "for this machine.\n"
739 "If you think option (3) is likely then you can try debugging "
740 "your guest with the -d debug options; in particular "
741 "-d guest_errors will cause the log to include a dump of the "
742 "guest register state at this point.\n\n"
743 "Execution cannot continue; stopping here.\n\n");
744
745 /* Report also to the logs, with more detail including register dump */
746 qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
747 "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
748 log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
749 }
750
751 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
752 {
753 ram_addr_t ram_addr;
754
755 ram_addr = qemu_ram_addr_from_host(ptr);
756 if (ram_addr == RAM_ADDR_INVALID) {
757 error_report("Bad ram pointer %p", ptr);
758 abort();
759 }
760 return ram_addr;
761 }
762
763 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
764 int mmu_idx,
765 target_ulong addr, uintptr_t retaddr, int size)
766 {
767 CPUState *cpu = ENV_GET_CPU(env);
768 hwaddr physaddr = iotlbentry->addr;
769 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
770 uint64_t val;
771 bool locked = false;
772 MemTxResult r;
773
774 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
775 cpu->mem_io_pc = retaddr;
776 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
777 cpu_io_recompile(cpu, retaddr);
778 }
779
780 cpu->mem_io_vaddr = addr;
781
782 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
783 qemu_mutex_lock_iothread();
784 locked = true;
785 }
786 r = memory_region_dispatch_read(mr, physaddr,
787 &val, size, iotlbentry->attrs);
788 if (r != MEMTX_OK) {
789 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_LOAD,
790 mmu_idx, iotlbentry->attrs, r, retaddr);
791 }
792 if (locked) {
793 qemu_mutex_unlock_iothread();
794 }
795
796 return val;
797 }
798
799 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
800 int mmu_idx,
801 uint64_t val, target_ulong addr,
802 uintptr_t retaddr, int size)
803 {
804 CPUState *cpu = ENV_GET_CPU(env);
805 hwaddr physaddr = iotlbentry->addr;
806 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
807 bool locked = false;
808 MemTxResult r;
809
810 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
811 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
812 cpu_io_recompile(cpu, retaddr);
813 }
814 cpu->mem_io_vaddr = addr;
815 cpu->mem_io_pc = retaddr;
816
817 if (mr->global_locking && !qemu_mutex_iothread_locked()) {
818 qemu_mutex_lock_iothread();
819 locked = true;
820 }
821 r = memory_region_dispatch_write(mr, physaddr,
822 val, size, iotlbentry->attrs);
823 if (r != MEMTX_OK) {
824 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
825 mmu_idx, iotlbentry->attrs, r, retaddr);
826 }
827 if (locked) {
828 qemu_mutex_unlock_iothread();
829 }
830 }
831
832 /* Return true if ADDR is present in the victim tlb, and has been copied
833 back to the main tlb. */
834 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
835 size_t elt_ofs, target_ulong page)
836 {
837 size_t vidx;
838 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
839 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
840 target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
841
842 if (cmp == page) {
843 /* Found entry in victim tlb, swap tlb and iotlb. */
844 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
845
846 copy_tlb_helper(&tmptlb, tlb, false);
847 copy_tlb_helper(tlb, vtlb, true);
848 copy_tlb_helper(vtlb, &tmptlb, true);
849
850 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
851 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
852 tmpio = *io; *io = *vio; *vio = tmpio;
853 return true;
854 }
855 }
856 return false;
857 }
858
859 /* Macro to call the above, with local variables from the use context. */
860 #define VICTIM_TLB_HIT(TY, ADDR) \
861 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
862 (ADDR) & TARGET_PAGE_MASK)
863
864 /* NOTE: this function can trigger an exception */
865 /* NOTE2: the returned address is not exactly the physical address: it
866 * is actually a ram_addr_t (in system mode; the user mode emulation
867 * version of this function returns a guest virtual address).
