]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/cputlb.c
Merge tag 'pull-tpm-2023-07-14-1' of https://github.com/stefanberger/qemu-tpm into...
[mirror_qemu.git] / accel / tcg / cputlb.c
1 /*
2 * Common CPU TLB handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 # define DEBUG_TLB_LOG_GATE 1
53 # else
54 # define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60
61 #define tlb_debug(fmt, ...) do { \
62 if (DEBUG_TLB_LOG_GATE) { \
63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64 ## __VA_ARGS__); \
65 } else if (DEBUG_TLB_GATE) { \
66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67 } \
68 } while (0)
69
70 #define assert_cpu_is_self(cpu) do { \
71 if (DEBUG_TLB_GATE) { \
72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
73 } \
74 } while (0)
75
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77 * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96 size_t max_entries)
97 {
98 desc->window_begin_ns = ns;
99 desc->window_max_entries = max_entries;
100 }
101
102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
103 {
104 CPUJumpCache *jc = cpu->tb_jmp_cache;
105 int i, i0;
106
107 if (unlikely(!jc)) {
108 return;
109 }
110
111 i0 = tb_jmp_cache_hash_page(page_addr);
112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113 qatomic_set(&jc->array[i0 + i].tb, NULL);
114 }
115 }
116
117 /**
118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119 * @desc: The CPUTLBDesc portion of the TLB
120 * @fast: The CPUTLBDescFast portion of the same TLB
121 *
122 * Called with tlb_lock_held.
123 *
124 * We have two main constraints when resizing a TLB: (1) we only resize it
125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126 * the array or unnecessarily flushing it), which means we do not control how
127 * frequently the resizing can occur; (2) we don't have access to the guest's
128 * future scheduling decisions, and therefore have to decide the magnitude of
129 * the resize based on past observations.
130 *
131 * In general, a memory-hungry process can benefit greatly from an appropriately
132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133 * we just have to make the TLB as large as possible; while an oversized TLB
134 * results in minimal TLB miss rates, it also takes longer to be flushed
135 * (flushes can be _very_ frequent), and the reduced locality can also hurt
136 * performance.
137 *
138 * To achieve near-optimal performance for all kinds of workloads, we:
139 *
140 * 1. Aggressively increase the size of the TLB when the use rate of the
141 * TLB being flushed is high, since it is likely that in the near future this
142 * memory-hungry process will execute again, and its memory hungriness will
143 * probably be similar.
144 *
145 * 2. Slowly reduce the size of the TLB as the use rate declines over a
146 * reasonably large time window. The rationale is that if in such a time window
147 * we have not observed a high TLB use rate, it is likely that we won't observe
148 * it in the near future. In that case, once a time window expires we downsize
149 * the TLB to match the maximum use rate observed in the window.
150 *
151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152 * since in that range performance is likely near-optimal. Recall that the TLB
153 * is direct mapped, so we want the use rate to be low (or at least not too
154 * high), since otherwise we are likely to have a significant amount of
155 * conflict misses.
156 */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158 int64_t now)
159 {
160 size_t old_size = tlb_n_entries(fast);
161 size_t rate;
162 size_t new_size = old_size;
163 int64_t window_len_ms = 100;
164 int64_t window_len_ns = window_len_ms * 1000 * 1000;
165 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166
167 if (desc->n_used_entries > desc->window_max_entries) {
168 desc->window_max_entries = desc->n_used_entries;
169 }
170 rate = desc->window_max_entries * 100 / old_size;
171
172 if (rate > 70) {
173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174 } else if (rate < 30 && window_expired) {
175 size_t ceil = pow2ceil(desc->window_max_entries);
176 size_t expected_rate = desc->window_max_entries * 100 / ceil;
177
178 /*
179 * Avoid undersizing when the max number of entries seen is just below
180 * a pow2. For instance, if max_entries == 1025, the expected use rate
181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183 * later. Thus, make sure that the expected use rate remains below 70%.
