]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
accel/tcg: Simplify tlb_plugin_lookup
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * vaddr even on 32 bit builds
78 */
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
80
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
82 */
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
85
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
87 {
88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 }
90
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
92 {
93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 }
95
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97 size_t max_entries)
98 {
99 desc->window_begin_ns = ns;
100 desc->window_max_entries = max_entries;
101 }
102
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
104 {
105 CPUJumpCache *jc = cpu->tb_jmp_cache;
106 int i, i0;
107
108 if (unlikely(!jc)) {
109 return;
110 }
111
112 i0 = tb_jmp_cache_hash_page(page_addr);
113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114 qatomic_set(&jc->array[i0 + i].tb, NULL);
115 }
116 }
117
118 /**
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
122 *
123 * Called with tlb_lock_held.
124 *
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
131 *
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
138 *
139 * To achieve near-optimal performance for all kinds of workloads, we:
140 *
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
145 *
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
151 *
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
157 */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
160 {
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
167
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
170 }
171 rate = desc->window_max_entries * 100 / old_size;
172
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
178
179 /*
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
188 */
189 if (expected_rate > 70) {
190 ceil *= 2;
191 }
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 }
194
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
198 }
199 return;
200 }
201
202 g_free(fast->table);
203 g_free(desc->fulltlb);
204
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210
211 /*
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
217 */
218 while (fast->table == NULL || desc->fulltlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
222 }
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225
226 g_free(fast->table);
227 g_free(desc->fulltlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
230 }
231 }
232
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242
243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
244 int64_t now)
245 {
246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
248
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
251 }
252
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
263 }
264
265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
266 {
267 env_tlb(env)->d[mmu_idx].n_used_entries++;
268 }
269
270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
271 {
272 env_tlb(env)->d[mmu_idx].n_used_entries--;
273 }
274
275 void tlb_init(CPUState *cpu)
276 {
277 CPUArchState *env = cpu->env_ptr;
278 int64_t now = get_clock_realtime();
279 int i;
280
281 qemu_spin_init(&env_tlb(env)->c.lock);
282
283 /* All tlbs are initialized flushed. */
284 env_tlb(env)->c.dirty = 0;
285
286 for (i = 0; i < NB_MMU_MODES; i++) {
287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
288 }
289 }
290
291 void tlb_destroy(CPUState *cpu)
292 {
293 CPUArchState *env = cpu->env_ptr;
294 int i;
295
296 qemu_spin_destroy(&env_tlb(env)->c.lock);
297 for (i = 0; i < NB_MMU_MODES; i++) {
298 CPUTLBDesc *desc = &env_tlb(env)->d[i];
299 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
300
301 g_free(fast->table);
302 g_free(desc->fulltlb);
303 }
304 }
305
306 /* flush_all_helper: run fn across all cpus
307 *
308 * If the wait flag is set then the src cpu's helper will be queued as
309 * "safe" work and the loop exited creating a synchronisation point
310 * where all queued work will be finished before execution starts
311 * again.
312 */
313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
314 run_on_cpu_data d)
315 {
316 CPUState *cpu;
317
318 CPU_FOREACH(cpu) {
319 if (cpu != src) {
320 async_run_on_cpu(cpu, fn, d);
321 }
322 }
323 }
324
325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
326 {
327 CPUState *cpu;
328 size_t full = 0, part = 0, elide = 0;
329
330 CPU_FOREACH(cpu) {
331 CPUArchState *env = cpu->env_ptr;
332
333 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
334 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
336 }
337 *pfull = full;
338 *ppart = part;
339 *pelide = elide;
340 }
341
342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
343 {
344 CPUArchState *env = cpu->env_ptr;
345 uint16_t asked = data.host_int;
346 uint16_t all_dirty, work, to_clean;
347 int64_t now = get_clock_realtime();
348
349 assert_cpu_is_self(cpu);
350
351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
352
353 qemu_spin_lock(&env_tlb(env)->c.lock);
354
355 all_dirty = env_tlb(env)->c.dirty;
356 to_clean = asked & all_dirty;
357 all_dirty &= ~to_clean;
358 env_tlb(env)->c.dirty = all_dirty;
359
360 for (work = to_clean; work != 0; work &= work - 1) {
361 int mmu_idx = ctz32(work);
362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363 }
364
365 qemu_spin_unlock(&env_tlb(env)->c.lock);
366
367 tcg_flush_jmp_cache(cpu);
368
369 if (to_clean == ALL_MMUIDX_BITS) {
370 qatomic_set(&env_tlb(env)->c.full_flush_count,
371 env_tlb(env)->c.full_flush_count + 1);
372 } else {
373 qatomic_set(&env_tlb(env)->c.part_flush_count,
374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
375 if (to_clean != asked) {
376 qatomic_set(&env_tlb(env)->c.elide_flush_count,
377 env_tlb(env)->c.elide_flush_count +
378 ctpop16(asked & ~to_clean));
379 }
380 }
381 }
382
383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
384 {
385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
386
387 if (cpu->created && !qemu_cpu_is_self(cpu)) {
388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
389 RUN_ON_CPU_HOST_INT(idxmap));
390 } else {
391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
392 }
393 }
394
395 void tlb_flush(CPUState *cpu)
396 {
397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 }
399
400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
401 {
402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
403
404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
405
406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 }
409
410 void tlb_flush_all_cpus(CPUState *src_cpu)
411 {
412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 }
414
415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
416 {
417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
418
419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
420
421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 }
424
425 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
426 {
427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 }
429
430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
431 vaddr page, vaddr mask)
432 {
433 page &= mask;
434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
435
436 return (page == (tlb_entry->addr_read & mask) ||
437 page == (tlb_addr_write(tlb_entry) & mask) ||
438 page == (tlb_entry->addr_code & mask));
439 }
440
441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
442 {
443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
444 }
445
446 /**
447 * tlb_entry_is_empty - return true if the entry is not in use
448 * @te: pointer to CPUTLBEntry
449 */
450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 {
452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
453 }
454
455 /* Called with tlb_c.lock held */
456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
457 vaddr page,
458 vaddr mask)
459 {
460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
461 memset(tlb_entry, -1, sizeof(*tlb_entry));
462 return true;
463 }
464 return false;
465 }
466
467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
468 {
469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474 vaddr page,
475 vaddr mask)
476 {
477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478 int k;
479
480 assert_cpu_is_self(env_cpu(env));
481 for (k = 0; k < CPU_VTLB_SIZE; k++) {
482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483 tlb_n_used_entries_dec(env, mmu_idx);
484 }
485 }
486 }
487
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489 vaddr page)
490 {
491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493
494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
495 {
496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
498
499 /* Check if we need to flush due to large pages. */
500 if ((page & lp_mask) == lp_addr) {
501 tlb_debug("forcing full flush midx %d (%016"
502 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
503 midx, lp_addr, lp_mask);
504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
505 } else {
506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
507 tlb_n_used_entries_dec(env, midx);
508 }
509 tlb_flush_vtlb_page_locked(env, midx, page);
510 }
511 }
512
513 /**
514 * tlb_flush_page_by_mmuidx_async_0:
515 * @cpu: cpu on which to flush
516 * @addr: page of virtual address to flush
517 * @idxmap: set of mmu_idx to flush
518 *
519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
520 * at @addr from the tlbs indicated by @idxmap from @cpu.
521 */
522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
523 vaddr addr,
524 uint16_t idxmap)
525 {
526 CPUArchState *env = cpu->env_ptr;
527 int mmu_idx;
528
529 assert_cpu_is_self(cpu);
530
531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
532
533 qemu_spin_lock(&env_tlb(env)->c.lock);
534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
535 if ((idxmap >> mmu_idx) & 1) {
536 tlb_flush_page_locked(env, mmu_idx, addr);
537 }
538 }
539 qemu_spin_unlock(&env_tlb(env)->c.lock);
540
541 /*
542 * Discard jump cache entries for any tb which might potentially
543 * overlap the flushed page, which includes the previous.
544 */
545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
546 tb_jmp_cache_clear_page(cpu, addr);
547 }
548
549 /**
550 * tlb_flush_page_by_mmuidx_async_1:
551 * @cpu: cpu on which to flush
552 * @data: encoded addr + idxmap
553 *
554 * Helper for tlb_flush_page_by_mmuidx and friends, called through
555 * async_run_on_cpu. The idxmap parameter is encoded in the page
556 * offset of the target_ptr field. This limits the set of mmu_idx
557 * that can be passed via this method.
558 */
559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
560 run_on_cpu_data data)
561 {
562 vaddr addr_and_idxmap = data.target_ptr;
563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
565
566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
567 }
568
569 typedef struct {
570 vaddr addr;
571 uint16_t idxmap;
572 } TLBFlushPageByMMUIdxData;
573
574 /**
575 * tlb_flush_page_by_mmuidx_async_2:
576 * @cpu: cpu on which to flush
577 * @data: allocated addr + idxmap
578 *
579 * Helper for tlb_flush_page_by_mmuidx and friends, called through
580 * async_run_on_cpu. The addr+idxmap parameters are stored in a
581 * TLBFlushPageByMMUIdxData structure that has been allocated
582 * specifically for this helper. Free the structure when done.
583 */
584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
585 run_on_cpu_data data)
586 {
587 TLBFlushPageByMMUIdxData *d = data.host_ptr;
588
589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
590 g_free(d);
591 }
592
593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
594 {
595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
596
597 /* This should already be page aligned */
598 addr &= TARGET_PAGE_MASK;
599
600 if (qemu_cpu_is_self(cpu)) {
601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
602 } else if (idxmap < TARGET_PAGE_SIZE) {
603 /*
604 * Most targets have only a few mmu_idx. In the case where
605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
606 * allocating memory for this operation.
607 */
608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
609 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
610 } else {
611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
612
613 /* Otherwise allocate a structure, freed by the worker. */
614 d->addr = addr;
615 d->idxmap = idxmap;
616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
617 RUN_ON_CPU_HOST_PTR(d));
618 }
619 }
620
621 void tlb_flush_page(CPUState *cpu, vaddr addr)
622 {
623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
624 }
625
626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
627 uint16_t idxmap)
628 {
629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
630
631 /* This should already be page aligned */
632 addr &= TARGET_PAGE_MASK;
633
634 /*
635 * Allocate memory to hold addr+idxmap only when needed.
636 * See tlb_flush_page_by_mmuidx for details.
