]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
accel/tcg: Unify user and softmmu do_[st|ld]*_mmu()
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * vaddr even on 32 bit builds
78 */
79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data));
80
81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
82 */
83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
85
86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
87 {
88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 }
90
91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
92 {
93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 }
95
96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
97 size_t max_entries)
98 {
99 desc->window_begin_ns = ns;
100 desc->window_max_entries = max_entries;
101 }
102
103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
104 {
105 CPUJumpCache *jc = cpu->tb_jmp_cache;
106 int i, i0;
107
108 if (unlikely(!jc)) {
109 return;
110 }
111
112 i0 = tb_jmp_cache_hash_page(page_addr);
113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
114 qatomic_set(&jc->array[i0 + i].tb, NULL);
115 }
116 }
117
118 /**
119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
120 * @desc: The CPUTLBDesc portion of the TLB
121 * @fast: The CPUTLBDescFast portion of the same TLB
122 *
123 * Called with tlb_lock_held.
124 *
125 * We have two main constraints when resizing a TLB: (1) we only resize it
126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
127 * the array or unnecessarily flushing it), which means we do not control how
128 * frequently the resizing can occur; (2) we don't have access to the guest's
129 * future scheduling decisions, and therefore have to decide the magnitude of
130 * the resize based on past observations.
131 *
132 * In general, a memory-hungry process can benefit greatly from an appropriately
133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
134 * we just have to make the TLB as large as possible; while an oversized TLB
135 * results in minimal TLB miss rates, it also takes longer to be flushed
136 * (flushes can be _very_ frequent), and the reduced locality can also hurt
137 * performance.
138 *
139 * To achieve near-optimal performance for all kinds of workloads, we:
140 *
141 * 1. Aggressively increase the size of the TLB when the use rate of the
142 * TLB being flushed is high, since it is likely that in the near future this
143 * memory-hungry process will execute again, and its memory hungriness will
144 * probably be similar.
145 *
146 * 2. Slowly reduce the size of the TLB as the use rate declines over a
147 * reasonably large time window. The rationale is that if in such a time window
148 * we have not observed a high TLB use rate, it is likely that we won't observe
149 * it in the near future. In that case, once a time window expires we downsize
150 * the TLB to match the maximum use rate observed in the window.
151 *
152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
153 * since in that range performance is likely near-optimal. Recall that the TLB
154 * is direct mapped, so we want the use rate to be low (or at least not too
155 * high), since otherwise we are likely to have a significant amount of
156 * conflict misses.
157 */
158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
159 int64_t now)
160 {
161 size_t old_size = tlb_n_entries(fast);
162 size_t rate;
163 size_t new_size = old_size;
164 int64_t window_len_ms = 100;
165 int64_t window_len_ns = window_len_ms * 1000 * 1000;
166 bool window_expired = now > desc->window_begin_ns + window_len_ns;
167
168 if (desc->n_used_entries > desc->window_max_entries) {
169 desc->window_max_entries = desc->n_used_entries;
170 }
171 rate = desc->window_max_entries * 100 / old_size;
172
173 if (rate > 70) {
174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
175 } else if (rate < 30 && window_expired) {
176 size_t ceil = pow2ceil(desc->window_max_entries);
177 size_t expected_rate = desc->window_max_entries * 100 / ceil;
178
179 /*
180 * Avoid undersizing when the max number of entries seen is just below
181 * a pow2. For instance, if max_entries == 1025, the expected use rate
182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
184 * later. Thus, make sure that the expected use rate remains below 70%.
185 * (and since we double the size, that means the lowest rate we'd
186 * expect to get is 35%, which is still in the 30-70% range where
187 * we consider that the size is appropriate.)
188 */
189 if (expected_rate > 70) {
190 ceil *= 2;
191 }
192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 }
194
195 if (new_size == old_size) {
196 if (window_expired) {
197 tlb_window_reset(desc, now, desc->n_used_entries);
198 }
199 return;
200 }
201
202 g_free(fast->table);
203 g_free(desc->fulltlb);
204
205 tlb_window_reset(desc, now, 0);
206 /* desc->n_used_entries is cleared by the caller */
207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
208 fast->table = g_try_new(CPUTLBEntry, new_size);
209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210
211 /*
212 * If the allocations fail, try smaller sizes. We just freed some
213 * memory, so going back to half of new_size has a good chance of working.
214 * Increased memory pressure elsewhere in the system might cause the
215 * allocations to fail though, so we progressively reduce the allocation
216 * size, aborting if we cannot even allocate the smallest TLB we support.
217 */
218 while (fast->table == NULL || desc->fulltlb == NULL) {
219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
220 error_report("%s: %s", __func__, strerror(errno));
221 abort();
222 }
223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
225
226 g_free(fast->table);
227 g_free(desc->fulltlb);
228 fast->table = g_try_new(CPUTLBEntry, new_size);
229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
230 }
231 }
232
233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
234 {
235 desc->n_used_entries = 0;
236 desc->large_page_addr = -1;
237 desc->large_page_mask = -1;
238 desc->vindex = 0;
239 memset(fast->table, -1, sizeof_tlb(fast));
240 memset(desc->vtable, -1, sizeof(desc->vtable));
241 }
242
243 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx,
244 int64_t now)
245 {
246 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx];
247 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx];
248
249 tlb_mmu_resize_locked(desc, fast, now);
250 tlb_mmu_flush_locked(desc, fast);
251 }
252
253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
254 {
255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
256
257 tlb_window_reset(desc, now, 0);
258 desc->n_used_entries = 0;
259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
260 fast->table = g_new(CPUTLBEntry, n_entries);
261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
262 tlb_mmu_flush_locked(desc, fast);
263 }
264
265 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx)
266 {
267 cpu->neg.tlb.d[mmu_idx].n_used_entries++;
268 }
269
270 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx)
271 {
272 cpu->neg.tlb.d[mmu_idx].n_used_entries--;
273 }
274
275 void tlb_init(CPUState *cpu)
276 {
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&cpu->neg.tlb.c.lock);
281
282 /* All tlbs are initialized flushed. */
283 cpu->neg.tlb.c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 int i;
293
294 qemu_spin_destroy(&cpu->neg.tlb.c.lock);
295 for (i = 0; i < NB_MMU_MODES; i++) {
296 CPUTLBDesc *desc = &cpu->neg.tlb.d[i];
297 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i];
298
299 g_free(fast->table);
300 g_free(desc->fulltlb);
301 }
302 }
303
304 /* flush_all_helper: run fn across all cpus
305 *
306 * If the wait flag is set then the src cpu's helper will be queued as
307 * "safe" work and the loop exited creating a synchronisation point
308 * where all queued work will be finished before execution starts
309 * again.
310 */
311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
312 run_on_cpu_data d)
313 {
314 CPUState *cpu;
315
316 CPU_FOREACH(cpu) {
317 if (cpu != src) {
318 async_run_on_cpu(cpu, fn, d);
319 }
320 }
321 }
322
323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
324 {
325 CPUState *cpu;
326 size_t full = 0, part = 0, elide = 0;
327
328 CPU_FOREACH(cpu) {
329 full += qatomic_read(&cpu->neg.tlb.c.full_flush_count);
330 part += qatomic_read(&cpu->neg.tlb.c.part_flush_count);
331 elide += qatomic_read(&cpu->neg.tlb.c.elide_flush_count);
332 }
333 *pfull = full;
334 *ppart = part;
335 *pelide = elide;
336 }
337
338 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
339 {
340 uint16_t asked = data.host_int;
341 uint16_t all_dirty, work, to_clean;
342 int64_t now = get_clock_realtime();
343
344 assert_cpu_is_self(cpu);
345
346 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
347
348 qemu_spin_lock(&cpu->neg.tlb.c.lock);
349
350 all_dirty = cpu->neg.tlb.c.dirty;
351 to_clean = asked & all_dirty;
352 all_dirty &= ~to_clean;
353 cpu->neg.tlb.c.dirty = all_dirty;
354
355 for (work = to_clean; work != 0; work &= work - 1) {
356 int mmu_idx = ctz32(work);
357 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now);
358 }
359
360 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
361
362 tcg_flush_jmp_cache(cpu);
363
364 if (to_clean == ALL_MMUIDX_BITS) {
365 qatomic_set(&cpu->neg.tlb.c.full_flush_count,
366 cpu->neg.tlb.c.full_flush_count + 1);
367 } else {
368 qatomic_set(&cpu->neg.tlb.c.part_flush_count,
369 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean));
370 if (to_clean != asked) {
371 qatomic_set(&cpu->neg.tlb.c.elide_flush_count,
372 cpu->neg.tlb.c.elide_flush_count +
373 ctpop16(asked & ~to_clean));
374 }
375 }
376 }
377
378 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
379 {
380 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
381
382 if (cpu->created && !qemu_cpu_is_self(cpu)) {
383 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
384 RUN_ON_CPU_HOST_INT(idxmap));
385 } else {
386 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
387 }
388 }
389
390 void tlb_flush(CPUState *cpu)
391 {
392 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
393 }
394
395 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
396 {
397 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
398
399 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
400
401 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
402 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
403 }
404
405 void tlb_flush_all_cpus(CPUState *src_cpu)
406 {
407 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
408 }
409
410 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
411 {
412 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
413
414 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
415
416 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
417 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
418 }
419
420 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
421 {
422 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
423 }
424
425 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
426 vaddr page, vaddr mask)
427 {
428 page &= mask;
429 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
430
431 return (page == (tlb_entry->addr_read & mask) ||
432 page == (tlb_addr_write(tlb_entry) & mask) ||
433 page == (tlb_entry->addr_code & mask));
434 }
435
436 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
437 {
438 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
439 }
440
441 /**
442 * tlb_entry_is_empty - return true if the entry is not in use
443 * @te: pointer to CPUTLBEntry
444 */
445 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
446 {
447 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
448 }
449
450 /* Called with tlb_c.lock held */
451 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
452 vaddr page,
453 vaddr mask)
454 {
455 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
456 memset(tlb_entry, -1, sizeof(*tlb_entry));
457 return true;
458 }
459 return false;
460 }
461
462 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
463 {
464 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
465 }
466
467 /* Called with tlb_c.lock held */
468 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx,
469 vaddr page,
470 vaddr mask)
471 {
472 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx];
473 int k;
474
475 assert_cpu_is_self(cpu);
476 for (k = 0; k < CPU_VTLB_SIZE; k++) {
477 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
478 tlb_n_used_entries_dec(cpu, mmu_idx);
479 }
480 }
481 }
482
483 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx,
484 vaddr page)
485 {
486 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1);
487 }
488
489 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page)
490 {
491 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr;
492 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask;
493
494 /* Check if we need to flush due to large pages. */
495 if ((page & lp_mask) == lp_addr) {
496 tlb_debug("forcing full flush midx %d (%016"
497 VADDR_PRIx "/%016" VADDR_PRIx ")\n",
498 midx, lp_addr, lp_mask);
499 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
500 } else {
501 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) {
502 tlb_n_used_entries_dec(cpu, midx);
503 }
504 tlb_flush_vtlb_page_locked(cpu, midx, page);
505 }
506 }
507
508 /**
509 * tlb_flush_page_by_mmuidx_async_0:
510 * @cpu: cpu on which to flush
511 * @addr: page of virtual address to flush
512 * @idxmap: set of mmu_idx to flush
513 *
514 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
515 * at @addr from the tlbs indicated by @idxmap from @cpu.