184 * (and since we double the size, that means the lowest rate we'd
185 * expect to get is 35%, which is still in the 30-70% range where
186 * we consider that the size is appropriate.)
187 */
188 if (expected_rate > 70) {
189 ceil *= 2;
190 }
191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192 }
193
194 if (new_size == old_size) {
195 if (window_expired) {
196 tlb_window_reset(desc, now, desc->n_used_entries);
197 }
198 return;
199 }
200
201 g_free(fast->table);
202 g_free(desc->fulltlb);
203
204 tlb_window_reset(desc, now, 0);
205 /* desc->n_used_entries is cleared by the caller */
206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207 fast->table = g_try_new(CPUTLBEntry, new_size);
208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209
210 /*
211 * If the allocations fail, try smaller sizes. We just freed some
212 * memory, so going back to half of new_size has a good chance of working.
213 * Increased memory pressure elsewhere in the system might cause the
214 * allocations to fail though, so we progressively reduce the allocation
215 * size, aborting if we cannot even allocate the smallest TLB we support.
216 */
217 while (fast->table == NULL || desc->fulltlb == NULL) {
218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219 error_report("%s: %s", __func__, strerror(errno));
220 abort();
221 }
222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224
225 g_free(fast->table);
226 g_free(desc->fulltlb);
227 fast->table = g_try_new(CPUTLBEntry, new_size);
228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229 }
230 }
231
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234 desc->n_used_entries = 0;
235 desc->large_page_addr = -1;
236 desc->large_page_mask = -1;
237 desc->vindex = 0;
238 memset(fast->table, -1, sizeof_tlb(fast));
239 memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243 int64_t now)
244 {
245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247
248 tlb_mmu_resize_locked(desc, fast, now);
249 tlb_mmu_flush_locked(desc, fast);
250 }
251
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255
256 tlb_window_reset(desc, now, 0);
257 desc->n_used_entries = 0;
258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259 fast->table = g_new(CPUTLBEntry, n_entries);
260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261 tlb_mmu_flush_locked(desc, fast);
262 }
263
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266 env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271 env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273
274 void tlb_init(CPUState *cpu)
275 {
276 CPUArchState *env = cpu->env_ptr;
277 int64_t now = get_clock_realtime();
278 int i;
279
280 qemu_spin_init(&env_tlb(env)->c.lock);
281
282 /* All tlbs are initialized flushed. */
283 env_tlb(env)->c.dirty = 0;
284
285 for (i = 0; i < NB_MMU_MODES; i++) {
286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287 }
288 }
289
290 void tlb_destroy(CPUState *cpu)
291 {
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294
295 qemu_spin_destroy(&env_tlb(env)->c.lock);
296 for (i = 0; i < NB_MMU_MODES; i++) {
297 CPUTLBDesc *desc = &env_tlb(env)->d[i];
298 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299
300 g_free(fast->table);
301 g_free(desc->fulltlb);
302 }
303 }
304
305 /* flush_all_helper: run fn across all cpus
306 *
307 * If the wait flag is set then the src cpu's helper will be queued as
308 * "safe" work and the loop exited creating a synchronisation point
309 * where all queued work will be finished before execution starts
310 * again.