637 */
638 if (idxmap < TARGET_PAGE_SIZE) {
639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
640 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
641 } else {
642 CPUState *dst_cpu;
643
644 /* Allocate a separate data block for each destination cpu. */
645 CPU_FOREACH(dst_cpu) {
646 if (dst_cpu != src_cpu) {
647 TLBFlushPageByMMUIdxData *d
648 = g_new(TLBFlushPageByMMUIdxData, 1);
649
650 d->addr = addr;
651 d->idxmap = idxmap;
652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
653 RUN_ON_CPU_HOST_PTR(d));
654 }
655 }
656 }
657
658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
659 }
660
661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
662 {
663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
664 }
665
666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
667 vaddr addr,
668 uint16_t idxmap)
669 {
670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
671
672 /* This should already be page aligned */
673 addr &= TARGET_PAGE_MASK;
674
675 /*
676 * Allocate memory to hold addr+idxmap only when needed.
677 * See tlb_flush_page_by_mmuidx for details.
678 */
679 if (idxmap < TARGET_PAGE_SIZE) {
680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
681 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
683 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
684 } else {
685 CPUState *dst_cpu;
686 TLBFlushPageByMMUIdxData *d;
687
688 /* Allocate a separate data block for each destination cpu. */
689 CPU_FOREACH(dst_cpu) {
690 if (dst_cpu != src_cpu) {
691 d = g_new(TLBFlushPageByMMUIdxData, 1);
692 d->addr = addr;
693 d->idxmap = idxmap;
694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
695 RUN_ON_CPU_HOST_PTR(d));
696 }
697 }
698
699 d = g_new(TLBFlushPageByMMUIdxData, 1);
700 d->addr = addr;
701 d->idxmap = idxmap;
702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
703 RUN_ON_CPU_HOST_PTR(d));
704 }
705 }
706
707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
708 {
709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
710 }
711
712 static void tlb_flush_range_locked(CPUArchState *env, int midx,
713 vaddr addr, vaddr len,
714 unsigned bits)
715 {
716 CPUTLBDesc *d = &env_tlb(env)->d[midx];
717 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
718 vaddr mask = MAKE_64BIT_MASK(0, bits);
719
720 /*
721 * If @bits is smaller than the tlb size, there may be multiple entries
722 * within the TLB; otherwise all addresses that match under @mask hit
723 * the same TLB entry.
724 * TODO: Perhaps allow bits to be a few bits less than the size.
725 * For now, just flush the entire TLB.
726 *
727 * If @len is larger than the tlb size, then it will take longer to
728 * test all of the entries in the TLB than it will to flush it all.
729 */
730 if (mask < f->mask || len > f->mask) {
731 tlb_debug("forcing full flush midx %d ("
732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
733 midx, addr, mask, len);
734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
735 return;
736 }
737
738 /*
739 * Check if we need to flush due to large pages.
740 * Because large_page_mask contains all 1's from the msb,
741 * we only need to test the end of the range.
742 */
743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
744 tlb_debug("forcing full flush midx %d ("
745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
746 midx, d->large_page_addr, d->large_page_mask);
747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
748 return;
749 }
750
751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
752 vaddr page = addr + i;
753 CPUTLBEntry *entry = tlb_entry(env, midx, page);
754
755 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
756 tlb_n_used_entries_dec(env, midx);
757 }
758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
759 }
760 }
761
762 typedef struct {
763 vaddr addr;
764 vaddr len;
765 uint16_t idxmap;
766 uint16_t bits;
767 } TLBFlushRangeData;
768
769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
770 TLBFlushRangeData d)
771 {
772 CPUArchState *env = cpu->env_ptr;
773 int mmu_idx;
774
775 assert_cpu_is_self(cpu);
776
777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
778 d.addr, d.bits, d.len, d.idxmap);
779
780 qemu_spin_lock(&env_tlb(env)->c.lock);
781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
782 if ((d.idxmap >> mmu_idx) & 1) {
783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
784 }
785 }
786 qemu_spin_unlock(&env_tlb(env)->c.lock);
787
788 /*
789 * If the length is larger than the jump cache size, then it will take
790 * longer to clear each entry individually than it will to clear it all.
791 */
792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
793 tcg_flush_jmp_cache(cpu);
794 return;
795 }
796
797 /*
798 * Discard jump cache entries for any tb which might potentially
799 * overlap the flushed pages, which includes the previous.
800 */
801 d.addr -= TARGET_PAGE_SIZE;
802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
803 tb_jmp_cache_clear_page(cpu, d.addr);
804 d.addr += TARGET_PAGE_SIZE;
805 }
806 }
807
808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
809 run_on_cpu_data data)
810 {
811 TLBFlushRangeData *d = data.host_ptr;
812 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
813 g_free(d);
814 }
815
816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
817 vaddr len, uint16_t idxmap,
818 unsigned bits)
819 {
820 TLBFlushRangeData d;
821
822 /*
823 * If all bits are significant, and len is small,
824 * this devolves to tlb_flush_page.
825 */
826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
828 return;
829 }
830 /* If no page bits are significant, this devolves to tlb_flush. */
831 if (bits < TARGET_PAGE_BITS) {
832 tlb_flush_by_mmuidx(cpu, idxmap);
833 return;
834 }
835
836 /* This should already be page aligned */
837 d.addr = addr & TARGET_PAGE_MASK;
838 d.len = len;
839 d.idxmap = idxmap;
840 d.bits = bits;
841
842 if (qemu_cpu_is_self(cpu)) {
843 tlb_flush_range_by_mmuidx_async_0(cpu, d);
844 } else {
845 /* Otherwise allocate a structure, freed by the worker. */
846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
848 RUN_ON_CPU_HOST_PTR(p));
849 }
850 }
851
852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
853 uint16_t idxmap, unsigned bits)
854 {
855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
856 }
857
858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
859 vaddr addr, vaddr len,
860 uint16_t idxmap, unsigned bits)
861 {
862 TLBFlushRangeData d;
863 CPUState *dst_cpu;
864
865 /*
866 * If all bits are significant, and len is small,
867 * this devolves to tlb_flush_page.
868 */
869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
871 return;
872 }
873 /* If no page bits are significant, this devolves to tlb_flush. */
874 if (bits < TARGET_PAGE_BITS) {
875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
876 return;
877 }
878
879 /* This should already be page aligned */
880 d.addr = addr & TARGET_PAGE_MASK;
881 d.len = len;
882 d.idxmap = idxmap;
883 d.bits = bits;
884
885 /* Allocate a separate data block for each destination cpu. */
886 CPU_FOREACH(dst_cpu) {
887 if (dst_cpu != src_cpu) {
888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
889 async_run_on_cpu(dst_cpu,
890 tlb_flush_range_by_mmuidx_async_1,
891 RUN_ON_CPU_HOST_PTR(p));
892 }
893 }
894
895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
896 }
897
898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
899 vaddr addr, uint16_t idxmap,
900 unsigned bits)
901 {
902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
903 idxmap, bits);
904 }
905
906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
907 vaddr addr,
908 vaddr len,
909 uint16_t idxmap,
910 unsigned bits)
911 {
912 TLBFlushRangeData d, *p;
913 CPUState *dst_cpu;
914
915 /*
916 * If all bits are significant, and len is small,
917 * this devolves to tlb_flush_page.
918 */
919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
921 return;
922 }
923 /* If no page bits are significant, this devolves to tlb_flush. */
924 if (bits < TARGET_PAGE_BITS) {
925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
926 return;
927 }
928
929 /* This should already be page aligned */
930 d.addr = addr & TARGET_PAGE_MASK;
931 d.len = len;
932 d.idxmap = idxmap;
933 d.bits = bits;
934
935 /* Allocate a separate data block for each destination cpu. */
936 CPU_FOREACH(dst_cpu) {
937 if (dst_cpu != src_cpu) {
938 p = g_memdup(&d, sizeof(d));
939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
940 RUN_ON_CPU_HOST_PTR(p));
941 }
942 }
943
944 p = g_memdup(&d, sizeof(d));
945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
946 RUN_ON_CPU_HOST_PTR(p));
947 }
948
949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
950 vaddr addr,
951 uint16_t idxmap,
952 unsigned bits)
953 {
954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
955 idxmap, bits);
956 }
957
958 /* update the TLBs so that writes to code in the virtual page 'addr'
959 can be detected */
960 void tlb_protect_code(ram_addr_t ram_addr)
961 {
962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
963 TARGET_PAGE_SIZE,
964 DIRTY_MEMORY_CODE);
965 }
966
967 /* update the TLB so that writes in physical page 'phys_addr' are no longer
968 tested for self modifying code */
969 void tlb_unprotect_code(ram_addr_t ram_addr)
970 {
971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
972 }
973
974
975 /*
976 * Dirty write flag handling
977 *
978 * When the TCG code writes to a location it looks up the address in
979 * the TLB and uses that data to compute the final address. If any of
980 * the lower bits of the address are set then the slow path is forced.
981 * There are a number of reasons to do this but for normal RAM the
982 * most usual is detecting writes to code regions which may invalidate
983 * generated code.
984 *
985 * Other vCPUs might be reading their TLBs during guest execution, so we update
986 * te->addr_write with qatomic_set. We don't need to worry about this for
987 * oversized guests as MTTCG is disabled for them.
988 *
989 * Called with tlb_c.lock held.
990 */
991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
992 uintptr_t start, uintptr_t length)
993 {
994 uintptr_t addr = tlb_entry->addr_write;
995
996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
998 addr &= TARGET_PAGE_MASK;
999 addr += tlb_entry->addend;
1000 if ((addr - start) < length) {
1001 #if TARGET_LONG_BITS == 32
1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1003 ptr_write += HOST_BIG_ENDIAN;
1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1005 #elif TCG_OVERSIZED_GUEST
1006 tlb_entry->addr_write |= TLB_NOTDIRTY;
1007 #else
1008 qatomic_set(&tlb_entry->addr_write,
1009 tlb_entry->addr_write | TLB_NOTDIRTY);
1010 #endif
1011 }
1012 }
1013 }
1014
1015 /*
1016 * Called with tlb_c.lock held.
1017 * Called only from the vCPU context, i.e. the TLB's owner thread.
1018 */
1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1020 {
1021 *d = *s;
1022 }
1023
1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1025 * the target vCPU).
1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1027 * thing actually updated is the target TLB entry ->addr_write flags.