868 */
869 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
870 {
871 int mmu_idx, index, pd;
872 void *p;
873 MemoryRegion *mr;
874 CPUState *cpu = ENV_GET_CPU(env);
875 CPUIOTLBEntry *iotlbentry;
876 hwaddr physaddr;
877
878 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
879 mmu_idx = cpu_mmu_index(env, true);
880 if (unlikely(env->tlb_table[mmu_idx][index].addr_code !=
881 (addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)))) {
882 if (!VICTIM_TLB_HIT(addr_read, addr)) {
883 tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
884 }
885 }
886 iotlbentry = &env->iotlb[mmu_idx][index];
887 pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
888 mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
889 if (memory_region_is_unassigned(mr)) {
890 qemu_mutex_lock_iothread();
891 if (memory_region_request_mmio_ptr(mr, addr)) {
892 qemu_mutex_unlock_iothread();
893 /* A MemoryRegion is potentially added so re-run the
894 * get_page_addr_code.
895 */
896 return get_page_addr_code(env, addr);
897 }
898 qemu_mutex_unlock_iothread();
899
900 /* Give the new-style cpu_transaction_failed() hook first chance
901 * to handle this.
902 * This is not the ideal place to detect and generate CPU
903 * exceptions for instruction fetch failure (for instance
904 * we don't know the length of the access that the CPU would
905 * use, and it would be better to go ahead and try the access
906 * and use the MemTXResult it produced). However it is the
907 * simplest place we have currently available for the check.
908 */
909 physaddr = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
910 cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx,
911 iotlbentry->attrs, MEMTX_DECODE_ERROR, 0);
912
913 cpu_unassigned_access(cpu, addr, false, true, 0, 4);
914 /* The CPU's unassigned access hook might have longjumped out
915 * with an exception. If it didn't (or there was no hook) then
916 * we can't proceed further.
917 */
918 report_bad_exec(cpu, addr);
919 exit(1);
920 }
921 p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
922 return qemu_ram_addr_from_host_nofail(p);
923 }
924
925 /* Probe for whether the specified guest write access is permitted.
926 * If it is not permitted then an exception will be taken in the same
927 * way as if this were a real write access (and we will not return).
928 * Otherwise the function will return, and there will be a valid
929 * entry in the TLB for this access.
930 */
931 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
932 uintptr_t retaddr)
933 {
934 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
935 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
936
937 if ((addr & TARGET_PAGE_MASK)
938 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
939 /* TLB entry is for a different page */
940 if (!VICTIM_TLB_HIT(addr_write, addr)) {
941 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
942 mmu_idx, retaddr);
943 }
944 }
945 }
946
947 /* Probe for a read-modify-write atomic operation. Do not allow unaligned
948 * operations, or io operations to proceed. Return the host address. */
949 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
950 TCGMemOpIdx oi, uintptr_t retaddr,
951 NotDirtyInfo *ndi)
952 {
953 size_t mmu_idx = get_mmuidx(oi);
954 size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
955 CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
956 target_ulong tlb_addr = tlbe->addr_write;
957 TCGMemOp mop = get_memop(oi);
958 int a_bits = get_alignment_bits(mop);
959 int s_bits = mop & MO_SIZE;
960 void *hostaddr;
961
962 /* Adjust the given return address. */
963 retaddr -= GETPC_ADJ;
964
965 /* Enforce guest required alignment. */
966 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
967 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
968 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
969 mmu_idx, retaddr);
970 }
971
972 /* Enforce qemu required alignment. */
973 if (unlikely(addr & ((1 << s_bits) - 1))) {
974 /* We get here if guest alignment was not requested,
975 or was not enforced by cpu_unaligned_access above.