311 */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313 run_on_cpu_data d)
314 {
315 CPUState *cpu;
316
317 CPU_FOREACH(cpu) {
318 if (cpu != src) {
319 async_run_on_cpu(cpu, fn, d);
320 }
321 }
322 }
323
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326 CPUState *cpu;
327 size_t full = 0, part = 0, elide = 0;
328
329 CPU_FOREACH(cpu) {
330 CPUArchState *env = cpu->env_ptr;
331
332 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 }
336 *pfull = full;
337 *ppart = part;
338 *pelide = elide;
339 }
340
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343 CPUArchState *env = cpu->env_ptr;
344 uint16_t asked = data.host_int;
345 uint16_t all_dirty, work, to_clean;
346 int64_t now = get_clock_realtime();
347
348 assert_cpu_is_self(cpu);
349
350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351
352 qemu_spin_lock(&env_tlb(env)->c.lock);
353
354 all_dirty = env_tlb(env)->c.dirty;
355 to_clean = asked & all_dirty;
356 all_dirty &= ~to_clean;
357 env_tlb(env)->c.dirty = all_dirty;
358
359 for (work = to_clean; work != 0; work &= work - 1) {
360 int mmu_idx = ctz32(work);
361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362 }
363
364 qemu_spin_unlock(&env_tlb(env)->c.lock);
365
366 tcg_flush_jmp_cache(cpu);
367
368 if (to_clean == ALL_MMUIDX_BITS) {
369 qatomic_set(&env_tlb(env)->c.full_flush_count,
370 env_tlb(env)->c.full_flush_count + 1);
371 } else {
372 qatomic_set(&env_tlb(env)->c.part_flush_count,
373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374 if (to_clean != asked) {
375 qatomic_set(&env_tlb(env)->c.elide_flush_count,
376 env_tlb(env)->c.elide_flush_count +
377 ctpop16(asked & ~to_clean));
378 }
379 }
380 }
381
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385
386 if (cpu->created && !qemu_cpu_is_self(cpu)) {
387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388 RUN_ON_CPU_HOST_INT(idxmap));
389 } else {
390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391 }
392 }
393
394 void tlb_flush(CPUState *cpu)
395 {
396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402
403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404
405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417
418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419
420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430 vaddr page, vaddr mask)
431 {
432 page &= mask;
433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434
435 return (page == (tlb_entry->addr_read & mask) ||
436 page == (tlb_addr_write(tlb_entry) & mask) ||
437 page == (tlb_entry->addr_code & mask));
438 }
439
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
441 {
442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444
445 /**
446 * tlb_entry_is_empty - return true if the entry is not in use
447 * @te: pointer to CPUTLBEntry
448 */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456 vaddr page,
457 vaddr mask)
458 {
459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460 memset(tlb_entry, -1, sizeof(*tlb_entry));
461 return true;
462 }
463 return false;
464 }
465
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
467 {
468 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
469 }
470
471 /* Called with tlb_c.lock held */
472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
473 vaddr page,
474 vaddr mask)
475 {
476 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
477 int k;
478
479 assert_cpu_is_self(env_cpu(env));
480 for (k = 0; k < CPU_VTLB_SIZE; k++) {
481 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
482 tlb_n_used_entries_dec(env, mmu_idx);
483 }
484 }
485 }
486
487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
488 vaddr page)
489 {
490 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
491 }
492
493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
494 {
495 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
496 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
497
498 /* Check if we need to flush due to large pages. */
499 if ((page & lp_mask) == lp_addr) {
500 tlb_debug("forcing full flush midx %d (%"
501 VADDR_PRIx "/%" VADDR_PRIx ")\n",
502 midx, lp_addr, lp_mask);
503 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
504 } else {
505 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
506 tlb_n_used_entries_dec(env, midx);
507 }
508 tlb_flush_vtlb_page_locked(env, midx, page);
509 }
510 }
511
512 /**
513 * tlb_flush_page_by_mmuidx_async_0:
514 * @cpu: cpu on which to flush
515 * @addr: page of virtual address to flush
516 * @idxmap: set of mmu_idx to flush
517 *
518 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
519 * at @addr from the tlbs indicated by @idxmap from @cpu.