516 */
517 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
518 vaddr addr,
519 uint16_t idxmap)
520 {
521 int mmu_idx;
522
523 assert_cpu_is_self(cpu);
524
525 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
526
527 qemu_spin_lock(&cpu->neg.tlb.c.lock);
528 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
529 if ((idxmap >> mmu_idx) & 1) {
530 tlb_flush_page_locked(cpu, mmu_idx, addr);
531 }
532 }
533 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
534
535 /*
536 * Discard jump cache entries for any tb which might potentially
537 * overlap the flushed page, which includes the previous.
538 */
539 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
540 tb_jmp_cache_clear_page(cpu, addr);
541 }
542
543 /**
544 * tlb_flush_page_by_mmuidx_async_1:
545 * @cpu: cpu on which to flush
546 * @data: encoded addr + idxmap
547 *
548 * Helper for tlb_flush_page_by_mmuidx and friends, called through
549 * async_run_on_cpu. The idxmap parameter is encoded in the page
550 * offset of the target_ptr field. This limits the set of mmu_idx
551 * that can be passed via this method.
552 */
553 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
554 run_on_cpu_data data)
555 {
556 vaddr addr_and_idxmap = data.target_ptr;
557 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
558 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
559
560 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
561 }
562
563 typedef struct {
564 vaddr addr;
565 uint16_t idxmap;
566 } TLBFlushPageByMMUIdxData;
567
568 /**
569 * tlb_flush_page_by_mmuidx_async_2:
570 * @cpu: cpu on which to flush
571 * @data: allocated addr + idxmap
572 *
573 * Helper for tlb_flush_page_by_mmuidx and friends, called through
574 * async_run_on_cpu. The addr+idxmap parameters are stored in a
575 * TLBFlushPageByMMUIdxData structure that has been allocated
576 * specifically for this helper. Free the structure when done.
577 */
578 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
579 run_on_cpu_data data)
580 {
581 TLBFlushPageByMMUIdxData *d = data.host_ptr;
582
583 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
584 g_free(d);
585 }
586
587 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
588 {
589 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
590
591 /* This should already be page aligned */
592 addr &= TARGET_PAGE_MASK;
593
594 if (qemu_cpu_is_self(cpu)) {
595 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
596 } else if (idxmap < TARGET_PAGE_SIZE) {
597 /*
598 * Most targets have only a few mmu_idx. In the case where
599 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
600 * allocating memory for this operation.
601 */
602 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
603 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
604 } else {
605 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
606
607 /* Otherwise allocate a structure, freed by the worker. */
608 d->addr = addr;
609 d->idxmap = idxmap;
610 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
611 RUN_ON_CPU_HOST_PTR(d));
612 }
613 }
614
615 void tlb_flush_page(CPUState *cpu, vaddr addr)
616 {
617 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
618 }
619
620 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
621 uint16_t idxmap)
622 {
623 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
624
625 /* This should already be page aligned */
626 addr &= TARGET_PAGE_MASK;
627
628 /*
629 * Allocate memory to hold addr+idxmap only when needed.
630 * See tlb_flush_page_by_mmuidx for details.
631 */
632 if (idxmap < TARGET_PAGE_SIZE) {
633 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
634 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
635 } else {
636 CPUState *dst_cpu;
637
638 /* Allocate a separate data block for each destination cpu. */
639 CPU_FOREACH(dst_cpu) {
640 if (dst_cpu != src_cpu) {
641 TLBFlushPageByMMUIdxData *d
642 = g_new(TLBFlushPageByMMUIdxData, 1);
643
644 d->addr = addr;
645 d->idxmap = idxmap;
646 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
647 RUN_ON_CPU_HOST_PTR(d));
648 }
649 }
650 }
651
652 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
653 }
654
655 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
656 {
657 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
658 }
659
660 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
661 vaddr addr,
662 uint16_t idxmap)
663 {
664 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
665
666 /* This should already be page aligned */
667 addr &= TARGET_PAGE_MASK;
668
669 /*
670 * Allocate memory to hold addr+idxmap only when needed.
671 * See tlb_flush_page_by_mmuidx for details.
672 */
673 if (idxmap < TARGET_PAGE_SIZE) {
674 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
675 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
676 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
677 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
678 } else {
679 CPUState *dst_cpu;
680 TLBFlushPageByMMUIdxData *d;
681
682 /* Allocate a separate data block for each destination cpu. */
683 CPU_FOREACH(dst_cpu) {
684 if (dst_cpu != src_cpu) {
685 d = g_new(TLBFlushPageByMMUIdxData, 1);
686 d->addr = addr;
687 d->idxmap = idxmap;
688 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
689 RUN_ON_CPU_HOST_PTR(d));
690 }
691 }
692
693 d = g_new(TLBFlushPageByMMUIdxData, 1);
694 d->addr = addr;
695 d->idxmap = idxmap;
696 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
697 RUN_ON_CPU_HOST_PTR(d));
698 }
699 }
700
701 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
702 {
703 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
704 }
705
706 static void tlb_flush_range_locked(CPUState *cpu, int midx,
707 vaddr addr, vaddr len,
708 unsigned bits)
709 {
710 CPUTLBDesc *d = &cpu->neg.tlb.d[midx];
711 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx];
712 vaddr mask = MAKE_64BIT_MASK(0, bits);
713
714 /*
715 * If @bits is smaller than the tlb size, there may be multiple entries
716 * within the TLB; otherwise all addresses that match under @mask hit
717 * the same TLB entry.
718 * TODO: Perhaps allow bits to be a few bits less than the size.
719 * For now, just flush the entire TLB.
720 *
721 * If @len is larger than the tlb size, then it will take longer to
722 * test all of the entries in the TLB than it will to flush it all.
723 */
724 if (mask < f->mask || len > f->mask) {
725 tlb_debug("forcing full flush midx %d ("
726 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n",
727 midx, addr, mask, len);
728 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
729 return;
730 }
731
732 /*
733 * Check if we need to flush due to large pages.
734 * Because large_page_mask contains all 1's from the msb,
735 * we only need to test the end of the range.
736 */
737 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
738 tlb_debug("forcing full flush midx %d ("
739 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n",
740 midx, d->large_page_addr, d->large_page_mask);
741 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime());
742 return;
743 }
744
745 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
746 vaddr page = addr + i;
747 CPUTLBEntry *entry = tlb_entry(cpu, midx, page);
748
749 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
750 tlb_n_used_entries_dec(cpu, midx);
751 }
752 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask);
753 }
754 }
755
756 typedef struct {
757 vaddr addr;
758 vaddr len;
759 uint16_t idxmap;
760 uint16_t bits;
761 } TLBFlushRangeData;
762
763 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
764 TLBFlushRangeData d)
765 {
766 int mmu_idx;
767
768 assert_cpu_is_self(cpu);
769
770 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n",
771 d.addr, d.bits, d.len, d.idxmap);
772
773 qemu_spin_lock(&cpu->neg.tlb.c.lock);
774 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
775 if ((d.idxmap >> mmu_idx) & 1) {
776 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits);
777 }
778 }
779 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
780
781 /*
782 * If the length is larger than the jump cache size, then it will take
783 * longer to clear each entry individually than it will to clear it all.
784 */
785 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
786 tcg_flush_jmp_cache(cpu);
787 return;
788 }
789
790 /*
791 * Discard jump cache entries for any tb which might potentially
792 * overlap the flushed pages, which includes the previous.
793 */
794 d.addr -= TARGET_PAGE_SIZE;
795 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
796 tb_jmp_cache_clear_page(cpu, d.addr);
797 d.addr += TARGET_PAGE_SIZE;
798 }
799 }
800
801 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
802 run_on_cpu_data data)
803 {
804 TLBFlushRangeData *d = data.host_ptr;
805 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
806 g_free(d);
807 }
808
809 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
810 vaddr len, uint16_t idxmap,
811 unsigned bits)
812 {
813 TLBFlushRangeData d;
814
815 /*
816 * If all bits are significant, and len is small,
817 * this devolves to tlb_flush_page.
818 */
819 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
820 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
821 return;
822 }
823 /* If no page bits are significant, this devolves to tlb_flush. */
824 if (bits < TARGET_PAGE_BITS) {
825 tlb_flush_by_mmuidx(cpu, idxmap);
826 return;
827 }
828
829 /* This should already be page aligned */
830 d.addr = addr & TARGET_PAGE_MASK;
831 d.len = len;
832 d.idxmap = idxmap;
833 d.bits = bits;
834
835 if (qemu_cpu_is_self(cpu)) {
836 tlb_flush_range_by_mmuidx_async_0(cpu, d);
837 } else {
838 /* Otherwise allocate a structure, freed by the worker. */
839 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
840 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
841 RUN_ON_CPU_HOST_PTR(p));
842 }
843 }
844
845 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
846 uint16_t idxmap, unsigned bits)
847 {
848 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
849 }
850
851 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
852 vaddr addr, vaddr len,
853 uint16_t idxmap, unsigned bits)
854 {
855 TLBFlushRangeData d;
856 CPUState *dst_cpu;
857
858 /*
859 * If all bits are significant, and len is small,
860 * this devolves to tlb_flush_page.
861 */
862 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
863 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
864 return;
865 }
866 /* If no page bits are significant, this devolves to tlb_flush. */
867 if (bits < TARGET_PAGE_BITS) {
868 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
869 return;
870 }
871
872 /* This should already be page aligned */
873 d.addr = addr & TARGET_PAGE_MASK;
874 d.len = len;
875 d.idxmap = idxmap;
876 d.bits = bits;
877
878 /* Allocate a separate data block for each destination cpu. */
879 CPU_FOREACH(dst_cpu) {
880 if (dst_cpu != src_cpu) {
881 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
882 async_run_on_cpu(dst_cpu,
883 tlb_flush_range_by_mmuidx_async_1,
884 RUN_ON_CPU_HOST_PTR(p));
885 }
886 }
887
888 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
889 }
890
891 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
892 vaddr addr, uint16_t idxmap,
893 unsigned bits)
894 {
895 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
896 idxmap, bits);
897 }
898
899 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
900 vaddr addr,
901 vaddr len,
902 uint16_t idxmap,
903 unsigned bits)
904 {
905 TLBFlushRangeData d, *p;
906 CPUState *dst_cpu;
907
908 /*
909 * If all bits are significant, and len is small,
910 * this devolves to tlb_flush_page.