976 We might widen the access and emulate, but for now
977 mark an exception and exit the cpu loop. */
978 goto stop_the_world;
979 }
980
981 /* Check TLB entry and enforce page permissions. */
982 if ((addr & TARGET_PAGE_MASK)
983 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
984 if (!VICTIM_TLB_HIT(addr_write, addr)) {
985 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE,
986 mmu_idx, retaddr);
987 }
988 tlb_addr = tlbe->addr_write & ~TLB_INVALID_MASK;
989 }
990
991 /* Notice an IO access */
992 if (unlikely(tlb_addr & TLB_MMIO)) {
993 /* There's really nothing that can be done to
994 support this apart from stop-the-world. */
995 goto stop_the_world;
996 }
997
998 /* Let the guest notice RMW on a write-only page. */
999 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1000 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1001 mmu_idx, retaddr);
1002 /* Since we don't support reads and writes to different addresses,
1003 and we do have the proper page loaded for write, this shouldn't
1004 ever return. But just in case, handle via stop-the-world. */
1005 goto stop_the_world;
1006 }
1007
1008 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1009
1010 ndi->active = false;
1011 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1012 ndi->active = true;
1013 memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr,
1014 qemu_ram_addr_from_host_nofail(hostaddr),
1015 1 << s_bits);
1016 }
1017
1018 return hostaddr;
1019
1020 stop_the_world:
1021 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
1022 }
1023
1024 #ifdef TARGET_WORDS_BIGENDIAN
1025 # define TGT_BE(X) (X)
1026 # define TGT_LE(X) BSWAP(X)
1027 #else
1028 # define TGT_BE(X) BSWAP(X)
1029 # define TGT_LE(X) (X)
1030 #endif
1031
1032 #define MMUSUFFIX _mmu
1033
1034 #define DATA_SIZE 1
1035 #include "softmmu_template.h"
1036
1037 #define DATA_SIZE 2
1038 #include "softmmu_template.h"
1039
1040 #define DATA_SIZE 4
1041 #include "softmmu_template.h"
1042
1043 #define DATA_SIZE 8
1044 #include "softmmu_template.h"
1045
1046 /* First set of helpers allows passing in of OI and RETADDR. This makes
1047 them callable from other helpers. */
1048
1049 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1050 #define ATOMIC_NAME(X) \
1051 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1052 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1053 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1054 #define ATOMIC_MMU_CLEANUP \
1055 do { \
1056 if (unlikely(ndi.active)) { \
1057 memory_notdirty_write_complete(&ndi); \
1058 } \
1059 } while (0)
1060
1061 #define DATA_SIZE 1
1062 #include "atomic_template.h"
1063
1064 #define DATA_SIZE 2
1065 #include "atomic_template.h"
1066
1067 #define DATA_SIZE 4
1068 #include "atomic_template.h"
1069
1070 #ifdef CONFIG_ATOMIC64
1071 #define DATA_SIZE 8
1072 #include "atomic_template.h"
1073 #endif
1074
1075 #ifdef CONFIG_ATOMIC128
1076 #define DATA_SIZE 16
1077 #include "atomic_template.h"
1078 #endif
1079
1080 /* Second set of helpers are directly callable from TCG as helpers. */
1081
1082 #undef EXTRA_ARGS
1083 #undef ATOMIC_NAME
1084 #undef ATOMIC_MMU_LOOKUP
1085 #define EXTRA_ARGS , TCGMemOpIdx oi
1086 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1087 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1088
1089 #define DATA_SIZE 1
1090 #include "atomic_template.h"
1091
1092 #define DATA_SIZE 2
1093 #include "atomic_template.h"
1094
1095 #define DATA_SIZE 4
1096 #include "atomic_template.h"
1097
1098 #ifdef CONFIG_ATOMIC64
1099 #define DATA_SIZE 8
1100 #include "atomic_template.h"
1101 #endif
1102
1103 /* Code access functions. */
1104
1105 #undef MMUSUFFIX
1106 #define MMUSUFFIX _cmmu
1107 #undef GETPC
1108 #define GETPC() ((uintptr_t)0)
1109 #define SOFTMMU_CODE_ACCESS
1110
1111 #define DATA_SIZE 1
1112 #include "softmmu_template.h"
1113
1114 #define DATA_SIZE 2
1115 #include "softmmu_template.h"
1116
1117 #define DATA_SIZE 4
1118 #include "softmmu_template.h"
1119
1120 #define DATA_SIZE 8
1121 #include "softmmu_template.h"