520 */
521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
522 vaddr addr,
523 uint16_t idxmap)
524 {
525 CPUArchState *env = cpu->env_ptr;
526 int mmu_idx;
527
528 assert_cpu_is_self(cpu);
529
530 tlb_debug("page addr: %" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
531
532 qemu_spin_lock(&env_tlb(env)->c.lock);
533 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
534 if ((idxmap >> mmu_idx) & 1) {
535 tlb_flush_page_locked(env, mmu_idx, addr);
536 }
537 }
538 qemu_spin_unlock(&env_tlb(env)->c.lock);
539
540 /*
541 * Discard jump cache entries for any tb which might potentially
542 * overlap the flushed page, which includes the previous.
543 */
544 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
545 tb_jmp_cache_clear_page(cpu, addr);
546 }
547
548 /**
549 * tlb_flush_page_by_mmuidx_async_1:
550 * @cpu: cpu on which to flush
551 * @data: encoded addr + idxmap
552 *
553 * Helper for tlb_flush_page_by_mmuidx and friends, called through
554 * async_run_on_cpu. The idxmap parameter is encoded in the page
555 * offset of the target_ptr field. This limits the set of mmu_idx
556 * that can be passed via this method.
557 */
558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
559 run_on_cpu_data data)
560 {
561 vaddr addr_and_idxmap = data.target_ptr;
562 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
563 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
564
565 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
566 }
567
568 typedef struct {
569 vaddr addr;
570 uint16_t idxmap;
571 } TLBFlushPageByMMUIdxData;
572
573 /**
574 * tlb_flush_page_by_mmuidx_async_2:
575 * @cpu: cpu on which to flush
576 * @data: allocated addr + idxmap
577 *
578 * Helper for tlb_flush_page_by_mmuidx and friends, called through
579 * async_run_on_cpu. The addr+idxmap parameters are stored in a
580 * TLBFlushPageByMMUIdxData structure that has been allocated
581 * specifically for this helper. Free the structure when done.
582 */
583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
584 run_on_cpu_data data)
585 {
586 TLBFlushPageByMMUIdxData *d = data.host_ptr;
587
588 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
589 g_free(d);
590 }
591
592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
593 {
594 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
595
596 /* This should already be page aligned */
597 addr &= TARGET_PAGE_MASK;
598
599 if (qemu_cpu_is_self(cpu)) {
600 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
601 } else if (idxmap < TARGET_PAGE_SIZE) {
602 /*
603 * Most targets have only a few mmu_idx. In the case where
604 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
605 * allocating memory for this operation.
606 */
607 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
608 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
609 } else {
610 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
611
612 /* Otherwise allocate a structure, freed by the worker. */
613 d->addr = addr;
614 d->idxmap = idxmap;
615 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
616 RUN_ON_CPU_HOST_PTR(d));
617 }
618 }
619
620 void tlb_flush_page(CPUState *cpu, vaddr addr)
621 {
622 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
623 }
624
625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
626 uint16_t idxmap)
627 {
628 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
629
630 /* This should already be page aligned */
631 addr &= TARGET_PAGE_MASK;
632
633 /*
634 * Allocate memory to hold addr+idxmap only when needed.
635 * See tlb_flush_page_by_mmuidx for details.
636 */
637 if (idxmap < TARGET_PAGE_SIZE) {
638 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
639 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
640 } else {
641 CPUState *dst_cpu;
642
643 /* Allocate a separate data block for each destination cpu. */
644 CPU_FOREACH(dst_cpu) {
645 if (dst_cpu != src_cpu) {
646 TLBFlushPageByMMUIdxData *d
647 = g_new(TLBFlushPageByMMUIdxData, 1);
648
649 d->addr = addr;
650 d->idxmap = idxmap;
651 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652 RUN_ON_CPU_HOST_PTR(d));
653 }
654 }
655 }
656
657 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
658 }
659
660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
661 {
662 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
663 }
664
665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
666 vaddr addr,
667 uint16_t idxmap)
668 {
669 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
670
671 /* This should already be page aligned */
672 addr &= TARGET_PAGE_MASK;
673
674 /*
675 * Allocate memory to hold addr+idxmap only when needed.
676 * See tlb_flush_page_by_mmuidx for details.