911 */
912 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
913 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
914 return;
915 }
916 /* If no page bits are significant, this devolves to tlb_flush. */
917 if (bits < TARGET_PAGE_BITS) {
918 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
919 return;
920 }
921
922 /* This should already be page aligned */
923 d.addr = addr & TARGET_PAGE_MASK;
924 d.len = len;
925 d.idxmap = idxmap;
926 d.bits = bits;
927
928 /* Allocate a separate data block for each destination cpu. */
929 CPU_FOREACH(dst_cpu) {
930 if (dst_cpu != src_cpu) {
931 p = g_memdup(&d, sizeof(d));
932 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
933 RUN_ON_CPU_HOST_PTR(p));
934 }
935 }
936
937 p = g_memdup(&d, sizeof(d));
938 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
939 RUN_ON_CPU_HOST_PTR(p));
940 }
941
942 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
943 vaddr addr,
944 uint16_t idxmap,
945 unsigned bits)
946 {
947 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
948 idxmap, bits);
949 }
950
951 /* update the TLBs so that writes to code in the virtual page 'addr'
952 can be detected */
953 void tlb_protect_code(ram_addr_t ram_addr)
954 {
955 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
956 TARGET_PAGE_SIZE,
957 DIRTY_MEMORY_CODE);
958 }
959
960 /* update the TLB so that writes in physical page 'phys_addr' are no longer
961 tested for self modifying code */
962 void tlb_unprotect_code(ram_addr_t ram_addr)
963 {
964 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
965 }
966
967
968 /*
969 * Dirty write flag handling
970 *
971 * When the TCG code writes to a location it looks up the address in
972 * the TLB and uses that data to compute the final address. If any of
973 * the lower bits of the address are set then the slow path is forced.
974 * There are a number of reasons to do this but for normal RAM the
975 * most usual is detecting writes to code regions which may invalidate
976 * generated code.
977 *
978 * Other vCPUs might be reading their TLBs during guest execution, so we update
979 * te->addr_write with qatomic_set. We don't need to worry about this for
980 * oversized guests as MTTCG is disabled for them.
981 *
982 * Called with tlb_c.lock held.
983 */
984 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
985 uintptr_t start, uintptr_t length)
986 {
987 uintptr_t addr = tlb_entry->addr_write;
988
989 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
990 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
991 addr &= TARGET_PAGE_MASK;
992 addr += tlb_entry->addend;
993 if ((addr - start) < length) {
994 #if TARGET_LONG_BITS == 32
995 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
996 ptr_write += HOST_BIG_ENDIAN;
997 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
998 #elif TCG_OVERSIZED_GUEST
999 tlb_entry->addr_write |= TLB_NOTDIRTY;
1000 #else
1001 qatomic_set(&tlb_entry->addr_write,
1002 tlb_entry->addr_write | TLB_NOTDIRTY);
1003 #endif
1004 }
1005 }
1006 }
1007
1008 /*
1009 * Called with tlb_c.lock held.
1010 * Called only from the vCPU context, i.e. the TLB's owner thread.
1011 */
1012 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1013 {
1014 *d = *s;
1015 }
1016
1017 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1018 * the target vCPU).
1019 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1020 * thing actually updated is the target TLB entry ->addr_write flags.
1021 */
1022 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1023 {
1024 int mmu_idx;
1025
1026 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1027 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1028 unsigned int i;
1029 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]);
1030
1031 for (i = 0; i < n; i++) {
1032 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i],
1033 start1, length);
1034 }
1035
1036 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1037 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i],
1038 start1, length);
1039 }
1040 }
1041 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1042 }
1043
1044 /* Called with tlb_c.lock held */
1045 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1046 vaddr addr)
1047 {
1048 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1049 tlb_entry->addr_write = addr;
1050 }
1051 }
1052
1053 /* update the TLB corresponding to virtual page vaddr
1054 so that it is no longer dirty */
1055 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1056 {
1057 int mmu_idx;
1058
1059 assert_cpu_is_self(cpu);
1060
1061 addr &= TARGET_PAGE_MASK;
1062 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1063 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1064 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr);
1065 }
1066
1067 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1068 int k;
1069 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1070 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr);
1071 }
1072 }
1073 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1074 }
1075
1076 /* Our TLB does not support large pages, so remember the area covered by
1077 large pages and trigger a full TLB flush if these are invalidated. */
1078 static void tlb_add_large_page(CPUState *cpu, int mmu_idx,
1079 vaddr addr, uint64_t size)
1080 {
1081 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr;
1082 vaddr lp_mask = ~(size - 1);
1083
1084 if (lp_addr == (vaddr)-1) {
1085 /* No previous large page. */
1086 lp_addr = addr;
1087 } else {
1088 /* Extend the existing region to include the new page.
1089 This is a compromise between unnecessary flushes and
1090 the cost of maintaining a full variable size TLB. */
1091 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask;
1092 while (((lp_addr ^ addr) & lp_mask) != 0) {
1093 lp_mask <<= 1;
1094 }
1095 }
1096 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1097 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask;
1098 }
1099
1100 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1101 vaddr address, int flags,
1102 MMUAccessType access_type, bool enable)
1103 {
1104 if (enable) {
1105 address |= flags & TLB_FLAGS_MASK;
1106 flags &= TLB_SLOW_FLAGS_MASK;
1107 if (flags) {
1108 address |= TLB_FORCE_SLOW;
1109 }
1110 } else {
1111 address = -1;
1112 flags = 0;
1113 }
1114 ent->addr_idx[access_type] = address;
1115 full->slow_flags[access_type] = flags;
1116 }
1117
1118 /*
1119 * Add a new TLB entry. At most one entry for a given virtual address
1120 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1121 * supplied size is only used by tlb_flush_page.
1122 *
1123 * Called from TCG-generated code, which is under an RCU read-side
1124 * critical section.
1125 */
1126 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1127 vaddr addr, CPUTLBEntryFull *full)
1128 {
1129 CPUTLB *tlb = &cpu->neg.tlb;
1130 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1131 MemoryRegionSection *section;
1132 unsigned int index, read_flags, write_flags;
1133 uintptr_t addend;
1134 CPUTLBEntry *te, tn;
1135 hwaddr iotlb, xlat, sz, paddr_page;
1136 vaddr addr_page;
1137 int asidx, wp_flags, prot;
1138 bool is_ram, is_romd;
1139
1140 assert_cpu_is_self(cpu);
1141
1142 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1143 sz = TARGET_PAGE_SIZE;
1144 } else {
1145 sz = (hwaddr)1 << full->lg_page_size;
1146 tlb_add_large_page(cpu, mmu_idx, addr, sz);
1147 }
1148 addr_page = addr & TARGET_PAGE_MASK;
1149 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1150
1151 prot = full->prot;
1152 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1153 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1154 &xlat, &sz, full->attrs, &prot);
1155 assert(sz >= TARGET_PAGE_SIZE);
1156
1157 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1158 " prot=%x idx=%d\n",
1159 addr, full->phys_addr, prot, mmu_idx);
1160
1161 read_flags = 0;
1162 if (full->lg_page_size < TARGET_PAGE_BITS) {
1163 /* Repeat the MMU check and TLB fill on every access. */
1164 read_flags |= TLB_INVALID_MASK;
1165 }
1166 if (full->attrs.byte_swap) {
1167 read_flags |= TLB_BSWAP;
1168 }
1169
1170 is_ram = memory_region_is_ram(section->mr);
1171 is_romd = memory_region_is_romd(section->mr);
1172
1173 if (is_ram || is_romd) {
1174 /* RAM and ROMD both have associated host memory. */
1175 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1176 } else {
1177 /* I/O does not; force the host address to NULL. */
1178 addend = 0;
1179 }
1180
1181 write_flags = read_flags;
1182 if (is_ram) {
1183 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1184 assert(!(iotlb & ~TARGET_PAGE_MASK));
1185 /*
1186 * Computing is_clean is expensive; avoid all that unless
1187 * the page is actually writable.
1188 */
1189 if (prot & PAGE_WRITE) {
1190 if (section->readonly) {
1191 write_flags |= TLB_DISCARD_WRITE;
1192 } else if (cpu_physical_memory_is_clean(iotlb)) {
1193 write_flags |= TLB_NOTDIRTY;
1194 }
1195 }
1196 } else {
1197 /* I/O or ROMD */
1198 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1199 /*
1200 * Writes to romd devices must go through MMIO to enable write.
1201 * Reads to romd devices go through the ram_ptr found above,
1202 * but of course reads to I/O must go through MMIO.
1203 */
1204 write_flags |= TLB_MMIO;
1205 if (!is_romd) {
1206 read_flags = write_flags;
1207 }
1208 }
1209
1210 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1211 TARGET_PAGE_SIZE);
1212
1213 index = tlb_index(cpu, mmu_idx, addr_page);
1214 te = tlb_entry(cpu, mmu_idx, addr_page);
1215
1216 /*
1217 * Hold the TLB lock for the rest of the function. We could acquire/release
1218 * the lock several times in the function, but it is faster to amortize the
1219 * acquisition cost by acquiring it just once. Note that this leads to
1220 * a longer critical section, but this is not a concern since the TLB lock
1221 * is unlikely to be contended.
1222 */
1223 qemu_spin_lock(&tlb->c.lock);
1224
1225 /* Note that the tlb is no longer clean. */
1226 tlb->c.dirty |= 1 << mmu_idx;
1227
1228 /* Make sure there's no cached translation for the new page. */
1229 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page);
1230
1231 /*
1232 * Only evict the old entry to the victim tlb if it's for a
1233 * different page; otherwise just overwrite the stale data.
1234 */
1235 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1236 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1237 CPUTLBEntry *tv = &desc->vtable[vidx];
1238
1239 /* Evict the old entry into the victim tlb. */
1240 copy_tlb_helper_locked(tv, te);
1241 desc->vfulltlb[vidx] = desc->fulltlb[index];
1242 tlb_n_used_entries_dec(cpu, mmu_idx);
1243 }
1244
1245 /* refill the tlb */
1246 /*
1247 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS
1248 * aligned ram_addr_t of the page base of the target RAM.
1249 * Otherwise, iotlb contains
1250 * - a physical section number in the lower TARGET_PAGE_BITS
1251 * - the offset within section->mr of the page base (I/O, ROMD) with the
1252 * TARGET_PAGE_BITS masked off.
1253 * We subtract addr_page (which is page aligned and thus won't
1254 * disturb the low bits) to give an offset which can be added to the
1255 * (non-page-aligned) vaddr of the eventual memory access to get
1256 * the MemoryRegion offset for the access. Note that the vaddr we
1257 * subtract here is that of the page base, and not the same as the
1258 * vaddr we add back in io_prepare()/get_page_addr_code().
1259 */
1260 desc->fulltlb[index] = *full;
1261 full = &desc->fulltlb[index];
1262 full->xlat_section = iotlb - addr_page;
1263 full->phys_addr = paddr_page;
1264
1265 /* Now calculate the new entry */
1266 tn.addend = addend - addr_page;
1267
1268 tlb_set_compare(full, &tn, addr_page, read_flags,
1269 MMU_INST_FETCH, prot & PAGE_EXEC);
1270
1271 if (wp_flags & BP_MEM_READ) {
1272 read_flags |= TLB_WATCHPOINT;
1273 }
1274 tlb_set_compare(full, &tn, addr_page, read_flags,
1275 MMU_DATA_LOAD, prot & PAGE_READ);
1276
1277 if (prot & PAGE_WRITE_INV) {
1278 write_flags |= TLB_INVALID_MASK;
1279 }
1280 if (wp_flags & BP_MEM_WRITE) {
1281 write_flags |= TLB_WATCHPOINT;
1282 }
1283 tlb_set_compare(full, &tn, addr_page, write_flags,
1284 MMU_DATA_STORE, prot & PAGE_WRITE);
1285
1286 copy_tlb_helper_locked(te, &tn);
1287 tlb_n_used_entries_inc(cpu, mmu_idx);
1288 qemu_spin_unlock(&tlb->c.lock);
1289 }
1290
1291 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1292 hwaddr paddr, MemTxAttrs attrs, int prot,
1293 int mmu_idx, uint64_t size)
1294 {
1295 CPUTLBEntryFull full = {
1296 .phys_addr = paddr,
1297 .attrs = attrs,
1298 .prot = prot,
1299 .lg_page_size = ctz64(size)
1300 };
1301
1302 assert(is_power_of_2(size));
1303 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1304 }
1305
1306 void tlb_set_page(CPUState *cpu, vaddr addr,
1307 hwaddr paddr, int prot,
1308 int mmu_idx, uint64_t size)
1309 {
1310 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1311 prot, mmu_idx, size);
1312 }
1313
1314 /*
1315 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1316 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1317 * be discarded and looked up again (e.g. via tlb_entry()).