1028 */
1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1030 {
1031 CPUArchState *env;
1032
1033 int mmu_idx;
1034
1035 env = cpu->env_ptr;
1036 qemu_spin_lock(&env_tlb(env)->c.lock);
1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1038 unsigned int i;
1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1040
1041 for (i = 0; i < n; i++) {
1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1043 start1, length);
1044 }
1045
1046 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1048 start1, length);
1049 }
1050 }
1051 qemu_spin_unlock(&env_tlb(env)->c.lock);
1052 }
1053
1054 /* Called with tlb_c.lock held */
1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1056 vaddr addr)
1057 {
1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1059 tlb_entry->addr_write = addr;
1060 }
1061 }
1062
1063 /* update the TLB corresponding to virtual page vaddr
1064 so that it is no longer dirty */
1065 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1066 {
1067 CPUArchState *env = cpu->env_ptr;
1068 int mmu_idx;
1069
1070 assert_cpu_is_self(cpu);
1071
1072 addr &= TARGET_PAGE_MASK;
1073 qemu_spin_lock(&env_tlb(env)->c.lock);
1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1076 }
1077
1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1079 int k;
1080 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1082 }
1083 }
1084 qemu_spin_unlock(&env_tlb(env)->c.lock);
1085 }
1086
1087 /* Our TLB does not support large pages, so remember the area covered by
1088 large pages and trigger a full TLB flush if these are invalidated. */
1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1090 vaddr addr, uint64_t size)
1091 {
1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1093 vaddr lp_mask = ~(size - 1);
1094
1095 if (lp_addr == (vaddr)-1) {
1096 /* No previous large page. */
1097 lp_addr = addr;
1098 } else {
1099 /* Extend the existing region to include the new page.
1100 This is a compromise between unnecessary flushes and
1101 the cost of maintaining a full variable size TLB. */
1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1103 while (((lp_addr ^ addr) & lp_mask) != 0) {
1104 lp_mask <<= 1;
1105 }
1106 }
1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1109 }
1110
1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1112 vaddr address, int flags,
1113 MMUAccessType access_type, bool enable)
1114 {
1115 if (enable) {
1116 address |= flags & TLB_FLAGS_MASK;
1117 flags &= TLB_SLOW_FLAGS_MASK;
1118 if (flags) {
1119 address |= TLB_FORCE_SLOW;
1120 }
1121 } else {
1122 address = -1;
1123 flags = 0;
1124 }
1125 ent->addr_idx[access_type] = address;
1126 full->slow_flags[access_type] = flags;
1127 }
1128
1129 /*
1130 * Add a new TLB entry. At most one entry for a given virtual address
1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1132 * supplied size is only used by tlb_flush_page.
1133 *
1134 * Called from TCG-generated code, which is under an RCU read-side
1135 * critical section.
1136 */
1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1138 vaddr addr, CPUTLBEntryFull *full)
1139 {
1140 CPUArchState *env = cpu->env_ptr;
1141 CPUTLB *tlb = env_tlb(env);
1142 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1143 MemoryRegionSection *section;
1144 unsigned int index, read_flags, write_flags;
1145 uintptr_t addend;
1146 CPUTLBEntry *te, tn;
1147 hwaddr iotlb, xlat, sz, paddr_page;
1148 vaddr addr_page;
1149 int asidx, wp_flags, prot;
1150 bool is_ram, is_romd;
1151
1152 assert_cpu_is_self(cpu);
1153
1154 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1155 sz = TARGET_PAGE_SIZE;
1156 } else {
1157 sz = (hwaddr)1 << full->lg_page_size;
1158 tlb_add_large_page(env, mmu_idx, addr, sz);
1159 }
1160 addr_page = addr & TARGET_PAGE_MASK;
1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1162
1163 prot = full->prot;
1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1166 &xlat, &sz, full->attrs, &prot);
1167 assert(sz >= TARGET_PAGE_SIZE);
1168
1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1170 " prot=%x idx=%d\n",
1171 addr, full->phys_addr, prot, mmu_idx);
1172
1173 read_flags = 0;
1174 if (full->lg_page_size < TARGET_PAGE_BITS) {
1175 /* Repeat the MMU check and TLB fill on every access. */
1176 read_flags |= TLB_INVALID_MASK;
1177 }
1178 if (full->attrs.byte_swap) {
1179 read_flags |= TLB_BSWAP;
1180 }
1181
1182 is_ram = memory_region_is_ram(section->mr);
1183 is_romd = memory_region_is_romd(section->mr);
1184
1185 if (is_ram || is_romd) {
1186 /* RAM and ROMD both have associated host memory. */
1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1188 } else {
1189 /* I/O does not; force the host address to NULL. */
1190 addend = 0;
1191 }
1192
1193 write_flags = read_flags;
1194 if (is_ram) {
1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1196 assert(!(iotlb & ~TARGET_PAGE_MASK));
1197 /*
1198 * Computing is_clean is expensive; avoid all that unless
1199 * the page is actually writable.
1200 */
1201 if (prot & PAGE_WRITE) {
1202 if (section->readonly) {
1203 write_flags |= TLB_DISCARD_WRITE;
1204 } else if (cpu_physical_memory_is_clean(iotlb)) {
1205 write_flags |= TLB_NOTDIRTY;
1206 }
1207 }
1208 } else {
1209 /* I/O or ROMD */
1210 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1211 /*
1212 * Writes to romd devices must go through MMIO to enable write.
1213 * Reads to romd devices go through the ram_ptr found above,
1214 * but of course reads to I/O must go through MMIO.
1215 */
1216 write_flags |= TLB_MMIO;
1217 if (!is_romd) {
1218 read_flags = write_flags;
1219 }
1220 }
1221
1222 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1223 TARGET_PAGE_SIZE);
1224
1225 index = tlb_index(env, mmu_idx, addr_page);
1226 te = tlb_entry(env, mmu_idx, addr_page);
1227
1228 /*
1229 * Hold the TLB lock for the rest of the function. We could acquire/release
1230 * the lock several times in the function, but it is faster to amortize the
1231 * acquisition cost by acquiring it just once. Note that this leads to
1232 * a longer critical section, but this is not a concern since the TLB lock
1233 * is unlikely to be contended.
1234 */
1235 qemu_spin_lock(&tlb->c.lock);
1236
1237 /* Note that the tlb is no longer clean. */
1238 tlb->c.dirty |= 1 << mmu_idx;
1239
1240 /* Make sure there's no cached translation for the new page. */
1241 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1242
1243 /*
1244 * Only evict the old entry to the victim tlb if it's for a
1245 * different page; otherwise just overwrite the stale data.
1246 */
1247 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1248 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1249 CPUTLBEntry *tv = &desc->vtable[vidx];
1250
1251 /* Evict the old entry into the victim tlb. */
1252 copy_tlb_helper_locked(tv, te);
1253 desc->vfulltlb[vidx] = desc->fulltlb[index];
1254 tlb_n_used_entries_dec(env, mmu_idx);
1255 }
1256
1257 /* refill the tlb */
1258 /*
1259 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1260 * aligned ram_addr_t of the page base of the target RAM.
1261 * Otherwise, iotlb contains
1262 * - a physical section number in the lower TARGET_PAGE_BITS
1263 * - the offset within section->mr of the page base (I/O, ROMD) with the
1264 * TARGET_PAGE_BITS masked off.
1265 * We subtract addr_page (which is page aligned and thus won't
1266 * disturb the low bits) to give an offset which can be added to the
1267 * (non-page-aligned) vaddr of the eventual memory access to get
1268 * the MemoryRegion offset for the access. Note that the vaddr we
1269 * subtract here is that of the page base, and not the same as the
1270 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1271 */
1272 desc->fulltlb[index] = *full;
1273 full = &desc->fulltlb[index];
1274 full->xlat_section = iotlb - addr_page;
1275 full->phys_addr = paddr_page;
1276
1277 /* Now calculate the new entry */
1278 tn.addend = addend - addr_page;
1279
1280 tlb_set_compare(full, &tn, addr_page, read_flags,
1281 MMU_INST_FETCH, prot & PAGE_EXEC);
1282
1283 if (wp_flags & BP_MEM_READ) {
1284 read_flags |= TLB_WATCHPOINT;
1285 }
1286 tlb_set_compare(full, &tn, addr_page, read_flags,
1287 MMU_DATA_LOAD, prot & PAGE_READ);
1288
1289 if (prot & PAGE_WRITE_INV) {
1290 write_flags |= TLB_INVALID_MASK;
1291 }
1292 if (wp_flags & BP_MEM_WRITE) {
1293 write_flags |= TLB_WATCHPOINT;
1294 }
1295 tlb_set_compare(full, &tn, addr_page, write_flags,
1296 MMU_DATA_STORE, prot & PAGE_WRITE);
1297
1298 copy_tlb_helper_locked(te, &tn);
1299 tlb_n_used_entries_inc(env, mmu_idx);
1300 qemu_spin_unlock(&tlb->c.lock);
1301 }
1302
1303 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1304 hwaddr paddr, MemTxAttrs attrs, int prot,
1305 int mmu_idx, uint64_t size)
1306 {
1307 CPUTLBEntryFull full = {
1308 .phys_addr = paddr,
1309 .attrs = attrs,
1310 .prot = prot,
1311 .lg_page_size = ctz64(size)
1312 };
1313
1314 assert(is_power_of_2(size));
1315 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1316 }
1317
1318 void tlb_set_page(CPUState *cpu, vaddr addr,
1319 hwaddr paddr, int prot,
1320 int mmu_idx, uint64_t size)
1321 {
1322 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1323 prot, mmu_idx, size);
1324 }
1325
1326 /*
1327 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1328 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1329 * be discarded and looked up again (e.g. via tlb_entry()).
1330 */
1331 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1332 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1333 {
1334 bool ok;
1335
1336 /*
1337 * This is not a probe, so only valid return is success; failure
1338 * should result in exception + longjmp to the cpu loop.