677 */
678 if (idxmap < TARGET_PAGE_SIZE) {
679 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683 } else {
684 CPUState *dst_cpu;
685 TLBFlushPageByMMUIdxData *d;
686
687 /* Allocate a separate data block for each destination cpu. */
688 CPU_FOREACH(dst_cpu) {
689 if (dst_cpu != src_cpu) {
690 d = g_new(TLBFlushPageByMMUIdxData, 1);
691 d->addr = addr;
692 d->idxmap = idxmap;
693 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
694 RUN_ON_CPU_HOST_PTR(d));
695 }
696 }
697
698 d = g_new(TLBFlushPageByMMUIdxData, 1);
699 d->addr = addr;
700 d->idxmap = idxmap;
701 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
702 RUN_ON_CPU_HOST_PTR(d));
703 }
704 }
705
706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
707 {
708 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
709 }
710
711 static void tlb_flush_range_locked(CPUArchState *env, int midx,
712 vaddr addr, vaddr len,
713 unsigned bits)
714 {
715 CPUTLBDesc *d = &env_tlb(env)->d[midx];
716 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
717 vaddr mask = MAKE_64BIT_MASK(0, bits);
718
719 /*
720 * If @bits is smaller than the tlb size, there may be multiple entries
721 * within the TLB; otherwise all addresses that match under @mask hit
722 * the same TLB entry.
723 * TODO: Perhaps allow bits to be a few bits less than the size.
724 * For now, just flush the entire TLB.
725 *
726 * If @len is larger than the tlb size, then it will take longer to
727 * test all of the entries in the TLB than it will to flush it all.
728 */
729 if (mask < f->mask || len > f->mask) {
730 tlb_debug("forcing full flush midx %d ("
731 "%" VADDR_PRIx "/%" VADDR_PRIx "+%" VADDR_PRIx ")\n",
732 midx, addr, mask, len);
733 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
734 return;
735 }
736
737 /*
738 * Check if we need to flush due to large pages.
739 * Because large_page_mask contains all 1's from the msb,
740 * we only need to test the end of the range.
741 */
742 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
743 tlb_debug("forcing full flush midx %d ("
744 "%" VADDR_PRIx "/%" VADDR_PRIx ")\n",
745 midx, d->large_page_addr, d->large_page_mask);
746 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
747 return;
748 }
749
750 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
751 vaddr page = addr + i;
752 CPUTLBEntry *entry = tlb_entry(env, midx, page);
753
754 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
755 tlb_n_used_entries_dec(env, midx);
756 }
757 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
758 }
759 }
760
761 typedef struct {
762 vaddr addr;
763 vaddr len;
764 uint16_t idxmap;
765 uint16_t bits;
766 } TLBFlushRangeData;
767
768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
769 TLBFlushRangeData d)
770 {
771 CPUArchState *env = cpu->env_ptr;
772 int mmu_idx;
773
774 assert_cpu_is_self(cpu);
775
776 tlb_debug("range: %" VADDR_PRIx "/%u+%" VADDR_PRIx " mmu_map:0x%x\n",
777 d.addr, d.bits, d.len, d.idxmap);
778
779 qemu_spin_lock(&env_tlb(env)->c.lock);
780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781 if ((d.idxmap >> mmu_idx) & 1) {
782 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
783 }
784 }
785 qemu_spin_unlock(&env_tlb(env)->c.lock);
786
787 /*
788 * If the length is larger than the jump cache size, then it will take
789 * longer to clear each entry individually than it will to clear it all.
790 */
791 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
792 tcg_flush_jmp_cache(cpu);
793 return;
794 }
795
796 /*
797 * Discard jump cache entries for any tb which might potentially
798 * overlap the flushed pages, which includes the previous.