1318 */
1319 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1320 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1321 {
1322 bool ok;
1323
1324 /*
1325 * This is not a probe, so only valid return is success; failure
1326 * should result in exception + longjmp to the cpu loop.
1327 */
1328 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1329 access_type, mmu_idx, false, retaddr);
1330 assert(ok);
1331 }
1332
1333 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1334 MMUAccessType access_type,
1335 int mmu_idx, uintptr_t retaddr)
1336 {
1337 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1338 mmu_idx, retaddr);
1339 }
1340
1341 static MemoryRegionSection *
1342 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat,
1343 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr)
1344 {
1345 MemoryRegionSection *section;
1346 hwaddr mr_offset;
1347
1348 section = iotlb_to_section(cpu, xlat, attrs);
1349 mr_offset = (xlat & TARGET_PAGE_MASK) + addr;
1350 cpu->mem_io_pc = retaddr;
1351 if (!cpu->neg.can_do_io) {
1352 cpu_io_recompile(cpu, retaddr);
1353 }
1354
1355 *out_offset = mr_offset;
1356 return section;
1357 }
1358
1359 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr,
1360 unsigned size, MMUAccessType access_type, int mmu_idx,
1361 MemTxResult response, uintptr_t retaddr)
1362 {
1363 if (!cpu->ignore_memory_transaction_failures
1364 && cpu->cc->tcg_ops->do_transaction_failed) {
1365 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1366
1367 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1368 access_type, mmu_idx,
1369 full->attrs, response, retaddr);
1370 }
1371 }
1372
1373 /* Return true if ADDR is present in the victim tlb, and has been copied
1374 back to the main tlb. */
1375 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index,
1376 MMUAccessType access_type, vaddr page)
1377 {
1378 size_t vidx;
1379
1380 assert_cpu_is_self(cpu);
1381 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1382 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx];
1383 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1384
1385 if (cmp == page) {
1386 /* Found entry in victim tlb, swap tlb and iotlb. */
1387 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index];
1388
1389 qemu_spin_lock(&cpu->neg.tlb.c.lock);
1390 copy_tlb_helper_locked(&tmptlb, tlb);
1391 copy_tlb_helper_locked(tlb, vtlb);
1392 copy_tlb_helper_locked(vtlb, &tmptlb);
1393 qemu_spin_unlock(&cpu->neg.tlb.c.lock);
1394
1395 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1396 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx];
1397 CPUTLBEntryFull tmpf;
1398 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1399 return true;
1400 }
1401 }
1402 return false;
1403 }
1404
1405 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1406 CPUTLBEntryFull *full, uintptr_t retaddr)
1407 {
1408 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1409
1410 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1411
1412 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1413 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1414 }
1415
1416 /*
1417 * Set both VGA and migration bits for simplicity and to remove
1418 * the notdirty callback faster.
1419 */
1420 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1421
1422 /* We remove the notdirty callback only if the code has been flushed. */
1423 if (!cpu_physical_memory_is_clean(ram_addr)) {
1424 trace_memory_notdirty_set_dirty(mem_vaddr);
1425 tlb_set_dirty(cpu, mem_vaddr);
1426 }
1427 }
1428
1429 static int probe_access_internal(CPUState *cpu, vaddr addr,
1430 int fault_size, MMUAccessType access_type,
1431 int mmu_idx, bool nonfault,
1432 void **phost, CPUTLBEntryFull **pfull,
1433 uintptr_t retaddr, bool check_mem_cbs)
1434 {
1435 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1436 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1437 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1438 vaddr page_addr = addr & TARGET_PAGE_MASK;
1439 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1440 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu);
1441 CPUTLBEntryFull *full;
1442
1443 if (!tlb_hit_page(tlb_addr, page_addr)) {
1444 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) {
1445 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
1446 mmu_idx, nonfault, retaddr)) {
1447 /* Non-faulting page table read failed. */
1448 *phost = NULL;
1449 *pfull = NULL;
1450 return TLB_INVALID_MASK;
1451 }
1452
1453 /* TLB resize via tlb_fill may have moved the entry. */
1454 index = tlb_index(cpu, mmu_idx, addr);
1455 entry = tlb_entry(cpu, mmu_idx, addr);
1456
1457 /*
1458 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1459 * to force the next access through tlb_fill. We've just
1460 * called tlb_fill, so we know that this entry *is* valid.
1461 */
1462 flags &= ~TLB_INVALID_MASK;
1463 }
1464 tlb_addr = tlb_read_idx(entry, access_type);
1465 }
1466 flags &= tlb_addr;
1467
1468 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1469 flags |= full->slow_flags[access_type];
1470
1471 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1472 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1473 ||
1474 (access_type != MMU_INST_FETCH && force_mmio)) {
1475 *phost = NULL;
1476 return TLB_MMIO;
1477 }
1478
1479 /* Everything else is RAM. */
1480 *phost = (void *)((uintptr_t)addr + entry->addend);
1481 return flags;
1482 }
1483
1484 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1485 MMUAccessType access_type, int mmu_idx,
1486 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1487 uintptr_t retaddr)
1488 {
1489 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1490 mmu_idx, nonfault, phost, pfull, retaddr,
1491 true);
1492
1493 /* Handle clean RAM pages. */
1494 if (unlikely(flags & TLB_NOTDIRTY)) {
1495 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1496 flags &= ~TLB_NOTDIRTY;
1497 }
1498
1499 return flags;
1500 }
1501
1502 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1503 MMUAccessType access_type, int mmu_idx,
1504 void **phost, CPUTLBEntryFull **pfull)
1505 {
1506 void *discard_phost;
1507 CPUTLBEntryFull *discard_tlb;
1508
1509 /* privately handle users that don't need full results */
1510 phost = phost ? phost : &discard_phost;
1511 pfull = pfull ? pfull : &discard_tlb;
1512
1513 int flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1514 mmu_idx, true, phost, pfull, 0, false);
1515
1516 /* Handle clean RAM pages. */
1517 if (unlikely(flags & TLB_NOTDIRTY)) {
1518 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1519 flags &= ~TLB_NOTDIRTY;
1520 }
1521
1522 return flags;
1523 }
1524
1525 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1526 MMUAccessType access_type, int mmu_idx,
1527 bool nonfault, void **phost, uintptr_t retaddr)
1528 {
1529 CPUTLBEntryFull *full;
1530 int flags;
1531
1532 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1533
1534 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1535 mmu_idx, nonfault, phost, &full, retaddr,
1536 true);
1537
1538 /* Handle clean RAM pages. */
1539 if (unlikely(flags & TLB_NOTDIRTY)) {
1540 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1541 flags &= ~TLB_NOTDIRTY;
1542 }
1543
1544 return flags;
1545 }
1546
1547 void *probe_access(CPUArchState *env, vaddr addr, int size,
1548 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1549 {
1550 CPUTLBEntryFull *full;
1551 void *host;
1552 int flags;
1553
1554 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1555
1556 flags = probe_access_internal(env_cpu(env), addr, size, access_type,
1557 mmu_idx, false, &host, &full, retaddr,
1558 true);
1559
1560 /* Per the interface, size == 0 merely faults the access. */
1561 if (size == 0) {
1562 return NULL;
1563 }
1564
1565 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1566 /* Handle watchpoints. */
1567 if (flags & TLB_WATCHPOINT) {
1568 int wp_access = (access_type == MMU_DATA_STORE
1569 ? BP_MEM_WRITE : BP_MEM_READ);
1570 cpu_check_watchpoint(env_cpu(env), addr, size,
1571 full->attrs, wp_access, retaddr);
1572 }
1573
1574 /* Handle clean RAM pages. */
1575 if (flags & TLB_NOTDIRTY) {
1576 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1577 }
1578 }
1579
1580 return host;
1581 }
1582
1583 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1584 MMUAccessType access_type, int mmu_idx)
1585 {
1586 CPUTLBEntryFull *full;
1587 void *host;
1588 int flags;
1589
1590 flags = probe_access_internal(env_cpu(env), addr, 0, access_type,
1591 mmu_idx, true, &host, &full, 0, false);
1592
1593 /* No combination of flags are expected by the caller. */
1594 return flags ? NULL : host;
1595 }
1596
1597 /*
1598 * Return a ram_addr_t for the virtual address for execution.
1599 *
1600 * Return -1 if we can't translate and execute from an entire page
1601 * of RAM. This will force us to execute by loading and translating
1602 * one insn at a time, without caching.
1603 *
1604 * NOTE: This function will trigger an exception if the page is
1605 * not executable.
1606 */
1607 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1608 void **hostp)
1609 {
1610 CPUTLBEntryFull *full;
1611 void *p;
1612
1613 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH,
1614 cpu_mmu_index(env, true), false,
1615 &p, &full, 0, false);
1616 if (p == NULL) {
1617 return -1;
1618 }
1619
1620 if (full->lg_page_size < TARGET_PAGE_BITS) {
1621 return -1;
1622 }
1623
1624 if (hostp) {
1625 *hostp = p;
1626 }
1627 return qemu_ram_addr_from_host_nofail(p);
1628 }
1629
1630 /* Load/store with atomicity primitives. */
1631 #include "ldst_atomicity.c.inc"
1632
1633 #ifdef CONFIG_PLUGIN
1634 /*
1635 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1636 * This should be a hot path as we will have just looked this path up
1637 * in the softmmu lookup code (or helper). We don't handle re-fills or
1638 * checking the victim table. This is purely informational.
1639 *
1640 * The one corner case is i/o write, which can cause changes to the
1641 * address space. Those changes, and the corresponding tlb flush,
1642 * should be delayed until the next TB, so even then this ought not fail.
1643 * But check, Just in Case.
1644 */
1645 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1646 bool is_store, struct qemu_plugin_hwaddr *data)
1647 {
1648 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr);
1649 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1650 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD;
1651 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type);
1652 CPUTLBEntryFull *full;
1653
1654 if (unlikely(!tlb_hit(tlb_addr, addr))) {
1655 return false;
1656 }
1657
1658 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1659 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
1660
1661 /* We must have an iotlb entry for MMIO */
1662 if (tlb_addr & TLB_MMIO) {
1663 MemoryRegionSection *section =
1664 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK,
1665 full->attrs);
1666 data->is_io = true;
1667 data->mr = section->mr;
1668 } else {
1669 data->is_io = false;
1670 data->mr = NULL;
1671 }
1672 return true;
1673 }
1674 #endif
1675
1676 /*
1677 * Probe for a load/store operation.