1339 */
1340 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1341 access_type, mmu_idx, false, retaddr);
1342 assert(ok);
1343 }
1344
1345 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1346 MMUAccessType access_type,
1347 int mmu_idx, uintptr_t retaddr)
1348 {
1349 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1350 mmu_idx, retaddr);
1351 }
1352
1353 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1354 vaddr addr, unsigned size,
1355 MMUAccessType access_type,
1356 int mmu_idx, MemTxAttrs attrs,
1357 MemTxResult response,
1358 uintptr_t retaddr)
1359 {
1360 CPUClass *cc = CPU_GET_CLASS(cpu);
1361
1362 if (!cpu->ignore_memory_transaction_failures &&
1363 cc->tcg_ops->do_transaction_failed) {
1364 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1365 access_type, mmu_idx, attrs,
1366 response, retaddr);
1367 }
1368 }
1369
1370 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1371 int mmu_idx, vaddr addr, uintptr_t retaddr,
1372 MMUAccessType access_type, MemOp op)
1373 {
1374 CPUState *cpu = env_cpu(env);
1375 hwaddr mr_offset;
1376 MemoryRegionSection *section;
1377 MemoryRegion *mr;
1378 uint64_t val;
1379 MemTxResult r;
1380
1381 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1382 mr = section->mr;
1383 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1384 cpu->mem_io_pc = retaddr;
1385 if (!cpu->can_do_io) {
1386 cpu_io_recompile(cpu, retaddr);
1387 }
1388
1389 {
1390 QEMU_IOTHREAD_LOCK_GUARD();
1391 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1392 }
1393
1394 if (r != MEMTX_OK) {
1395 hwaddr physaddr = mr_offset +
1396 section->offset_within_address_space -
1397 section->offset_within_region;
1398
1399 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1400 mmu_idx, full->attrs, r, retaddr);
1401 }
1402 return val;
1403 }
1404
1405 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1406 int mmu_idx, uint64_t val, vaddr addr,
1407 uintptr_t retaddr, MemOp op)
1408 {
1409 CPUState *cpu = env_cpu(env);
1410 hwaddr mr_offset;
1411 MemoryRegionSection *section;
1412 MemoryRegion *mr;
1413 MemTxResult r;
1414
1415 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1416 mr = section->mr;
1417 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1418 if (!cpu->can_do_io) {
1419 cpu_io_recompile(cpu, retaddr);
1420 }
1421 cpu->mem_io_pc = retaddr;
1422
1423 {
1424 QEMU_IOTHREAD_LOCK_GUARD();
1425 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1426 }
1427
1428 if (r != MEMTX_OK) {
1429 hwaddr physaddr = mr_offset +
1430 section->offset_within_address_space -
1431 section->offset_within_region;
1432
1433 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1434 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1435 retaddr);
1436 }
1437 }
1438
1439 /* Return true if ADDR is present in the victim tlb, and has been copied
1440 back to the main tlb. */
1441 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1442 MMUAccessType access_type, vaddr page)
1443 {
1444 size_t vidx;
1445
1446 assert_cpu_is_self(env_cpu(env));
1447 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1448 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1449 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1450
1451 if (cmp == page) {
1452 /* Found entry in victim tlb, swap tlb and iotlb. */
1453 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1454
1455 qemu_spin_lock(&env_tlb(env)->c.lock);
1456 copy_tlb_helper_locked(&tmptlb, tlb);
1457 copy_tlb_helper_locked(tlb, vtlb);
1458 copy_tlb_helper_locked(vtlb, &tmptlb);
1459 qemu_spin_unlock(&env_tlb(env)->c.lock);
1460
1461 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1462 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1463 CPUTLBEntryFull tmpf;
1464 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1465 return true;
1466 }
1467 }
1468 return false;
1469 }
1470
1471 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1472 CPUTLBEntryFull *full, uintptr_t retaddr)
1473 {
1474 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1475
1476 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1477
1478 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1479 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1480 }
1481
1482 /*
1483 * Set both VGA and migration bits for simplicity and to remove
1484 * the notdirty callback faster.
1485 */
1486 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1487
1488 /* We remove the notdirty callback only if the code has been flushed. */
1489 if (!cpu_physical_memory_is_clean(ram_addr)) {
1490 trace_memory_notdirty_set_dirty(mem_vaddr);
1491 tlb_set_dirty(cpu, mem_vaddr);
1492 }
1493 }
1494
1495 static int probe_access_internal(CPUArchState *env, vaddr addr,
1496 int fault_size, MMUAccessType access_type,
1497 int mmu_idx, bool nonfault,
1498 void **phost, CPUTLBEntryFull **pfull,
1499 uintptr_t retaddr, bool check_mem_cbs)
1500 {
1501 uintptr_t index = tlb_index(env, mmu_idx, addr);
1502 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1503 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1504 vaddr page_addr = addr & TARGET_PAGE_MASK;
1505 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1506 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1507 CPUTLBEntryFull *full;
1508
1509 if (!tlb_hit_page(tlb_addr, page_addr)) {
1510 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1511 CPUState *cs = env_cpu(env);
1512
1513 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1514 mmu_idx, nonfault, retaddr)) {
1515 /* Non-faulting page table read failed. */
1516 *phost = NULL;
1517 *pfull = NULL;
1518 return TLB_INVALID_MASK;
1519 }
1520
1521 /* TLB resize via tlb_fill may have moved the entry. */
1522 index = tlb_index(env, mmu_idx, addr);
1523 entry = tlb_entry(env, mmu_idx, addr);
1524
1525 /*
1526 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1527 * to force the next access through tlb_fill. We've just
1528 * called tlb_fill, so we know that this entry *is* valid.
1529 */
1530 flags &= ~TLB_INVALID_MASK;
1531 }
1532 tlb_addr = tlb_read_idx(entry, access_type);
1533 }
1534 flags &= tlb_addr;
1535
1536 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1537 flags |= full->slow_flags[access_type];
1538
1539 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1540 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1541 ||
1542 (access_type != MMU_INST_FETCH && force_mmio)) {
1543 *phost = NULL;
1544 return TLB_MMIO;
1545 }
1546
1547 /* Everything else is RAM. */
1548 *phost = (void *)((uintptr_t)addr + entry->addend);
1549 return flags;
1550 }
1551
1552 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1553 MMUAccessType access_type, int mmu_idx,
1554 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1555 uintptr_t retaddr)
1556 {
1557 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1558 nonfault, phost, pfull, retaddr, true);
1559
1560 /* Handle clean RAM pages. */
1561 if (unlikely(flags & TLB_NOTDIRTY)) {
1562 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1563 flags &= ~TLB_NOTDIRTY;
1564 }
1565
1566 return flags;
1567 }
1568
1569 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1570 MMUAccessType access_type, int mmu_idx,
1571 void **phost, CPUTLBEntryFull **pfull)
1572 {
1573 void *discard_phost;
1574 CPUTLBEntryFull *discard_tlb;
1575
1576 /* privately handle users that don't need full results */
1577 phost = phost ? phost : &discard_phost;
1578 pfull = pfull ? pfull : &discard_tlb;
1579
1580 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1581 true, phost, pfull, 0, false);
1582
1583 /* Handle clean RAM pages. */
1584 if (unlikely(flags & TLB_NOTDIRTY)) {
1585 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1586 flags &= ~TLB_NOTDIRTY;
1587 }
1588
1589 return flags;
1590 }
1591
1592 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1593 MMUAccessType access_type, int mmu_idx,
1594 bool nonfault, void **phost, uintptr_t retaddr)
1595 {
1596 CPUTLBEntryFull *full;
1597 int flags;
1598
1599 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1600
1601 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1602 nonfault, phost, &full, retaddr, true);
1603
1604 /* Handle clean RAM pages. */
1605 if (unlikely(flags & TLB_NOTDIRTY)) {
1606 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1607 flags &= ~TLB_NOTDIRTY;
1608 }
1609
1610 return flags;
1611 }
1612
1613 void *probe_access(CPUArchState *env, vaddr addr, int size,
1614 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1615 {
1616 CPUTLBEntryFull *full;
1617 void *host;
1618 int flags;
1619
1620 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1621
1622 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1623 false, &host, &full, retaddr, true);
1624
1625 /* Per the interface, size == 0 merely faults the access. */
1626 if (size == 0) {
1627 return NULL;
1628 }
1629
1630 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1631 /* Handle watchpoints. */
1632 if (flags & TLB_WATCHPOINT) {
1633 int wp_access = (access_type == MMU_DATA_STORE
1634 ? BP_MEM_WRITE : BP_MEM_READ);
1635 cpu_check_watchpoint(env_cpu(env), addr, size,
1636 full->attrs, wp_access, retaddr);
1637 }
1638
1639 /* Handle clean RAM pages. */
1640 if (flags & TLB_NOTDIRTY) {
1641 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1642 }
1643 }
1644
1645 return host;
1646 }
1647
1648 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1649 MMUAccessType access_type, int mmu_idx)
1650 {
1651 CPUTLBEntryFull *full;
1652 void *host;
1653 int flags;
1654
1655 flags = probe_access_internal(env, addr, 0, access_type,
1656 mmu_idx, true, &host, &full, 0, false);
1657
1658 /* No combination of flags are expected by the caller. */
1659 return flags ? NULL : host;
1660 }
1661
1662 /*
1663 * Return a ram_addr_t for the virtual address for execution.
1664 *
1665 * Return -1 if we can't translate and execute from an entire page
1666 * of RAM. This will force us to execute by loading and translating
1667 * one insn at a time, without caching.
1668 *
1669 * NOTE: This function will trigger an exception if the page is
1670 * not executable.
1671 */
1672 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1673 void **hostp)
1674 {
1675 CPUTLBEntryFull *full;
1676 void *p;
1677
1678 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1679 cpu_mmu_index(env, true), false,
1680 &p, &full, 0, false);
1681 if (p == NULL) {
1682 return -1;
1683 }
1684
1685 if (full->lg_page_size < TARGET_PAGE_BITS) {
1686 return -1;
1687 }
1688
1689 if (hostp) {
1690 *hostp = p;
1691 }
1692 return qemu_ram_addr_from_host_nofail(p);
1693 }
1694
1695 /* Load/store with atomicity primitives. */
1696 #include "ldst_atomicity.c.inc"
1697
1698 #ifdef CONFIG_PLUGIN
1699 /*
1700 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1701 * This should be a hot path as we will have just looked this path up
1702 * in the softmmu lookup code (or helper). We don't handle re-fills or
1703 * checking the victim table. This is purely informational.
1704 *
1705 * The one corner case is i/o write, which can cause changes to the
1706 * address space. Those changes, and the corresponding tlb flush,
1707 * should be delayed until the next TB, so even then this ought not fail.
1708 * But check, Just in Case.
1709 */
1710 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1711 bool is_store, struct qemu_plugin_hwaddr *data)
1712 {
1713 CPUArchState *env = cpu->env_ptr;
1714 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1715 uintptr_t index = tlb_index(env, mmu_idx, addr);
1716 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1717 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1718
1719 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1720 return false;
1721 }
1722
1723 /* We must have an iotlb entry for MMIO */
1724 if (tlb_addr & TLB_MMIO) {
1725 CPUTLBEntryFull *full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1726 hwaddr xlat = full->xlat_section;
1727
1728 data->is_io = true;
1729 data->v.io.offset = (xlat & TARGET_PAGE_MASK) + addr;
1730 data->v.io.section =
1731 iotlb_to_section(cpu, xlat & ~TARGET_PAGE_MASK, full->attrs);
1732 } else {
1733 data->is_io = false;
1734 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1735 }
1736 return true;
1737 }
1738 #endif
1739
1740 /*
1741 * Probe for a load/store operation.