799 */
800 d.addr -= TARGET_PAGE_SIZE;
801 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
802 tb_jmp_cache_clear_page(cpu, d.addr);
803 d.addr += TARGET_PAGE_SIZE;
804 }
805 }
806
807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
808 run_on_cpu_data data)
809 {
810 TLBFlushRangeData *d = data.host_ptr;
811 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
812 g_free(d);
813 }
814
815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
816 vaddr len, uint16_t idxmap,
817 unsigned bits)
818 {
819 TLBFlushRangeData d;
820
821 /*
822 * If all bits are significant, and len is small,
823 * this devolves to tlb_flush_page.
824 */
825 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
826 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
827 return;
828 }
829 /* If no page bits are significant, this devolves to tlb_flush. */
830 if (bits < TARGET_PAGE_BITS) {
831 tlb_flush_by_mmuidx(cpu, idxmap);
832 return;
833 }
834
835 /* This should already be page aligned */
836 d.addr = addr & TARGET_PAGE_MASK;
837 d.len = len;
838 d.idxmap = idxmap;
839 d.bits = bits;
840
841 if (qemu_cpu_is_self(cpu)) {
842 tlb_flush_range_by_mmuidx_async_0(cpu, d);
843 } else {
844 /* Otherwise allocate a structure, freed by the worker. */
845 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
846 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
847 RUN_ON_CPU_HOST_PTR(p));
848 }
849 }
850
851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
852 uint16_t idxmap, unsigned bits)
853 {
854 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
855 }
856
857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
858 vaddr addr, vaddr len,
859 uint16_t idxmap, unsigned bits)
860 {
861 TLBFlushRangeData d;
862 CPUState *dst_cpu;
863
864 /*
865 * If all bits are significant, and len is small,
866 * this devolves to tlb_flush_page.
867 */
868 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
869 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
870 return;
871 }
872 /* If no page bits are significant, this devolves to tlb_flush. */
873 if (bits < TARGET_PAGE_BITS) {
874 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
875 return;
876 }
877
878 /* This should already be page aligned */
879 d.addr = addr & TARGET_PAGE_MASK;
880 d.len = len;
881 d.idxmap = idxmap;
882 d.bits = bits;
883
884 /* Allocate a separate data block for each destination cpu. */
885 CPU_FOREACH(dst_cpu) {
886 if (dst_cpu != src_cpu) {
887 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
888 async_run_on_cpu(dst_cpu,
889 tlb_flush_range_by_mmuidx_async_1,
890 RUN_ON_CPU_HOST_PTR(p));
891 }
892 }
893
894 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
895 }
896
897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
898 vaddr addr, uint16_t idxmap,
899 unsigned bits)
900 {
901 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
902 idxmap, bits);
903 }
904
905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
906 vaddr addr,
907 vaddr len,
908 uint16_t idxmap,
909 unsigned bits)
910 {
911 TLBFlushRangeData d, *p;
912 CPUState *dst_cpu;
913
914 /*
915 * If all bits are significant, and len is small,
916 * this devolves to tlb_flush_page.
917 */
918 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
919 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
920 return;
921 }
922 /* If no page bits are significant, this devolves to tlb_flush. */
923 if (bits < TARGET_PAGE_BITS) {
924 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
925 return;
926 }
927
928 /* This should already be page aligned */
929 d.addr = addr & TARGET_PAGE_MASK;
930 d.len = len;
931 d.idxmap = idxmap;
932 d.bits = bits;
933
934 /* Allocate a separate data block for each destination cpu. */
935 CPU_FOREACH(dst_cpu) {
936 if (dst_cpu != src_cpu) {
937 p = g_memdup(&d, sizeof(d));
938 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
939 RUN_ON_CPU_HOST_PTR(p));
940 }
941 }
942
943 p = g_memdup(&d, sizeof(d));
944 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
945 RUN_ON_CPU_HOST_PTR(p));
946 }
947
948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
949 vaddr addr,
950 uint16_t idxmap,
951 unsigned bits)
952 {
953 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
954 idxmap, bits);
955 }
956
957 /* update the TLBs so that writes to code in the virtual page 'addr'
958 can be detected */
959 void tlb_protect_code(ram_addr_t ram_addr)
960 {
961 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
962 TARGET_PAGE_SIZE,
963 DIRTY_MEMORY_CODE);
964 }
965
966 /* update the TLB so that writes in physical page 'phys_addr' are no longer
967 tested for self modifying code */
968 void tlb_unprotect_code(ram_addr_t ram_addr)
969 {
970 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
971 }
972
973
974 /*
975 * Dirty write flag handling
976 *
977 * When the TCG code writes to a location it looks up the address in
978 * the TLB and uses that data to compute the final address. If any of
979 * the lower bits of the address are set then the slow path is forced.