1678 * Return the host address and into @flags.
1679 */
1680
1681 typedef struct MMULookupPageData {
1682 CPUTLBEntryFull *full;
1683 void *haddr;
1684 vaddr addr;
1685 int flags;
1686 int size;
1687 } MMULookupPageData;
1688
1689 typedef struct MMULookupLocals {
1690 MMULookupPageData page[2];
1691 MemOp memop;
1692 int mmu_idx;
1693 } MMULookupLocals;
1694
1695 /**
1696 * mmu_lookup1: translate one page
1697 * @cpu: generic cpu state
1698 * @data: lookup parameters
1699 * @mmu_idx: virtual address context
1700 * @access_type: load/store/code
1701 * @ra: return address into tcg generated code, or 0
1702 *
1703 * Resolve the translation for the one page at @data.addr, filling in
1704 * the rest of @data with the results. If the translation fails,
1705 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1706 * @mmu_idx may have resized.
1707 */
1708 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data,
1709 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1710 {
1711 vaddr addr = data->addr;
1712 uintptr_t index = tlb_index(cpu, mmu_idx, addr);
1713 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr);
1714 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1715 bool maybe_resized = false;
1716 CPUTLBEntryFull *full;
1717 int flags;
1718
1719 /* If the TLB entry is for a different page, reload and try again. */
1720 if (!tlb_hit(tlb_addr, addr)) {
1721 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type,
1722 addr & TARGET_PAGE_MASK)) {
1723 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra);
1724 maybe_resized = true;
1725 index = tlb_index(cpu, mmu_idx, addr);
1726 entry = tlb_entry(cpu, mmu_idx, addr);
1727 }
1728 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1729 }
1730
1731 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1732 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1733 flags |= full->slow_flags[access_type];
1734
1735 data->full = full;
1736 data->flags = flags;
1737 /* Compute haddr speculatively; depending on flags it might be invalid. */
1738 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1739
1740 return maybe_resized;
1741 }
1742
1743 /**
1744 * mmu_watch_or_dirty
1745 * @cpu: generic cpu state
1746 * @data: lookup parameters
1747 * @access_type: load/store/code
1748 * @ra: return address into tcg generated code, or 0
1749 *
1750 * Trigger watchpoints for @data.addr:@data.size;
1751 * record writes to protected clean pages.
1752 */
1753 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data,
1754 MMUAccessType access_type, uintptr_t ra)
1755 {
1756 CPUTLBEntryFull *full = data->full;
1757 vaddr addr = data->addr;
1758 int flags = data->flags;
1759 int size = data->size;
1760
1761 /* On watchpoint hit, this will longjmp out. */
1762 if (flags & TLB_WATCHPOINT) {
1763 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1764 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra);
1765 flags &= ~TLB_WATCHPOINT;
1766 }
1767
1768 /* Note that notdirty is only set for writes. */
1769 if (flags & TLB_NOTDIRTY) {
1770 notdirty_write(cpu, addr, size, full, ra);
1771 flags &= ~TLB_NOTDIRTY;
1772 }
1773 data->flags = flags;
1774 }
1775
1776 /**
1777 * mmu_lookup: translate page(s)
1778 * @cpu: generic cpu state
1779 * @addr: virtual address
1780 * @oi: combined mmu_idx and MemOp
1781 * @ra: return address into tcg generated code, or 0
1782 * @access_type: load/store/code
1783 * @l: output result
1784 *
1785 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1786 * bytes. Return true if the lookup crosses a page boundary.
1787 */
1788 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1789 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1790 {
1791 unsigned a_bits;
1792 bool crosspage;
1793 int flags;
1794
1795 l->memop = get_memop(oi);
1796 l->mmu_idx = get_mmuidx(oi);
1797
1798 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1799
1800 /* Handle CPU specific unaligned behaviour */
1801 a_bits = get_alignment_bits(l->memop);
1802 if (addr & ((1 << a_bits) - 1)) {
1803 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra);
1804 }
1805
1806 l->page[0].addr = addr;
1807 l->page[0].size = memop_size(l->memop);
1808 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1809 l->page[1].size = 0;
1810 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1811
1812 if (likely(!crosspage)) {
1813 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
1814
1815 flags = l->page[0].flags;
1816 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1817 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1818 }
1819 if (unlikely(flags & TLB_BSWAP)) {
1820 l->memop ^= MO_BSWAP;
1821 }
1822 } else {
1823 /* Finish compute of page crossing. */
1824 int size0 = l->page[1].addr - addr;
1825 l->page[1].size = l->page[0].size - size0;
1826 l->page[0].size = size0;
1827
1828 /*
1829 * Lookup both pages, recognizing exceptions from either. If the
1830 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1831 */
1832 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra);
1833 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) {
1834 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr);
1835 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index];
1836 }
1837
1838 flags = l->page[0].flags | l->page[1].flags;
1839 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1840 mmu_watch_or_dirty(cpu, &l->page[0], type, ra);
1841 mmu_watch_or_dirty(cpu, &l->page[1], type, ra);
1842 }
1843
1844 /*
1845 * Since target/sparc is the only user of TLB_BSWAP, and all
1846 * Sparc accesses are aligned, any treatment across two pages
1847 * would be arbitrary. Refuse it until there's a use.
1848 */
1849 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1850 }
1851
1852 return crosspage;
1853 }
1854
1855 /*
1856 * Probe for an atomic operation. Do not allow unaligned operations,
1857 * or io operations to proceed. Return the host address.
1858 */
1859 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi,
1860 int size, uintptr_t retaddr)
1861 {
1862 uintptr_t mmu_idx = get_mmuidx(oi);
1863 MemOp mop = get_memop(oi);
1864 int a_bits = get_alignment_bits(mop);
1865 uintptr_t index;
1866 CPUTLBEntry *tlbe;
1867 vaddr tlb_addr;
1868 void *hostaddr;
1869 CPUTLBEntryFull *full;
1870
1871 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1872
1873 /* Adjust the given return address. */
1874 retaddr -= GETPC_ADJ;
1875
1876 /* Enforce guest required alignment. */
1877 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1878 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1879 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE,
1880 mmu_idx, retaddr);
1881 }
1882
1883 /* Enforce qemu required alignment. */
1884 if (unlikely(addr & (size - 1))) {
1885 /* We get here if guest alignment was not requested,
1886 or was not enforced by cpu_unaligned_access above.
1887 We might widen the access and emulate, but for now
1888 mark an exception and exit the cpu loop. */
1889 goto stop_the_world;
1890 }
1891
1892 index = tlb_index(cpu, mmu_idx, addr);
1893 tlbe = tlb_entry(cpu, mmu_idx, addr);
1894
1895 /* Check TLB entry and enforce page permissions. */
1896 tlb_addr = tlb_addr_write(tlbe);
1897 if (!tlb_hit(tlb_addr, addr)) {
1898 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE,
1899 addr & TARGET_PAGE_MASK)) {
1900 tlb_fill(cpu, addr, size,
1901 MMU_DATA_STORE, mmu_idx, retaddr);
1902 index = tlb_index(cpu, mmu_idx, addr);
1903 tlbe = tlb_entry(cpu, mmu_idx, addr);
1904 }
1905 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1906 }
1907
1908 /*
1909 * Let the guest notice RMW on a write-only page.
1910 * We have just verified that the page is writable.
1911 * Subpage lookups may have left TLB_INVALID_MASK set,
1912 * but addr_read will only be -1 if PAGE_READ was unset.
1913 */
1914 if (unlikely(tlbe->addr_read == -1)) {
1915 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1916 /*
1917 * Since we don't support reads and writes to different
1918 * addresses, and we do have the proper page loaded for
1919 * write, this shouldn't ever return. But just in case,
1920 * handle via stop-the-world.
1921 */
1922 goto stop_the_world;
1923 }
1924 /* Collect tlb flags for read. */
1925 tlb_addr |= tlbe->addr_read;
1926
1927 /* Notice an IO access or a needs-MMU-lookup access */
1928 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1929 /* There's really nothing that can be done to
1930 support this apart from stop-the-world. */
1931 goto stop_the_world;
1932 }
1933
1934 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1935 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index];
1936
1937 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1938 notdirty_write(cpu, addr, size, full, retaddr);
1939 }
1940
1941 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
1942 int wp_flags = 0;
1943
1944 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
1945 wp_flags |= BP_MEM_WRITE;
1946 }
1947 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
1948 wp_flags |= BP_MEM_READ;
1949 }
1950 if (wp_flags) {
1951 cpu_check_watchpoint(cpu, addr, size,
1952 full->attrs, wp_flags, retaddr);
1953 }
1954 }
1955
1956 return hostaddr;
1957
1958 stop_the_world:
1959 cpu_loop_exit_atomic(cpu, retaddr);
1960 }
1961
1962 /*
1963 * Load Helpers
1964 *
1965 * We support two different access types. SOFTMMU_CODE_ACCESS is
1966 * specifically for reading instructions from system memory. It is
1967 * called by the translation loop and in some helpers where the code
1968 * is disassembled. It shouldn't be called directly by guest code.
1969 *
1970 * For the benefit of TCG generated code, we want to avoid the
1971 * complication of ABI-specific return type promotion and always
1972 * return a value extended to the register size of the host. This is
1973 * tcg_target_long, except in the case of a 32-bit host and 64-bit
1974 * data, and for that we always have uint64_t.
1975 *
1976 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1977 */
1978
1979 /**
1980 * do_ld_mmio_beN:
1981 * @cpu: generic cpu state
1982 * @full: page parameters
1983 * @ret_be: accumulated data
1984 * @addr: virtual address
1985 * @size: number of bytes
1986 * @mmu_idx: virtual address context
1987 * @ra: return address into tcg generated code, or 0
1988 * Context: iothread lock held
1989 *
1990 * Load @size bytes from @addr, which is memory-mapped i/o.
1991 * The bytes are concatenated in big-endian order with @ret_be.