1742 * Return the host address and into @flags.
1743 */
1744
1745 typedef struct MMULookupPageData {
1746 CPUTLBEntryFull *full;
1747 void *haddr;
1748 vaddr addr;
1749 int flags;
1750 int size;
1751 } MMULookupPageData;
1752
1753 typedef struct MMULookupLocals {
1754 MMULookupPageData page[2];
1755 MemOp memop;
1756 int mmu_idx;
1757 } MMULookupLocals;
1758
1759 /**
1760 * mmu_lookup1: translate one page
1761 * @env: cpu context
1762 * @data: lookup parameters
1763 * @mmu_idx: virtual address context
1764 * @access_type: load/store/code
1765 * @ra: return address into tcg generated code, or 0
1766 *
1767 * Resolve the translation for the one page at @data.addr, filling in
1768 * the rest of @data with the results. If the translation fails,
1769 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1770 * @mmu_idx may have resized.
1771 */
1772 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1773 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1774 {
1775 vaddr addr = data->addr;
1776 uintptr_t index = tlb_index(env, mmu_idx, addr);
1777 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1778 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1779 bool maybe_resized = false;
1780 CPUTLBEntryFull *full;
1781 int flags;
1782
1783 /* If the TLB entry is for a different page, reload and try again. */
1784 if (!tlb_hit(tlb_addr, addr)) {
1785 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1786 addr & TARGET_PAGE_MASK)) {
1787 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1788 maybe_resized = true;
1789 index = tlb_index(env, mmu_idx, addr);
1790 entry = tlb_entry(env, mmu_idx, addr);
1791 }
1792 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1793 }
1794
1795 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1796 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1797 flags |= full->slow_flags[access_type];
1798
1799 data->full = full;
1800 data->flags = flags;
1801 /* Compute haddr speculatively; depending on flags it might be invalid. */
1802 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1803
1804 return maybe_resized;
1805 }
1806
1807 /**
1808 * mmu_watch_or_dirty
1809 * @env: cpu context
1810 * @data: lookup parameters
1811 * @access_type: load/store/code
1812 * @ra: return address into tcg generated code, or 0
1813 *
1814 * Trigger watchpoints for @data.addr:@data.size;
1815 * record writes to protected clean pages.
1816 */
1817 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1818 MMUAccessType access_type, uintptr_t ra)
1819 {
1820 CPUTLBEntryFull *full = data->full;
1821 vaddr addr = data->addr;
1822 int flags = data->flags;
1823 int size = data->size;
1824
1825 /* On watchpoint hit, this will longjmp out. */
1826 if (flags & TLB_WATCHPOINT) {
1827 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1828 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1829 flags &= ~TLB_WATCHPOINT;
1830 }
1831
1832 /* Note that notdirty is only set for writes. */
1833 if (flags & TLB_NOTDIRTY) {
1834 notdirty_write(env_cpu(env), addr, size, full, ra);
1835 flags &= ~TLB_NOTDIRTY;
1836 }
1837 data->flags = flags;
1838 }
1839
1840 /**
1841 * mmu_lookup: translate page(s)
1842 * @env: cpu context
1843 * @addr: virtual address
1844 * @oi: combined mmu_idx and MemOp
1845 * @ra: return address into tcg generated code, or 0
1846 * @access_type: load/store/code
1847 * @l: output result
1848 *
1849 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1850 * bytes. Return true if the lookup crosses a page boundary.
1851 */
1852 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1853 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1854 {
1855 unsigned a_bits;
1856 bool crosspage;
1857 int flags;
1858
1859 l->memop = get_memop(oi);
1860 l->mmu_idx = get_mmuidx(oi);
1861
1862 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1863
1864 /* Handle CPU specific unaligned behaviour */
1865 a_bits = get_alignment_bits(l->memop);
1866 if (addr & ((1 << a_bits) - 1)) {
1867 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1868 }
1869
1870 l->page[0].addr = addr;
1871 l->page[0].size = memop_size(l->memop);
1872 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1873 l->page[1].size = 0;
1874 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1875
1876 if (likely(!crosspage)) {
1877 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1878
1879 flags = l->page[0].flags;
1880 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1881 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1882 }
1883 if (unlikely(flags & TLB_BSWAP)) {
1884 l->memop ^= MO_BSWAP;
1885 }
1886 } else {
1887 /* Finish compute of page crossing. */
1888 int size0 = l->page[1].addr - addr;
1889 l->page[1].size = l->page[0].size - size0;
1890 l->page[0].size = size0;
1891
1892 /*
1893 * Lookup both pages, recognizing exceptions from either. If the
1894 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1895 */
1896 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1897 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1898 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1899 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1900 }
1901
1902 flags = l->page[0].flags | l->page[1].flags;
1903 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1904 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1905 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1906 }
1907
1908 /*
1909 * Since target/sparc is the only user of TLB_BSWAP, and all
1910 * Sparc accesses are aligned, any treatment across two pages
1911 * would be arbitrary. Refuse it until there's a use.
1912 */
1913 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1914 }
1915
1916 return crosspage;
1917 }
1918
1919 /*
1920 * Probe for an atomic operation. Do not allow unaligned operations,
1921 * or io operations to proceed. Return the host address.
1922 */
1923 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1924 int size, uintptr_t retaddr)
1925 {
1926 uintptr_t mmu_idx = get_mmuidx(oi);
1927 MemOp mop = get_memop(oi);
1928 int a_bits = get_alignment_bits(mop);
1929 uintptr_t index;
1930 CPUTLBEntry *tlbe;
1931 vaddr tlb_addr;
1932 void *hostaddr;
1933 CPUTLBEntryFull *full;
1934
1935 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1936
1937 /* Adjust the given return address. */
1938 retaddr -= GETPC_ADJ;
1939
1940 /* Enforce guest required alignment. */
1941 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1942 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1943 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1944 mmu_idx, retaddr);
1945 }
1946
1947 /* Enforce qemu required alignment. */
1948 if (unlikely(addr & (size - 1))) {
1949 /* We get here if guest alignment was not requested,
1950 or was not enforced by cpu_unaligned_access above.
1951 We might widen the access and emulate, but for now
1952 mark an exception and exit the cpu loop. */
1953 goto stop_the_world;
1954 }
1955
1956 index = tlb_index(env, mmu_idx, addr);
1957 tlbe = tlb_entry(env, mmu_idx, addr);
1958
1959 /* Check TLB entry and enforce page permissions. */
1960 tlb_addr = tlb_addr_write(tlbe);
1961 if (!tlb_hit(tlb_addr, addr)) {
1962 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1963 addr & TARGET_PAGE_MASK)) {
1964 tlb_fill(env_cpu(env), addr, size,
1965 MMU_DATA_STORE, mmu_idx, retaddr);
1966 index = tlb_index(env, mmu_idx, addr);
1967 tlbe = tlb_entry(env, mmu_idx, addr);
1968 }
1969 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1970 }
1971
1972 /*
1973 * Let the guest notice RMW on a write-only page.
1974 * We have just verified that the page is writable.
1975 * Subpage lookups may have left TLB_INVALID_MASK set,
1976 * but addr_read will only be -1 if PAGE_READ was unset.
1977 */
1978 if (unlikely(tlbe->addr_read == -1)) {
1979 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1980 /*
1981 * Since we don't support reads and writes to different
1982 * addresses, and we do have the proper page loaded for
1983 * write, this shouldn't ever return. But just in case,
1984 * handle via stop-the-world.
1985 */
1986 goto stop_the_world;
1987 }
1988 /* Collect tlb flags for read. */
1989 tlb_addr |= tlbe->addr_read;
1990
1991 /* Notice an IO access or a needs-MMU-lookup access */
1992 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1993 /* There's really nothing that can be done to
1994 support this apart from stop-the-world. */
1995 goto stop_the_world;
1996 }
1997
1998 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1999 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2000
2001 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
2002 notdirty_write(env_cpu(env), addr, size, full, retaddr);
2003 }
2004
2005 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
2006 int wp_flags = 0;
2007
2008 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
2009 wp_flags |= BP_MEM_WRITE;
2010 }
2011 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
2012 wp_flags |= BP_MEM_READ;
2013 }
2014 if (wp_flags) {
2015 cpu_check_watchpoint(env_cpu(env), addr, size,
2016 full->attrs, wp_flags, retaddr);
2017 }
2018 }
2019
2020 return hostaddr;
2021
2022 stop_the_world:
2023 cpu_loop_exit_atomic(env_cpu(env), retaddr);
2024 }
2025
2026 /*
2027 * Load Helpers
2028 *
2029 * We support two different access types. SOFTMMU_CODE_ACCESS is
2030 * specifically for reading instructions from system memory. It is
2031 * called by the translation loop and in some helpers where the code
2032 * is disassembled. It shouldn't be called directly by guest code.
2033 *
2034 * For the benefit of TCG generated code, we want to avoid the
2035 * complication of ABI-specific return type promotion and always
2036 * return a value extended to the register size of the host. This is
2037 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2038 * data, and for that we always have uint64_t.
2039 *
2040 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2041 */
2042
2043 /**
2044 * do_ld_mmio_beN:
2045 * @env: cpu context
2046 * @full: page parameters
2047 * @ret_be: accumulated data
2048 * @addr: virtual address
2049 * @size: number of bytes
2050 * @mmu_idx: virtual address context
2051 * @ra: return address into tcg generated code, or 0
2052 * Context: iothread lock held
2053 *
2054 * Load @size bytes from @addr, which is memory-mapped i/o.
2055 * The bytes are concatenated in big-endian order with @ret_be.