980 * There are a number of reasons to do this but for normal RAM the
981 * most usual is detecting writes to code regions which may invalidate
982 * generated code.
983 *
984 * Other vCPUs might be reading their TLBs during guest execution, so we update
985 * te->addr_write with qatomic_set. We don't need to worry about this for
986 * oversized guests as MTTCG is disabled for them.
987 *
988 * Called with tlb_c.lock held.
989 */
990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
991 uintptr_t start, uintptr_t length)
992 {
993 uintptr_t addr = tlb_entry->addr_write;
994
995 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
996 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
997 addr &= TARGET_PAGE_MASK;
998 addr += tlb_entry->addend;
999 if ((addr - start) < length) {
1000 #if TARGET_LONG_BITS == 32
1001 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1002 ptr_write += HOST_BIG_ENDIAN;
1003 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1004 #elif TCG_OVERSIZED_GUEST
1005 tlb_entry->addr_write |= TLB_NOTDIRTY;
1006 #else
1007 qatomic_set(&tlb_entry->addr_write,
1008 tlb_entry->addr_write | TLB_NOTDIRTY);
1009 #endif
1010 }
1011 }
1012 }
1013
1014 /*
1015 * Called with tlb_c.lock held.
1016 * Called only from the vCPU context, i.e. the TLB's owner thread.
1017 */
1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1019 {
1020 *d = *s;
1021 }
1022
1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1024 * the target vCPU).
1025 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1026 * thing actually updated is the target TLB entry ->addr_write flags.
1027 */
1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1029 {
1030 CPUArchState *env;
1031
1032 int mmu_idx;
1033
1034 env = cpu->env_ptr;
1035 qemu_spin_lock(&env_tlb(env)->c.lock);
1036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1037 unsigned int i;
1038 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1039
1040 for (i = 0; i < n; i++) {
1041 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1042 start1, length);
1043 }
1044
1045 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1046 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1047 start1, length);
1048 }
1049 }
1050 qemu_spin_unlock(&env_tlb(env)->c.lock);
1051 }
1052
1053 /* Called with tlb_c.lock held */
1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1055 vaddr addr)
1056 {
1057 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1058 tlb_entry->addr_write = addr;
1059 }
1060 }
1061
1062 /* update the TLB corresponding to virtual page vaddr
1063 so that it is no longer dirty */
1064 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1065 {
1066 CPUArchState *env = cpu->env_ptr;
1067 int mmu_idx;
1068
1069 assert_cpu_is_self(cpu);
1070
1071 addr &= TARGET_PAGE_MASK;
1072 qemu_spin_lock(&env_tlb(env)->c.lock);
1073 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1074 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1075 }
1076
1077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1078 int k;
1079 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1080 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1081 }
1082 }
1083 qemu_spin_unlock(&env_tlb(env)->c.lock);
1084 }
1085
1086 /* Our TLB does not support large pages, so remember the area covered by
1087 large pages and trigger a full TLB flush if these are invalidated. */
1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1089 vaddr addr, uint64_t size)
1090 {
1091 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1092 vaddr lp_mask = ~(size - 1);
1093
1094 if (lp_addr == (vaddr)-1) {
1095 /* No previous large page. */
1096 lp_addr = addr;
1097 } else {
1098 /* Extend the existing region to include the new page.