1992 */
1993 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
1994 uint64_t ret_be, vaddr addr, int size,
1995 int mmu_idx, MMUAccessType type, uintptr_t ra,
1996 MemoryRegion *mr, hwaddr mr_offset)
1997 {
1998 do {
1999 MemOp this_mop;
2000 unsigned this_size;
2001 uint64_t val;
2002 MemTxResult r;
2003
2004 /* Read aligned pieces up to 8 bytes. */
2005 this_mop = ctz32(size | (int)addr | 8);
2006 this_size = 1 << this_mop;
2007 this_mop |= MO_BE;
2008
2009 r = memory_region_dispatch_read(mr, mr_offset, &val,
2010 this_mop, full->attrs);
2011 if (unlikely(r != MEMTX_OK)) {
2012 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra);
2013 }
2014 if (this_size == 8) {
2015 return val;
2016 }
2017
2018 ret_be = (ret_be << (this_size * 8)) | val;
2019 addr += this_size;
2020 mr_offset += this_size;
2021 size -= this_size;
2022 } while (size);
2023
2024 return ret_be;
2025 }
2026
2027 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2028 uint64_t ret_be, vaddr addr, int size,
2029 int mmu_idx, MMUAccessType type, uintptr_t ra)
2030 {
2031 MemoryRegionSection *section;
2032 MemoryRegion *mr;
2033 hwaddr mr_offset;
2034 MemTxAttrs attrs;
2035 uint64_t ret;
2036
2037 tcg_debug_assert(size > 0 && size <= 8);
2038
2039 attrs = full->attrs;
2040 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2041 mr = section->mr;
2042
2043 qemu_mutex_lock_iothread();
2044 ret = int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx,
2045 type, ra, mr, mr_offset);
2046 qemu_mutex_unlock_iothread();
2047
2048 return ret;
2049 }
2050
2051 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full,
2052 uint64_t ret_be, vaddr addr, int size,
2053 int mmu_idx, uintptr_t ra)
2054 {
2055 MemoryRegionSection *section;
2056 MemoryRegion *mr;
2057 hwaddr mr_offset;
2058 MemTxAttrs attrs;
2059 uint64_t a, b;
2060
2061 tcg_debug_assert(size > 8 && size <= 16);
2062
2063 attrs = full->attrs;
2064 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2065 mr = section->mr;
2066
2067 qemu_mutex_lock_iothread();
2068 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx,
2069 MMU_DATA_LOAD, ra, mr, mr_offset);
2070 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx,
2071 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8);
2072 qemu_mutex_unlock_iothread();
2073
2074 return int128_make128(b, a);
2075 }
2076
2077 /**
2078 * do_ld_bytes_beN
2079 * @p: translation parameters
2080 * @ret_be: accumulated data
2081 *
2082 * Load @p->size bytes from @p->haddr, which is RAM.
2083 * The bytes to concatenated in big-endian order with @ret_be.
2084 */
2085 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2086 {
2087 uint8_t *haddr = p->haddr;
2088 int i, size = p->size;
2089
2090 for (i = 0; i < size; i++) {
2091 ret_be = (ret_be << 8) | haddr[i];
2092 }
2093 return ret_be;
2094 }
2095
2096 /**
2097 * do_ld_parts_beN
2098 * @p: translation parameters
2099 * @ret_be: accumulated data
2100 *
2101 * As do_ld_bytes_beN, but atomically on each aligned part.
2102 */
2103 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2104 {
2105 void *haddr = p->haddr;
2106 int size = p->size;
2107
2108 do {
2109 uint64_t x;
2110 int n;
2111
2112 /*
2113 * Find minimum of alignment and size.
2114 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2115 * would have only checked the low bits of addr|size once at the start,
2116 * but is just as easy.
2117 */
2118 switch (((uintptr_t)haddr | size) & 7) {
2119 case 4:
2120 x = cpu_to_be32(load_atomic4(haddr));
2121 ret_be = (ret_be << 32) | x;
2122 n = 4;
2123 break;
2124 case 2:
2125 case 6:
2126 x = cpu_to_be16(load_atomic2(haddr));
2127 ret_be = (ret_be << 16) | x;
2128 n = 2;
2129 break;
2130 default:
2131 x = *(uint8_t *)haddr;
2132 ret_be = (ret_be << 8) | x;
2133 n = 1;
2134 break;
2135 case 0:
2136 g_assert_not_reached();
2137 }
2138 haddr += n;
2139 size -= n;
2140 } while (size != 0);
2141 return ret_be;
2142 }
2143
2144 /**
2145 * do_ld_parts_be4
2146 * @p: translation parameters
2147 * @ret_be: accumulated data
2148 *
2149 * As do_ld_bytes_beN, but with one atomic load.
2150 * Four aligned bytes are guaranteed to cover the load.
2151 */
2152 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2153 {
2154 int o = p->addr & 3;
2155 uint32_t x = load_atomic4(p->haddr - o);
2156
2157 x = cpu_to_be32(x);
2158 x <<= o * 8;
2159 x >>= (4 - p->size) * 8;
2160 return (ret_be << (p->size * 8)) | x;
2161 }
2162
2163 /**
2164 * do_ld_parts_be8
2165 * @p: translation parameters
2166 * @ret_be: accumulated data
2167 *
2168 * As do_ld_bytes_beN, but with one atomic load.
2169 * Eight aligned bytes are guaranteed to cover the load.
2170 */
2171 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra,
2172 MMULookupPageData *p, uint64_t ret_be)
2173 {
2174 int o = p->addr & 7;
2175 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o);
2176
2177 x = cpu_to_be64(x);
2178 x <<= o * 8;
2179 x >>= (8 - p->size) * 8;
2180 return (ret_be << (p->size * 8)) | x;
2181 }
2182
2183 /**
2184 * do_ld_parts_be16
2185 * @p: translation parameters
2186 * @ret_be: accumulated data
2187 *
2188 * As do_ld_bytes_beN, but with one atomic load.
2189 * 16 aligned bytes are guaranteed to cover the load.
2190 */
2191 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra,
2192 MMULookupPageData *p, uint64_t ret_be)
2193 {
2194 int o = p->addr & 15;
2195 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o);
2196 int size = p->size;
2197
2198 if (!HOST_BIG_ENDIAN) {
2199 y = bswap128(y);
2200 }
2201 y = int128_lshift(y, o * 8);
2202 y = int128_urshift(y, (16 - size) * 8);
2203 x = int128_make64(ret_be);
2204 x = int128_lshift(x, size * 8);
2205 return int128_or(x, y);
2206 }
2207
2208 /*
2209 * Wrapper for the above.
2210 */
2211 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p,
2212 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2213 MemOp mop, uintptr_t ra)
2214 {
2215 MemOp atom;
2216 unsigned tmp, half_size;
2217
2218 if (unlikely(p->flags & TLB_MMIO)) {
2219 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size,
2220 mmu_idx, type, ra);
2221 }
2222
2223 /*
2224 * It is a given that we cross a page and therefore there is no
2225 * atomicity for the load as a whole, but subobjects may need attention.
2226 */
2227 atom = mop & MO_ATOM_MASK;
2228 switch (atom) {
2229 case MO_ATOM_SUBALIGN:
2230 return do_ld_parts_beN(p, ret_be);
2231
2232 case MO_ATOM_IFALIGN_PAIR:
2233 case MO_ATOM_WITHIN16_PAIR:
2234 tmp = mop & MO_SIZE;
2235 tmp = tmp ? tmp - 1 : 0;
2236 half_size = 1 << tmp;
2237 if (atom == MO_ATOM_IFALIGN_PAIR
2238 ? p->size == half_size
2239 : p->size >= half_size) {
2240 if (!HAVE_al8_fast && p->size < 4) {
2241 return do_ld_whole_be4(p, ret_be);
2242 } else {
2243 return do_ld_whole_be8(cpu, ra, p, ret_be);
2244 }
2245 }
2246 /* fall through */
2247
2248 case MO_ATOM_IFALIGN:
2249 case MO_ATOM_WITHIN16:
2250 case MO_ATOM_NONE:
2251 return do_ld_bytes_beN(p, ret_be);
2252
2253 default:
2254 g_assert_not_reached();
2255 }
2256 }
2257
2258 /*
2259 * Wrapper for the above, for 8 < size < 16.
2260 */
2261 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p,
2262 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2263 {
2264 int size = p->size;
2265 uint64_t b;
2266 MemOp atom;
2267
2268 if (unlikely(p->flags & TLB_MMIO)) {
2269 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra);
2270 }
2271
2272 /*
2273 * It is a given that we cross a page and therefore there is no
2274 * atomicity for the load as a whole, but subobjects may need attention.
2275 */
2276 atom = mop & MO_ATOM_MASK;
2277 switch (atom) {
2278 case MO_ATOM_SUBALIGN:
2279 p->size = size - 8;
2280 a = do_ld_parts_beN(p, a);
2281 p->haddr += size - 8;
2282 p->size = 8;
2283 b = do_ld_parts_beN(p, 0);
2284 break;
2285
2286 case MO_ATOM_WITHIN16_PAIR:
2287 /* Since size > 8, this is the half that must be atomic. */
2288 return do_ld_whole_be16(cpu, ra, p, a);
2289
2290 case MO_ATOM_IFALIGN_PAIR:
2291 /*
2292 * Since size > 8, both halves are misaligned,
2293 * and so neither is atomic.