2056 */
2057 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full,
2058 uint64_t ret_be, vaddr addr, int size,
2059 int mmu_idx, MMUAccessType type, uintptr_t ra)
2060 {
2061 uint64_t t;
2062
2063 tcg_debug_assert(size > 0 && size <= 8);
2064 do {
2065 /* Read aligned pieces up to 8 bytes. */
2066 switch ((size | (int)addr) & 7) {
2067 case 1:
2068 case 3:
2069 case 5:
2070 case 7:
2071 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB);
2072 ret_be = (ret_be << 8) | t;
2073 size -= 1;
2074 addr += 1;
2075 break;
2076 case 2:
2077 case 6:
2078 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW);
2079 ret_be = (ret_be << 16) | t;
2080 size -= 2;
2081 addr += 2;
2082 break;
2083 case 4:
2084 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL);
2085 ret_be = (ret_be << 32) | t;
2086 size -= 4;
2087 addr += 4;
2088 break;
2089 case 0:
2090 return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ);
2091 default:
2092 qemu_build_not_reached();
2093 }
2094 } while (size);
2095 return ret_be;
2096 }
2097
2098 /**
2099 * do_ld_bytes_beN
2100 * @p: translation parameters
2101 * @ret_be: accumulated data
2102 *
2103 * Load @p->size bytes from @p->haddr, which is RAM.
2104 * The bytes to concatenated in big-endian order with @ret_be.
2105 */
2106 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2107 {
2108 uint8_t *haddr = p->haddr;
2109 int i, size = p->size;
2110
2111 for (i = 0; i < size; i++) {
2112 ret_be = (ret_be << 8) | haddr[i];
2113 }
2114 return ret_be;
2115 }
2116
2117 /**
2118 * do_ld_parts_beN
2119 * @p: translation parameters
2120 * @ret_be: accumulated data
2121 *
2122 * As do_ld_bytes_beN, but atomically on each aligned part.
2123 */
2124 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2125 {
2126 void *haddr = p->haddr;
2127 int size = p->size;
2128
2129 do {
2130 uint64_t x;
2131 int n;
2132
2133 /*
2134 * Find minimum of alignment and size.
2135 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2136 * would have only checked the low bits of addr|size once at the start,
2137 * but is just as easy.
2138 */
2139 switch (((uintptr_t)haddr | size) & 7) {
2140 case 4:
2141 x = cpu_to_be32(load_atomic4(haddr));
2142 ret_be = (ret_be << 32) | x;
2143 n = 4;
2144 break;
2145 case 2:
2146 case 6:
2147 x = cpu_to_be16(load_atomic2(haddr));
2148 ret_be = (ret_be << 16) | x;
2149 n = 2;
2150 break;
2151 default:
2152 x = *(uint8_t *)haddr;
2153 ret_be = (ret_be << 8) | x;
2154 n = 1;
2155 break;
2156 case 0:
2157 g_assert_not_reached();
2158 }
2159 haddr += n;
2160 size -= n;
2161 } while (size != 0);
2162 return ret_be;
2163 }
2164
2165 /**
2166 * do_ld_parts_be4
2167 * @p: translation parameters
2168 * @ret_be: accumulated data
2169 *
2170 * As do_ld_bytes_beN, but with one atomic load.
2171 * Four aligned bytes are guaranteed to cover the load.
2172 */
2173 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2174 {
2175 int o = p->addr & 3;
2176 uint32_t x = load_atomic4(p->haddr - o);
2177
2178 x = cpu_to_be32(x);
2179 x <<= o * 8;
2180 x >>= (4 - p->size) * 8;
2181 return (ret_be << (p->size * 8)) | x;
2182 }
2183
2184 /**
2185 * do_ld_parts_be8
2186 * @p: translation parameters
2187 * @ret_be: accumulated data
2188 *
2189 * As do_ld_bytes_beN, but with one atomic load.
2190 * Eight aligned bytes are guaranteed to cover the load.
2191 */
2192 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2193 MMULookupPageData *p, uint64_t ret_be)
2194 {
2195 int o = p->addr & 7;
2196 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2197
2198 x = cpu_to_be64(x);
2199 x <<= o * 8;
2200 x >>= (8 - p->size) * 8;
2201 return (ret_be << (p->size * 8)) | x;
2202 }
2203
2204 /**
2205 * do_ld_parts_be16
2206 * @p: translation parameters
2207 * @ret_be: accumulated data
2208 *
2209 * As do_ld_bytes_beN, but with one atomic load.
2210 * 16 aligned bytes are guaranteed to cover the load.
2211 */
2212 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2213 MMULookupPageData *p, uint64_t ret_be)
2214 {
2215 int o = p->addr & 15;
2216 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2217 int size = p->size;
2218
2219 if (!HOST_BIG_ENDIAN) {
2220 y = bswap128(y);
2221 }
2222 y = int128_lshift(y, o * 8);
2223 y = int128_urshift(y, (16 - size) * 8);
2224 x = int128_make64(ret_be);
2225 x = int128_lshift(x, size * 8);
2226 return int128_or(x, y);
2227 }
2228
2229 /*
2230 * Wrapper for the above.
2231 */
2232 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2233 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2234 MemOp mop, uintptr_t ra)
2235 {
2236 MemOp atom;
2237 unsigned tmp, half_size;
2238
2239 if (unlikely(p->flags & TLB_MMIO)) {
2240 QEMU_IOTHREAD_LOCK_GUARD();
2241 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size,
2242 mmu_idx, type, ra);
2243 }
2244
2245 /*
2246 * It is a given that we cross a page and therefore there is no
2247 * atomicity for the load as a whole, but subobjects may need attention.
2248 */
2249 atom = mop & MO_ATOM_MASK;
2250 switch (atom) {
2251 case MO_ATOM_SUBALIGN:
2252 return do_ld_parts_beN(p, ret_be);
2253
2254 case MO_ATOM_IFALIGN_PAIR:
2255 case MO_ATOM_WITHIN16_PAIR:
2256 tmp = mop & MO_SIZE;
2257 tmp = tmp ? tmp - 1 : 0;
2258 half_size = 1 << tmp;
2259 if (atom == MO_ATOM_IFALIGN_PAIR
2260 ? p->size == half_size
2261 : p->size >= half_size) {
2262 if (!HAVE_al8_fast && p->size < 4) {
2263 return do_ld_whole_be4(p, ret_be);
2264 } else {
2265 return do_ld_whole_be8(env, ra, p, ret_be);
2266 }
2267 }
2268 /* fall through */
2269
2270 case MO_ATOM_IFALIGN:
2271 case MO_ATOM_WITHIN16:
2272 case MO_ATOM_NONE:
2273 return do_ld_bytes_beN(p, ret_be);
2274
2275 default:
2276 g_assert_not_reached();
2277 }
2278 }
2279
2280 /*
2281 * Wrapper for the above, for 8 < size < 16.
2282 */
2283 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2284 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2285 {
2286 int size = p->size;
2287 uint64_t b;
2288 MemOp atom;
2289
2290 if (unlikely(p->flags & TLB_MMIO)) {
2291 QEMU_IOTHREAD_LOCK_GUARD();
2292 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8,
2293 mmu_idx, MMU_DATA_LOAD, ra);
2294 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8,
2295 mmu_idx, MMU_DATA_LOAD, ra);
2296 return int128_make128(b, a);
2297 }
2298
2299 /*
2300 * It is a given that we cross a page and therefore there is no
2301 * atomicity for the load as a whole, but subobjects may need attention.
2302 */
2303 atom = mop & MO_ATOM_MASK;
2304 switch (atom) {
2305 case MO_ATOM_SUBALIGN:
2306 p->size = size - 8;
2307 a = do_ld_parts_beN(p, a);
2308 p->haddr += size - 8;
2309 p->size = 8;
2310 b = do_ld_parts_beN(p, 0);
2311 break;
2312
2313 case MO_ATOM_WITHIN16_PAIR:
2314 /* Since size > 8, this is the half that must be atomic. */
2315 return do_ld_whole_be16(env, ra, p, a);
2316
2317 case MO_ATOM_IFALIGN_PAIR:
2318 /*
2319 * Since size > 8, both halves are misaligned,
2320 * and so neither is atomic.
2321 */
2322 case MO_ATOM_IFALIGN:
2323 case MO_ATOM_WITHIN16:
2324 case MO_ATOM_NONE:
2325 p->size = size - 8;
2326 a = do_ld_bytes_beN(p, a);
2327 b = ldq_be_p(p->haddr + size - 8);
2328 break;
2329
2330 default:
2331 g_assert_not_reached();
2332 }
2333
2334 return int128_make128(b, a);
2335 }
2336
2337 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2338 MMUAccessType type, uintptr_t ra)
2339 {
2340 if (unlikely(p->flags & TLB_MMIO)) {
2341 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2342 } else {
2343 return *(uint8_t *)p->haddr;
2344 }
2345 }
2346
2347 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2348 MMUAccessType type, MemOp memop, uintptr_t ra)
2349 {
2350 uint16_t ret;
2351
2352 if (unlikely(p->flags & TLB_MMIO)) {
2353 QEMU_IOTHREAD_LOCK_GUARD();
2354 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2355 if ((memop & MO_BSWAP) == MO_LE) {
2356 ret = bswap16(ret);
2357 }
2358 } else {
2359 /* Perform the load host endian, then swap if necessary. */
2360 ret = load_atom_2(env, ra, p->haddr, memop);
2361 if (memop & MO_BSWAP) {
2362 ret = bswap16(ret);
2363 }
2364 }
2365 return ret;
2366 }
2367
2368 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2369 MMUAccessType type, MemOp memop, uintptr_t ra)
2370 {
2371 uint32_t ret;
2372
2373 if (unlikely(p->flags & TLB_MMIO)) {
2374 QEMU_IOTHREAD_LOCK_GUARD();
2375 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2376 if ((memop & MO_BSWAP) == MO_LE) {
2377 ret = bswap32(ret);
2378 }
2379 } else {
2380 /* Perform the load host endian. */
2381 ret = load_atom_4(env, ra, p->haddr, memop);
2382 if (memop & MO_BSWAP) {
2383 ret = bswap32(ret);
2384 }
2385 }
2386 return ret;
2387 }
2388
2389 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2390 MMUAccessType type, MemOp memop, uintptr_t ra)
2391 {
2392 uint64_t ret;
2393
2394 if (unlikely(p->flags & TLB_MMIO)) {
2395 QEMU_IOTHREAD_LOCK_GUARD();
2396 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2397 if ((memop & MO_BSWAP) == MO_LE) {
2398 ret = bswap64(ret);
2399 }
2400 } else {
2401 /* Perform the load host endian. */
2402 ret = load_atom_8(env, ra, p->haddr, memop);
2403 if (memop & MO_BSWAP) {
2404 ret = bswap64(ret);
2405 }
2406 }
2407 return ret;
2408 }
2409
2410 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2411 uintptr_t ra, MMUAccessType access_type)
2412 {
2413 MMULookupLocals l;
2414 bool crosspage;
2415
2416 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2417 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2418 tcg_debug_assert(!crosspage);
2419
2420 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2421 }
2422
2423 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2424 MemOpIdx oi, uintptr_t retaddr)
2425 {
2426 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2427 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2428 }
2429
2430 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2431 uintptr_t ra, MMUAccessType access_type)
2432 {
2433 MMULookupLocals l;
2434 bool crosspage;
2435 uint16_t ret;
2436 uint8_t a, b;
2437
2438 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2439 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2440 if (likely(!crosspage)) {
2441 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2442 }
2443
2444 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2445 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2446
2447 if ((l.memop & MO_BSWAP) == MO_LE) {
2448 ret = a | (b << 8);
2449 } else {
2450 ret = b | (a << 8);
2451 }
2452 return ret;
2453 }
2454
2455 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2456 MemOpIdx oi, uintptr_t retaddr)
2457 {
2458 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2459 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2460 }
2461
2462 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2463 uintptr_t ra, MMUAccessType access_type)
2464 {
2465 MMULookupLocals l;
2466 bool crosspage;
2467 uint32_t ret;
2468
2469 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2470 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2471 if (likely(!crosspage)) {
2472 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2473 }
2474
2475 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2476 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2477 if ((l.memop & MO_BSWAP) == MO_LE) {
2478 ret = bswap32(ret);
2479 }
2480 return ret;
2481 }
2482
2483 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2484 MemOpIdx oi, uintptr_t retaddr)
2485 {
2486 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2487 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2488 }
2489
2490 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2491 uintptr_t ra, MMUAccessType access_type)
2492 {
2493 MMULookupLocals l;
2494 bool crosspage;
2495 uint64_t ret;
2496
2497 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2498 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2499 if (likely(!crosspage)) {
2500 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2501 }
2502
2503 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2504 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2505 if ((l.memop & MO_BSWAP) == MO_LE) {
2506 ret = bswap64(ret);
2507 }
2508 return ret;
2509 }
2510
2511 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2512 MemOpIdx oi, uintptr_t retaddr)
2513 {
2514 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2515 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2516 }
2517
2518 /*
2519 * Provide signed versions of the load routines as well. We can of course
2520 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2521 */
2522
2523 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2524 MemOpIdx oi, uintptr_t retaddr)
2525 {
2526 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2527 }
2528
2529 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2530 MemOpIdx oi, uintptr_t retaddr)
2531 {
2532 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2533 }
2534
2535 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2536 MemOpIdx oi, uintptr_t retaddr)
2537 {
2538 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2539 }
2540
2541 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2542 MemOpIdx oi, uintptr_t ra)
2543 {
2544 MMULookupLocals l;
2545 bool crosspage;
2546 uint64_t a, b;
2547 Int128 ret;
2548 int first;
2549
2550 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2551 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2552 if (likely(!crosspage)) {
2553 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2554 QEMU_IOTHREAD_LOCK_GUARD();
2555 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8,
2556 l.mmu_idx, MMU_DATA_LOAD, ra);
2557 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8,
2558 l.mmu_idx, MMU_DATA_LOAD, ra);
2559 ret = int128_make128(b, a);
2560 if ((l.memop & MO_BSWAP) == MO_LE) {
2561 ret = bswap128(ret);
2562 }
2563 } else {
2564 /* Perform the load host endian. */
2565 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2566 if (l.memop & MO_BSWAP) {
2567 ret = bswap128(ret);
2568 }
2569 }
2570 return ret;
2571 }
2572
2573 first = l.page[0].size;
2574 if (first == 8) {
2575 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2576
2577 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2578 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2579 if ((mop8 & MO_BSWAP) == MO_LE) {
2580 ret = int128_make128(a, b);
2581 } else {
2582 ret = int128_make128(b, a);
2583 }
2584 return ret;
2585 }
2586
2587 if (first < 8) {
2588 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2589 MMU_DATA_LOAD, l.memop, ra);
2590 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2591 } else {
2592 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2593 b = int128_getlo(ret);
2594 ret = int128_lshift(ret, l.page[1].size * 8);
2595 a = int128_gethi(ret);
2596 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2597 MMU_DATA_LOAD, l.memop, ra);
2598 ret = int128_make128(b, a);
2599 }
2600 if ((l.memop & MO_BSWAP) == MO_LE) {
2601 ret = bswap128(ret);
2602 }
2603 return ret;
2604 }
2605
2606 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2607 uint32_t oi, uintptr_t retaddr)
2608 {
2609 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2610 return do_ld16_mmu(env, addr, oi, retaddr);
2611 }
2612
2613 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2614 {
2615 return helper_ld16_mmu(env, addr, oi, GETPC());
2616 }
2617
2618 /*
2619 * Load helpers for cpu_ldst.h.
2620 */
2621
2622 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2623 {
2624 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2625 }
2626
2627 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2628 {
2629 uint8_t ret;
2630
2631 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2632 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2633 plugin_load_cb(env, addr, oi);
2634 return ret;
2635 }
2636
2637 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2638 MemOpIdx oi, uintptr_t ra)
2639 {
2640 uint16_t ret;
2641
2642 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2643 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2644 plugin_load_cb(env, addr, oi);
2645 return ret;
2646 }
2647
2648 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2649 MemOpIdx oi, uintptr_t ra)
2650 {
2651 uint32_t ret;
2652
2653 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2654 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2655 plugin_load_cb(env, addr, oi);
2656 return ret;
2657 }
2658
2659 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2660 MemOpIdx oi, uintptr_t ra)
2661 {
2662 uint64_t ret;
2663
2664 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2665 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2666 plugin_load_cb(env, addr, oi);
2667 return ret;
2668 }
2669
2670 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2671 MemOpIdx oi, uintptr_t ra)
2672 {
2673 Int128 ret;
2674
2675 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2676 ret = do_ld16_mmu(env, addr, oi, ra);
2677 plugin_load_cb(env, addr, oi);
2678 return ret;
2679 }
2680
2681 /*
2682 * Store Helpers
2683 */
2684
2685 /**
2686 * do_st_mmio_leN:
2687 * @env: cpu context
2688 * @full: page parameters
2689 * @val_le: data to store
2690 * @addr: virtual address
2691 * @size: number of bytes
2692 * @mmu_idx: virtual address context
2693 * @ra: return address into tcg generated code, or 0
2694 * Context: iothread lock held
2695 *
2696 * Store @size bytes at @addr, which is memory-mapped i/o.
2697 * The bytes to store are extracted in little-endian order from @val_le;
2698 * return the bytes of @val_le beyond @p->size that have not been stored.
2699 */
2700 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full,
2701 uint64_t val_le, vaddr addr, int size,
2702 int mmu_idx, uintptr_t ra)
2703 {
2704 tcg_debug_assert(size > 0 && size <= 8);
2705
2706 do {
2707 /* Store aligned pieces up to 8 bytes. */
2708 switch ((size | (int)addr) & 7) {
2709 case 1:
2710 case 3:
2711 case 5:
2712 case 7:
2713 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB);
2714 val_le >>= 8;
2715 size -= 1;
2716 addr += 1;
2717 break;
2718 case 2:
2719 case 6:
2720 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW);
2721 val_le >>= 16;
2722 size -= 2;
2723 addr += 2;
2724 break;
2725 case 4:
2726 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL);
2727 val_le >>= 32;
2728 size -= 4;
2729 addr += 4;
2730 break;
2731 case 0:
2732 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ);
2733 return 0;
2734 default:
2735 qemu_build_not_reached();
2736 }
2737 } while (size);
2738
2739 return val_le;
2740 }
2741
2742 /*
2743 * Wrapper for the above.
2744 */
2745 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2746 uint64_t val_le, int mmu_idx,
2747 MemOp mop, uintptr_t ra)
2748 {
2749 MemOp atom;
2750 unsigned tmp, half_size;
2751
2752 if (unlikely(p->flags & TLB_MMIO)) {
2753 QEMU_IOTHREAD_LOCK_GUARD();
2754 return do_st_mmio_leN(env, p->full, val_le, p->addr,
2755 p->size, mmu_idx, ra);
2756 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2757 return val_le >> (p->size * 8);
2758 }
2759
2760 /*
2761 * It is a given that we cross a page and therefore there is no atomicity
2762 * for the store as a whole, but subobjects may need attention.
2763 */
2764 atom = mop & MO_ATOM_MASK;
2765 switch (atom) {
2766 case MO_ATOM_SUBALIGN:
2767 return store_parts_leN(p->haddr, p->size, val_le);
2768
2769 case MO_ATOM_IFALIGN_PAIR:
2770 case MO_ATOM_WITHIN16_PAIR:
2771 tmp = mop & MO_SIZE;
2772 tmp = tmp ? tmp - 1 : 0;
2773 half_size = 1 << tmp;
2774 if (atom == MO_ATOM_IFALIGN_PAIR
2775 ? p->size == half_size
2776 : p->size >= half_size) {
2777 if (!HAVE_al8_fast && p->size <= 4) {
2778 return store_whole_le4(p->haddr, p->size, val_le);
2779 } else if (HAVE_al8) {
2780 return store_whole_le8(p->haddr, p->size, val_le);
2781 } else {
2782 cpu_loop_exit_atomic(env_cpu(env), ra);
2783 }
2784 }
2785 /* fall through */
2786
2787 case MO_ATOM_IFALIGN:
2788 case MO_ATOM_WITHIN16:
2789 case MO_ATOM_NONE:
2790 return store_bytes_leN(p->haddr, p->size, val_le);
2791
2792 default:
2793 g_assert_not_reached();
2794 }
2795 }
2796
2797 /*
2798 * Wrapper for the above, for 8 < size < 16.
2799 */
2800 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2801 Int128 val_le, int mmu_idx,
2802 MemOp mop, uintptr_t ra)
2803 {
2804 int size = p->size;
2805 MemOp atom;
2806
2807 if (unlikely(p->flags & TLB_MMIO)) {
2808 QEMU_IOTHREAD_LOCK_GUARD();
2809 do_st_mmio_leN(env, p->full, int128_getlo(val_le),
2810 p->addr, 8, mmu_idx, ra);
2811 return do_st_mmio_leN(env, p->full, int128_gethi(val_le),
2812 p->addr + 8, size - 8, mmu_idx, ra);
2813 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2814 return int128_gethi(val_le) >> ((size - 8) * 8);
2815 }
2816
2817 /*
2818 * It is a given that we cross a page and therefore there is no atomicity
2819 * for the store as a whole, but subobjects may need attention.