2294 */
2295 case MO_ATOM_IFALIGN:
2296 case MO_ATOM_WITHIN16:
2297 case MO_ATOM_NONE:
2298 p->size = size - 8;
2299 a = do_ld_bytes_beN(p, a);
2300 b = ldq_be_p(p->haddr + size - 8);
2301 break;
2302
2303 default:
2304 g_assert_not_reached();
2305 }
2306
2307 return int128_make128(b, a);
2308 }
2309
2310 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2311 MMUAccessType type, uintptr_t ra)
2312 {
2313 if (unlikely(p->flags & TLB_MMIO)) {
2314 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra);
2315 } else {
2316 return *(uint8_t *)p->haddr;
2317 }
2318 }
2319
2320 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2321 MMUAccessType type, MemOp memop, uintptr_t ra)
2322 {
2323 uint16_t ret;
2324
2325 if (unlikely(p->flags & TLB_MMIO)) {
2326 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra);
2327 if ((memop & MO_BSWAP) == MO_LE) {
2328 ret = bswap16(ret);
2329 }
2330 } else {
2331 /* Perform the load host endian, then swap if necessary. */
2332 ret = load_atom_2(cpu, ra, p->haddr, memop);
2333 if (memop & MO_BSWAP) {
2334 ret = bswap16(ret);
2335 }
2336 }
2337 return ret;
2338 }
2339
2340 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2341 MMUAccessType type, MemOp memop, uintptr_t ra)
2342 {
2343 uint32_t ret;
2344
2345 if (unlikely(p->flags & TLB_MMIO)) {
2346 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra);
2347 if ((memop & MO_BSWAP) == MO_LE) {
2348 ret = bswap32(ret);
2349 }
2350 } else {
2351 /* Perform the load host endian. */
2352 ret = load_atom_4(cpu, ra, p->haddr, memop);
2353 if (memop & MO_BSWAP) {
2354 ret = bswap32(ret);
2355 }
2356 }
2357 return ret;
2358 }
2359
2360 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx,
2361 MMUAccessType type, MemOp memop, uintptr_t ra)
2362 {
2363 uint64_t ret;
2364
2365 if (unlikely(p->flags & TLB_MMIO)) {
2366 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra);
2367 if ((memop & MO_BSWAP) == MO_LE) {
2368 ret = bswap64(ret);
2369 }
2370 } else {
2371 /* Perform the load host endian. */
2372 ret = load_atom_8(cpu, ra, p->haddr, memop);
2373 if (memop & MO_BSWAP) {
2374 ret = bswap64(ret);
2375 }
2376 }
2377 return ret;
2378 }
2379
2380 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2381 uintptr_t ra, MMUAccessType access_type)
2382 {
2383 MMULookupLocals l;
2384 bool crosspage;
2385
2386 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2387 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2388 tcg_debug_assert(!crosspage);
2389
2390 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2391 }
2392
2393 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2394 MemOpIdx oi, uintptr_t retaddr)
2395 {
2396 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2397 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_DATA_LOAD);
2398 }
2399
2400 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2401 uintptr_t ra, MMUAccessType access_type)
2402 {
2403 MMULookupLocals l;
2404 bool crosspage;
2405 uint16_t ret;
2406 uint8_t a, b;
2407
2408 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2409 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2410 if (likely(!crosspage)) {
2411 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2412 }
2413
2414 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra);
2415 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra);
2416
2417 if ((l.memop & MO_BSWAP) == MO_LE) {
2418 ret = a | (b << 8);
2419 } else {
2420 ret = b | (a << 8);
2421 }
2422 return ret;
2423 }
2424
2425 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2426 MemOpIdx oi, uintptr_t retaddr)
2427 {
2428 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2429 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_DATA_LOAD);
2430 }
2431
2432 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2433 uintptr_t ra, MMUAccessType access_type)
2434 {
2435 MMULookupLocals l;
2436 bool crosspage;
2437 uint32_t ret;
2438
2439 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2440 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2441 if (likely(!crosspage)) {
2442 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2443 }
2444
2445 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2446 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2447 if ((l.memop & MO_BSWAP) == MO_LE) {
2448 ret = bswap32(ret);
2449 }
2450 return ret;
2451 }
2452
2453 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2454 MemOpIdx oi, uintptr_t retaddr)
2455 {
2456 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2457 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_DATA_LOAD);
2458 }
2459
2460 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi,
2461 uintptr_t ra, MMUAccessType access_type)
2462 {
2463 MMULookupLocals l;
2464 bool crosspage;
2465 uint64_t ret;
2466
2467 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2468 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l);
2469 if (likely(!crosspage)) {
2470 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2471 }
2472
2473 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2474 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2475 if ((l.memop & MO_BSWAP) == MO_LE) {
2476 ret = bswap64(ret);
2477 }
2478 return ret;
2479 }
2480
2481 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2482 MemOpIdx oi, uintptr_t retaddr)
2483 {
2484 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2485 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_DATA_LOAD);
2486 }
2487
2488 /*
2489 * Provide signed versions of the load routines as well. We can of course
2490 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2491 */
2492
2493 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2494 MemOpIdx oi, uintptr_t retaddr)
2495 {
2496 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2497 }
2498
2499 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2500 MemOpIdx oi, uintptr_t retaddr)
2501 {
2502 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2503 }
2504
2505 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2506 MemOpIdx oi, uintptr_t retaddr)
2507 {
2508 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2509 }
2510
2511 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr,
2512 MemOpIdx oi, uintptr_t ra)
2513 {
2514 MMULookupLocals l;
2515 bool crosspage;
2516 uint64_t a, b;
2517 Int128 ret;
2518 int first;
2519
2520 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2521 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l);
2522 if (likely(!crosspage)) {
2523 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2524 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16,
2525 l.mmu_idx, ra);
2526 if ((l.memop & MO_BSWAP) == MO_LE) {
2527 ret = bswap128(ret);
2528 }
2529 } else {
2530 /* Perform the load host endian. */
2531 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop);
2532 if (l.memop & MO_BSWAP) {
2533 ret = bswap128(ret);
2534 }
2535 }
2536 return ret;
2537 }
2538
2539 first = l.page[0].size;
2540 if (first == 8) {
2541 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2542
2543 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2544 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2545 if ((mop8 & MO_BSWAP) == MO_LE) {
2546 ret = int128_make128(a, b);
2547 } else {
2548 ret = int128_make128(b, a);
2549 }
2550 return ret;
2551 }
2552
2553 if (first < 8) {
2554 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx,
2555 MMU_DATA_LOAD, l.memop, ra);
2556 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra);
2557 } else {
2558 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2559 b = int128_getlo(ret);
2560 ret = int128_lshift(ret, l.page[1].size * 8);
2561 a = int128_gethi(ret);
2562 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx,
2563 MMU_DATA_LOAD, l.memop, ra);
2564 ret = int128_make128(b, a);
2565 }
2566 if ((l.memop & MO_BSWAP) == MO_LE) {
2567 ret = bswap128(ret);
2568 }
2569 return ret;
2570 }
2571
2572 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2573 uint32_t oi, uintptr_t retaddr)
2574 {
2575 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2576 return do_ld16_mmu(env_cpu(env), addr, oi, retaddr);
2577 }
2578
2579 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2580 {
2581 return helper_ld16_mmu(env, addr, oi, GETPC());
2582 }
2583
2584 /*
2585 * Load helpers for cpu_ldst.h.
2586 */
2587
2588 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2589 {
2590 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2591 }
2592
2593 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2594 {
2595 uint8_t ret;
2596
2597 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2598 ret = do_ld1_mmu(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
2599 plugin_load_cb(env, addr, oi);
2600 return ret;
2601 }
2602
2603 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2604 MemOpIdx oi, uintptr_t ra)
2605 {
2606 uint16_t ret;
2607
2608 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2609 ret = do_ld2_mmu(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
2610 plugin_load_cb(env, addr, oi);
2611 return ret;
2612 }
2613
2614 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2615 MemOpIdx oi, uintptr_t ra)
2616 {
2617 uint32_t ret;
2618
2619 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2620 ret = do_ld4_mmu(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
2621 plugin_load_cb(env, addr, oi);
2622 return ret;
2623 }
2624
2625 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2626 MemOpIdx oi, uintptr_t ra)
2627 {
2628 uint64_t ret;
2629
2630 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2631 ret = do_ld8_mmu(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD);
2632 plugin_load_cb(env, addr, oi);
2633 return ret;
2634 }
2635
2636 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2637 MemOpIdx oi, uintptr_t ra)
2638 {
2639 Int128 ret;
2640
2641 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2642 ret = do_ld16_mmu(env_cpu(env), addr, oi, ra);
2643 plugin_load_cb(env, addr, oi);
2644 return ret;
2645 }
2646
2647 /*
2648 * Store Helpers
2649 */
2650
2651 /**
2652 * do_st_mmio_leN:
2653 * @cpu: generic cpu state
2654 * @full: page parameters
2655 * @val_le: data to store
2656 * @addr: virtual address
2657 * @size: number of bytes
2658 * @mmu_idx: virtual address context
2659 * @ra: return address into tcg generated code, or 0
2660 * Context: iothread lock held
2661 *
2662 * Store @size bytes at @addr, which is memory-mapped i/o.
2663 * The bytes to store are extracted in little-endian order from @val_le;
2664 * return the bytes of @val_le beyond @p->size that have not been stored.
2665 */
2666 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2667 uint64_t val_le, vaddr addr, int size,
2668 int mmu_idx, uintptr_t ra,
2669 MemoryRegion *mr, hwaddr mr_offset)
2670 {
2671 do {
2672 MemOp this_mop;
2673 unsigned this_size;
2674 MemTxResult r;
2675
2676 /* Store aligned pieces up to 8 bytes. */
2677 this_mop = ctz32(size | (int)addr | 8);
2678 this_size = 1 << this_mop;
2679 this_mop |= MO_LE;
2680
2681 r = memory_region_dispatch_write(mr, mr_offset, val_le,
2682 this_mop, full->attrs);
2683 if (unlikely(r != MEMTX_OK)) {
2684 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE,
2685 mmu_idx, r, ra);
2686 }
2687 if (this_size == 8) {
2688 return 0;
2689 }
2690
2691 val_le >>= this_size * 8;
2692 addr += this_size;
2693 mr_offset += this_size;
2694 size -= this_size;
2695 } while (size);
2696
2697 return val_le;
2698 }
2699
2700 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2701 uint64_t val_le, vaddr addr, int size,
2702 int mmu_idx, uintptr_t ra)
2703 {
2704 MemoryRegionSection *section;
2705 hwaddr mr_offset;
2706 MemoryRegion *mr;
2707 MemTxAttrs attrs;
2708 uint64_t ret;
2709
2710 tcg_debug_assert(size > 0 && size <= 8);
2711
2712 attrs = full->attrs;
2713 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2714 mr = section->mr;
2715
2716 qemu_mutex_lock_iothread();
2717 ret = int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx,
2718 ra, mr, mr_offset);
2719 qemu_mutex_unlock_iothread();
2720
2721 return ret;
2722 }
2723
2724 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full,
2725 Int128 val_le, vaddr addr, int size,
2726 int mmu_idx, uintptr_t ra)
2727 {
2728 MemoryRegionSection *section;
2729 MemoryRegion *mr;
2730 hwaddr mr_offset;
2731 MemTxAttrs attrs;
2732 uint64_t ret;
2733
2734 tcg_debug_assert(size > 8 && size <= 16);
2735
2736 attrs = full->attrs;
2737 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra);
2738 mr = section->mr;
2739
2740 qemu_mutex_lock_iothread();
2741 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8,
2742 mmu_idx, ra, mr, mr_offset);
2743 ret = int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8,
2744 size - 8, mmu_idx, ra, mr, mr_offset + 8);
2745 qemu_mutex_unlock_iothread();
2746
2747 return ret;
2748 }
2749
2750 /*
2751 * Wrapper for the above.
2752 */
2753 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p,
2754 uint64_t val_le, int mmu_idx,
2755 MemOp mop, uintptr_t ra)
2756 {
2757 MemOp atom;
2758 unsigned tmp, half_size;
2759
2760 if (unlikely(p->flags & TLB_MMIO)) {
2761 return do_st_mmio_leN(cpu, p->full, val_le, p->addr,
2762 p->size, mmu_idx, ra);
2763 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2764 return val_le >> (p->size * 8);
2765 }
2766
2767 /*
2768 * It is a given that we cross a page and therefore there is no atomicity
2769 * for the store as a whole, but subobjects may need attention.
2770 */
2771 atom = mop & MO_ATOM_MASK;
2772 switch (atom) {
2773 case MO_ATOM_SUBALIGN:
2774 return store_parts_leN(p->haddr, p->size, val_le);
2775
2776 case MO_ATOM_IFALIGN_PAIR:
2777 case MO_ATOM_WITHIN16_PAIR:
2778 tmp = mop & MO_SIZE;
2779 tmp = tmp ? tmp - 1 : 0;
2780 half_size = 1 << tmp;
2781 if (atom == MO_ATOM_IFALIGN_PAIR
2782 ? p->size == half_size
2783 : p->size >= half_size) {
2784 if (!HAVE_al8_fast && p->size <= 4) {
2785 return store_whole_le4(p->haddr, p->size, val_le);
2786 } else if (HAVE_al8) {
2787 return store_whole_le8(p->haddr, p->size, val_le);
2788 } else {
2789 cpu_loop_exit_atomic(cpu, ra);
2790 }
2791 }
2792 /* fall through */
2793
2794 case MO_ATOM_IFALIGN:
2795 case MO_ATOM_WITHIN16:
2796 case MO_ATOM_NONE:
2797 return store_bytes_leN(p->haddr, p->size, val_le);
2798
2799 default:
2800 g_assert_not_reached();
2801 }
2802 }
2803
2804 /*
2805 * Wrapper for the above, for 8 < size < 16.