2820 */
2821 atom = mop & MO_ATOM_MASK;
2822 switch (atom) {
2823 case MO_ATOM_SUBALIGN:
2824 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2825 return store_parts_leN(p->haddr + 8, p->size - 8,
2826 int128_gethi(val_le));
2827
2828 case MO_ATOM_WITHIN16_PAIR:
2829 /* Since size > 8, this is the half that must be atomic. */
2830 if (!HAVE_ATOMIC128_RW) {
2831 cpu_loop_exit_atomic(env_cpu(env), ra);
2832 }
2833 return store_whole_le16(p->haddr, p->size, val_le);
2834
2835 case MO_ATOM_IFALIGN_PAIR:
2836 /*
2837 * Since size > 8, both halves are misaligned,
2838 * and so neither is atomic.
2839 */
2840 case MO_ATOM_IFALIGN:
2841 case MO_ATOM_WITHIN16:
2842 case MO_ATOM_NONE:
2843 stq_le_p(p->haddr, int128_getlo(val_le));
2844 return store_bytes_leN(p->haddr + 8, p->size - 8,
2845 int128_gethi(val_le));
2846
2847 default:
2848 g_assert_not_reached();
2849 }
2850 }
2851
2852 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2853 int mmu_idx, uintptr_t ra)
2854 {
2855 if (unlikely(p->flags & TLB_MMIO)) {
2856 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2857 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2858 /* nothing */
2859 } else {
2860 *(uint8_t *)p->haddr = val;
2861 }
2862 }
2863
2864 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2865 int mmu_idx, MemOp memop, uintptr_t ra)
2866 {
2867 if (unlikely(p->flags & TLB_MMIO)) {
2868 if ((memop & MO_BSWAP) != MO_LE) {
2869 val = bswap16(val);
2870 }
2871 QEMU_IOTHREAD_LOCK_GUARD();
2872 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra);
2873 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2874 /* nothing */
2875 } else {
2876 /* Swap to host endian if necessary, then store. */
2877 if (memop & MO_BSWAP) {
2878 val = bswap16(val);
2879 }
2880 store_atom_2(env, ra, p->haddr, memop, val);
2881 }
2882 }
2883
2884 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2885 int mmu_idx, MemOp memop, uintptr_t ra)
2886 {
2887 if (unlikely(p->flags & TLB_MMIO)) {
2888 if ((memop & MO_BSWAP) != MO_LE) {
2889 val = bswap32(val);
2890 }
2891 QEMU_IOTHREAD_LOCK_GUARD();
2892 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra);
2893 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2894 /* nothing */
2895 } else {
2896 /* Swap to host endian if necessary, then store. */
2897 if (memop & MO_BSWAP) {
2898 val = bswap32(val);
2899 }
2900 store_atom_4(env, ra, p->haddr, memop, val);
2901 }
2902 }
2903
2904 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2905 int mmu_idx, MemOp memop, uintptr_t ra)
2906 {
2907 if (unlikely(p->flags & TLB_MMIO)) {
2908 if ((memop & MO_BSWAP) != MO_LE) {
2909 val = bswap64(val);
2910 }
2911 QEMU_IOTHREAD_LOCK_GUARD();
2912 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra);
2913 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2914 /* nothing */
2915 } else {
2916 /* Swap to host endian if necessary, then store. */
2917 if (memop & MO_BSWAP) {
2918 val = bswap64(val);
2919 }
2920 store_atom_8(env, ra, p->haddr, memop, val);
2921 }
2922 }
2923
2924 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2925 MemOpIdx oi, uintptr_t ra)
2926 {
2927 MMULookupLocals l;
2928 bool crosspage;
2929
2930 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2931 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2932 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2933 tcg_debug_assert(!crosspage);
2934
2935 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2936 }
2937
2938 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2939 MemOpIdx oi, uintptr_t ra)
2940 {
2941 MMULookupLocals l;
2942 bool crosspage;
2943 uint8_t a, b;
2944
2945 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2946 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2947 if (likely(!crosspage)) {
2948 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2949 return;
2950 }
2951
2952 if ((l.memop & MO_BSWAP) == MO_LE) {
2953 a = val, b = val >> 8;
2954 } else {
2955 b = val, a = val >> 8;
2956 }
2957 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2958 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2959 }
2960
2961 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2962 MemOpIdx oi, uintptr_t retaddr)
2963 {
2964 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2965 do_st2_mmu(env, addr, val, oi, retaddr);
2966 }
2967
2968 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2969 MemOpIdx oi, uintptr_t ra)
2970 {
2971 MMULookupLocals l;
2972 bool crosspage;
2973
2974 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2975 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2976 if (likely(!crosspage)) {
2977 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2978 return;
2979 }
2980
2981 /* Swap to little endian for simplicity, then store by bytes. */
2982 if ((l.memop & MO_BSWAP) != MO_LE) {
2983 val = bswap32(val);
2984 }
2985 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2986 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2987 }
2988
2989 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2990 MemOpIdx oi, uintptr_t retaddr)
2991 {
2992 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2993 do_st4_mmu(env, addr, val, oi, retaddr);
2994 }
2995
2996 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
2997 MemOpIdx oi, uintptr_t ra)
2998 {
2999 MMULookupLocals l;
3000 bool crosspage;
3001
3002 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3003 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3004 if (likely(!crosspage)) {
3005 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3006 return;
3007 }
3008
3009 /* Swap to little endian for simplicity, then store by bytes. */
3010 if ((l.memop & MO_BSWAP) != MO_LE) {
3011 val = bswap64(val);
3012 }
3013 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3014 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3015 }
3016
3017 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3018 MemOpIdx oi, uintptr_t retaddr)
3019 {
3020 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3021 do_st8_mmu(env, addr, val, oi, retaddr);
3022 }
3023
3024 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
3025 MemOpIdx oi, uintptr_t ra)
3026 {
3027 MMULookupLocals l;
3028 bool crosspage;
3029 uint64_t a, b;
3030 int first;
3031
3032 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3033 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
3034 if (likely(!crosspage)) {
3035 if (unlikely(l.page[0].flags & TLB_MMIO)) {
3036 if ((l.memop & MO_BSWAP) != MO_LE) {
3037 val = bswap128(val);
3038 }
3039 a = int128_getlo(val);
3040 b = int128_gethi(val);
3041 QEMU_IOTHREAD_LOCK_GUARD();
3042 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra);
3043 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra);
3044 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3045 /* nothing */
3046 } else {
3047 /* Swap to host endian if necessary, then store. */
3048 if (l.memop & MO_BSWAP) {
3049 val = bswap128(val);
3050 }
3051 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
3052 }
3053 return;
3054 }
3055
3056 first = l.page[0].size;
3057 if (first == 8) {
3058 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3059
3060 if (l.memop & MO_BSWAP) {
3061 val = bswap128(val);
3062 }
3063 if (HOST_BIG_ENDIAN) {
3064 b = int128_getlo(val), a = int128_gethi(val);
3065 } else {
3066 a = int128_getlo(val), b = int128_gethi(val);
3067 }
3068 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3069 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3070 return;
3071 }
3072
3073 if ((l.memop & MO_BSWAP) != MO_LE) {
3074 val = bswap128(val);
3075 }
3076 if (first < 8) {
3077 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3078 val = int128_urshift(val, first * 8);
3079 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3080 } else {
3081 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3082 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3083 }
3084 }
3085
3086 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3087 MemOpIdx oi, uintptr_t retaddr)
3088 {
3089 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3090 do_st16_mmu(env, addr, val, oi, retaddr);
3091 }
3092
3093 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3094 {
3095 helper_st16_mmu(env, addr, val, oi, GETPC());
3096 }
3097
3098 /*
3099 * Store Helpers for cpu_ldst.h
3100 */
3101
3102 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3103 {
3104 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3105 }
3106
3107 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3108 MemOpIdx oi, uintptr_t retaddr)
3109 {
3110 helper_stb_mmu(env, addr, val, oi, retaddr);
3111 plugin_store_cb(env, addr, oi);
3112 }
3113
3114 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3115 MemOpIdx oi, uintptr_t retaddr)
3116 {
3117 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3118 do_st2_mmu(env, addr, val, oi, retaddr);
3119 plugin_store_cb(env, addr, oi);
3120 }
3121
3122 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3123 MemOpIdx oi, uintptr_t retaddr)
3124 {
3125 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3126 do_st4_mmu(env, addr, val, oi, retaddr);
3127 plugin_store_cb(env, addr, oi);
3128 }
3129
3130 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3131 MemOpIdx oi, uintptr_t retaddr)
3132 {
3133 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3134 do_st8_mmu(env, addr, val, oi, retaddr);
3135 plugin_store_cb(env, addr, oi);
3136 }
3137
3138 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3139 MemOpIdx oi, uintptr_t retaddr)
3140 {
3141 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3142 do_st16_mmu(env, addr, val, oi, retaddr);
3143 plugin_store_cb(env, addr, oi);
3144 }
3145
3146 #include "ldst_common.c.inc"
3147
3148 /*
3149 * First set of functions passes in OI and RETADDR.
3150 * This makes them callable from other helpers.
3151 */
3152
3153 #define ATOMIC_NAME(X) \
3154 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3155
3156 #define ATOMIC_MMU_CLEANUP
3157
3158 #include "atomic_common.c.inc"
3159
3160 #define DATA_SIZE 1
3161 #include "atomic_template.h"
3162
3163 #define DATA_SIZE 2
3164 #include "atomic_template.h"
3165
3166 #define DATA_SIZE 4
3167 #include "atomic_template.h"
3168
3169 #ifdef CONFIG_ATOMIC64
3170 #define DATA_SIZE 8
3171 #include "atomic_template.h"
3172 #endif
3173
3174 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3175 #define DATA_SIZE 16
3176 #include "atomic_template.h"
3177 #endif
3178
3179 /* Code access functions. */
3180
3181 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3182 {
3183 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3184 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3185 }
3186
3187 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3188 {
3189 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3190 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3191 }
3192
3193 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3194 {
3195 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3196 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3197 }
3198
3199 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3200 {
3201 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3202 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3203 }
3204
3205 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3206 MemOpIdx oi, uintptr_t retaddr)
3207 {
3208 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3209 }
3210
3211 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3212 MemOpIdx oi, uintptr_t retaddr)
3213 {
3214 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3215 }
3216
3217 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3218 MemOpIdx oi, uintptr_t retaddr)
3219 {
3220 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3221 }
3222
3223 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3224 MemOpIdx oi, uintptr_t retaddr)
3225 {
3226 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3227 }