2806 */
2807 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p,
2808 Int128 val_le, int mmu_idx,
2809 MemOp mop, uintptr_t ra)
2810 {
2811 int size = p->size;
2812 MemOp atom;
2813
2814 if (unlikely(p->flags & TLB_MMIO)) {
2815 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr,
2816 size, mmu_idx, ra);
2817 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2818 return int128_gethi(val_le) >> ((size - 8) * 8);
2819 }
2820
2821 /*
2822 * It is a given that we cross a page and therefore there is no atomicity
2823 * for the store as a whole, but subobjects may need attention.
2824 */
2825 atom = mop & MO_ATOM_MASK;
2826 switch (atom) {
2827 case MO_ATOM_SUBALIGN:
2828 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2829 return store_parts_leN(p->haddr + 8, p->size - 8,
2830 int128_gethi(val_le));
2831
2832 case MO_ATOM_WITHIN16_PAIR:
2833 /* Since size > 8, this is the half that must be atomic. */
2834 if (!HAVE_ATOMIC128_RW) {
2835 cpu_loop_exit_atomic(cpu, ra);
2836 }
2837 return store_whole_le16(p->haddr, p->size, val_le);
2838
2839 case MO_ATOM_IFALIGN_PAIR:
2840 /*
2841 * Since size > 8, both halves are misaligned,
2842 * and so neither is atomic.
2843 */
2844 case MO_ATOM_IFALIGN:
2845 case MO_ATOM_WITHIN16:
2846 case MO_ATOM_NONE:
2847 stq_le_p(p->haddr, int128_getlo(val_le));
2848 return store_bytes_leN(p->haddr + 8, p->size - 8,
2849 int128_gethi(val_le));
2850
2851 default:
2852 g_assert_not_reached();
2853 }
2854 }
2855
2856 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val,
2857 int mmu_idx, uintptr_t ra)
2858 {
2859 if (unlikely(p->flags & TLB_MMIO)) {
2860 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra);
2861 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2862 /* nothing */
2863 } else {
2864 *(uint8_t *)p->haddr = val;
2865 }
2866 }
2867
2868 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val,
2869 int mmu_idx, MemOp memop, uintptr_t ra)
2870 {
2871 if (unlikely(p->flags & TLB_MMIO)) {
2872 if ((memop & MO_BSWAP) != MO_LE) {
2873 val = bswap16(val);
2874 }
2875 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra);
2876 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2877 /* nothing */
2878 } else {
2879 /* Swap to host endian if necessary, then store. */
2880 if (memop & MO_BSWAP) {
2881 val = bswap16(val);
2882 }
2883 store_atom_2(cpu, ra, p->haddr, memop, val);
2884 }
2885 }
2886
2887 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val,
2888 int mmu_idx, MemOp memop, uintptr_t ra)
2889 {
2890 if (unlikely(p->flags & TLB_MMIO)) {
2891 if ((memop & MO_BSWAP) != MO_LE) {
2892 val = bswap32(val);
2893 }
2894 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra);
2895 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2896 /* nothing */
2897 } else {
2898 /* Swap to host endian if necessary, then store. */
2899 if (memop & MO_BSWAP) {
2900 val = bswap32(val);
2901 }
2902 store_atom_4(cpu, ra, p->haddr, memop, val);
2903 }
2904 }
2905
2906 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val,
2907 int mmu_idx, MemOp memop, uintptr_t ra)
2908 {
2909 if (unlikely(p->flags & TLB_MMIO)) {
2910 if ((memop & MO_BSWAP) != MO_LE) {
2911 val = bswap64(val);
2912 }
2913 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra);
2914 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2915 /* nothing */
2916 } else {
2917 /* Swap to host endian if necessary, then store. */
2918 if (memop & MO_BSWAP) {
2919 val = bswap64(val);
2920 }
2921 store_atom_8(cpu, ra, p->haddr, memop, val);
2922 }
2923 }
2924
2925 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val,
2926 MemOpIdx oi, uintptr_t ra)
2927 {
2928 MMULookupLocals l;
2929 bool crosspage;
2930
2931 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2932 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2933 tcg_debug_assert(!crosspage);
2934
2935 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra);
2936 }
2937
2938 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2939 MemOpIdx oi, uintptr_t ra)
2940 {
2941 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2942 do_st1_mmu(env_cpu(env), addr, val, oi, ra);
2943 }
2944
2945 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val,
2946 MemOpIdx oi, uintptr_t ra)
2947 {
2948 MMULookupLocals l;
2949 bool crosspage;
2950 uint8_t a, b;
2951
2952 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2953 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2954 if (likely(!crosspage)) {
2955 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2956 return;
2957 }
2958
2959 if ((l.memop & MO_BSWAP) == MO_LE) {
2960 a = val, b = val >> 8;
2961 } else {
2962 b = val, a = val >> 8;
2963 }
2964 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra);
2965 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra);
2966 }
2967
2968 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2969 MemOpIdx oi, uintptr_t retaddr)
2970 {
2971 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2972 do_st2_mmu(env_cpu(env), addr, val, oi, retaddr);
2973 }
2974
2975 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val,
2976 MemOpIdx oi, uintptr_t ra)
2977 {
2978 MMULookupLocals l;
2979 bool crosspage;
2980
2981 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2982 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
2983 if (likely(!crosspage)) {
2984 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2985 return;
2986 }
2987
2988 /* Swap to little endian for simplicity, then store by bytes. */
2989 if ((l.memop & MO_BSWAP) != MO_LE) {
2990 val = bswap32(val);
2991 }
2992 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
2993 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
2994 }
2995
2996 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2997 MemOpIdx oi, uintptr_t retaddr)
2998 {
2999 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3000 do_st4_mmu(env_cpu(env), addr, val, oi, retaddr);
3001 }
3002
3003 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val,
3004 MemOpIdx oi, uintptr_t ra)
3005 {
3006 MMULookupLocals l;
3007 bool crosspage;
3008
3009 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3010 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
3011 if (likely(!crosspage)) {
3012 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
3013 return;
3014 }
3015
3016 /* Swap to little endian for simplicity, then store by bytes. */
3017 if ((l.memop & MO_BSWAP) != MO_LE) {
3018 val = bswap64(val);
3019 }
3020 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
3021 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
3022 }
3023
3024 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
3025 MemOpIdx oi, uintptr_t retaddr)
3026 {
3027 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3028 do_st8_mmu(env_cpu(env), addr, val, oi, retaddr);
3029 }
3030
3031 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val,
3032 MemOpIdx oi, uintptr_t ra)
3033 {
3034 MMULookupLocals l;
3035 bool crosspage;
3036 uint64_t a, b;
3037 int first;
3038
3039 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
3040 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l);
3041 if (likely(!crosspage)) {
3042 if (unlikely(l.page[0].flags & TLB_MMIO)) {
3043 if ((l.memop & MO_BSWAP) != MO_LE) {
3044 val = bswap128(val);
3045 }
3046 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra);
3047 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
3048 /* nothing */
3049 } else {
3050 /* Swap to host endian if necessary, then store. */
3051 if (l.memop & MO_BSWAP) {
3052 val = bswap128(val);
3053 }
3054 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val);
3055 }
3056 return;
3057 }
3058
3059 first = l.page[0].size;
3060 if (first == 8) {
3061 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
3062
3063 if (l.memop & MO_BSWAP) {
3064 val = bswap128(val);
3065 }
3066 if (HOST_BIG_ENDIAN) {
3067 b = int128_getlo(val), a = int128_gethi(val);
3068 } else {
3069 a = int128_getlo(val), b = int128_gethi(val);
3070 }
3071 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra);
3072 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra);
3073 return;
3074 }
3075
3076 if ((l.memop & MO_BSWAP) != MO_LE) {
3077 val = bswap128(val);
3078 }
3079 if (first < 8) {
3080 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3081 val = int128_urshift(val, first * 8);
3082 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra);
3083 } else {
3084 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra);
3085 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra);
3086 }
3087 }
3088
3089 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3090 MemOpIdx oi, uintptr_t retaddr)
3091 {
3092 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3093 do_st16_mmu(env_cpu(env), addr, val, oi, retaddr);
3094 }
3095
3096 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3097 {
3098 helper_st16_mmu(env, addr, val, oi, GETPC());
3099 }
3100
3101 /*
3102 * Store Helpers for cpu_ldst.h
3103 */
3104
3105 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3106 {
3107 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3108 }
3109
3110 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
3111 MemOpIdx oi, uintptr_t retaddr)
3112 {
3113 helper_stb_mmu(env, addr, val, oi, retaddr);
3114 plugin_store_cb(env, addr, oi);
3115 }
3116
3117 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
3118 MemOpIdx oi, uintptr_t retaddr)
3119 {
3120 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3121 do_st2_mmu(env_cpu(env), addr, val, oi, retaddr);
3122 plugin_store_cb(env, addr, oi);
3123 }
3124
3125 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
3126 MemOpIdx oi, uintptr_t retaddr)
3127 {
3128 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3129 do_st4_mmu(env_cpu(env), addr, val, oi, retaddr);
3130 plugin_store_cb(env, addr, oi);
3131 }
3132
3133 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
3134 MemOpIdx oi, uintptr_t retaddr)
3135 {
3136 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3137 do_st8_mmu(env_cpu(env), addr, val, oi, retaddr);
3138 plugin_store_cb(env, addr, oi);
3139 }
3140
3141 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
3142 MemOpIdx oi, uintptr_t retaddr)
3143 {
3144 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3145 do_st16_mmu(env_cpu(env), addr, val, oi, retaddr);
3146 plugin_store_cb(env, addr, oi);
3147 }
3148
3149 #include "ldst_common.c.inc"
3150
3151 /*
3152 * First set of functions passes in OI and RETADDR.
3153 * This makes them callable from other helpers.
3154 */
3155
3156 #define ATOMIC_NAME(X) \
3157 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3158
3159 #define ATOMIC_MMU_CLEANUP
3160
3161 #include "atomic_common.c.inc"
3162
3163 #define DATA_SIZE 1
3164 #include "atomic_template.h"
3165
3166 #define DATA_SIZE 2
3167 #include "atomic_template.h"
3168
3169 #define DATA_SIZE 4
3170 #include "atomic_template.h"
3171
3172 #ifdef CONFIG_ATOMIC64
3173 #define DATA_SIZE 8
3174 #include "atomic_template.h"
3175 #endif
3176
3177 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3178 #define DATA_SIZE 16
3179 #include "atomic_template.h"
3180 #endif
3181
3182 /* Code access functions. */
3183
3184 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3185 {
3186 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3187 return do_ld1_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
3188 }
3189
3190 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3191 {
3192 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3193 return do_ld2_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
3194 }
3195
3196 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3197 {
3198 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3199 return do_ld4_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
3200 }
3201
3202 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3203 {
3204 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3205 return do_ld8_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH);
3206 }
3207
3208 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3209 MemOpIdx oi, uintptr_t retaddr)
3210 {
3211 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3212 }
3213
3214 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3215 MemOpIdx oi, uintptr_t retaddr)
3216 {
3217 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3218 }
3219
3220 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3221 MemOpIdx oi, uintptr_t retaddr)
3222 {
3223 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3224 }
3225
3226 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3227 MemOpIdx oi, uintptr_t retaddr)
3228 {
3229 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH);
3230 }