1099 This is a compromise between unnecessary flushes and
1100 the cost of maintaining a full variable size TLB. */
1101 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1102 while (((lp_addr ^ addr) & lp_mask) != 0) {
1103 lp_mask <<= 1;
1104 }
1105 }
1106 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1107 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1108 }
1109
1110 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent,
1111 target_ulong address, int flags,
1112 MMUAccessType access_type, bool enable)
1113 {
1114 if (enable) {
1115 address |= flags & TLB_FLAGS_MASK;
1116 flags &= TLB_SLOW_FLAGS_MASK;
1117 if (flags) {
1118 address |= TLB_FORCE_SLOW;
1119 }
1120 } else {
1121 address = -1;
1122 flags = 0;
1123 }
1124 ent->addr_idx[access_type] = address;
1125 full->slow_flags[access_type] = flags;
1126 }
1127
1128 /*
1129 * Add a new TLB entry. At most one entry for a given virtual address
1130 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1131 * supplied size is only used by tlb_flush_page.
1132 *
1133 * Called from TCG-generated code, which is under an RCU read-side
1134 * critical section.
1135 */
1136 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1137 vaddr addr, CPUTLBEntryFull *full)
1138 {
1139 CPUArchState *env = cpu->env_ptr;
1140 CPUTLB *tlb = env_tlb(env);
1141 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1142 MemoryRegionSection *section;
1143 unsigned int index, read_flags, write_flags;
1144 uintptr_t addend;
1145 CPUTLBEntry *te, tn;
1146 hwaddr iotlb, xlat, sz, paddr_page;
1147 vaddr addr_page;
1148 int asidx, wp_flags, prot;
1149 bool is_ram, is_romd;
1150
1151 assert_cpu_is_self(cpu);
1152
1153 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1154 sz = TARGET_PAGE_SIZE;
1155 } else {
1156 sz = (hwaddr)1 << full->lg_page_size;
1157 tlb_add_large_page(env, mmu_idx, addr, sz);
1158 }
1159 addr_page = addr & TARGET_PAGE_MASK;
1160 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1161
1162 prot = full->prot;
1163 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1164 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1165 &xlat, &sz, full->attrs, &prot);
1166 assert(sz >= TARGET_PAGE_SIZE);
1167
1168 tlb_debug("vaddr=%" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1169 " prot=%x idx=%d\n",
1170 addr, full->phys_addr, prot, mmu_idx);
1171
1172 read_flags = 0;
1173 if (full->lg_page_size < TARGET_PAGE_BITS) {
1174 /* Repeat the MMU check and TLB fill on every access. */
1175 read_flags |= TLB_INVALID_MASK;
1176 }
1177 if (full->attrs.byte_swap) {
1178 read_flags |= TLB_BSWAP;
1179 }
1180
1181 is_ram = memory_region_is_ram(section->mr);
1182 is_romd = memory_region_is_romd(section->mr);
1183
1184 if (is_ram || is_romd) {
1185 /* RAM and ROMD both have associated host memory. */
1186 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1187 } else {
1188 /* I/O does not; force the host address to NULL. */
1189 addend = 0;
1190 }
1191
1192 write_flags = read_flags;
1193 if (is_ram) {
1194 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1195 /*
1196 * Computing is_clean is expensive; avoid all that unless
1197 * the page is actually writable.
1198 */
1199 if (prot & PAGE_WRITE) {
1200 if (section->readonly) {
1201 write_flags |= TLB_DISCARD_WRITE;
1202 } else if (cpu_physical_memory_is_clean(iotlb)) {
1203 write_flags |= TLB_NOTDIRTY;
1204 }
1205 }
1206 } else {
1207 /* I/O or ROMD */
1208 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1209 /*
1210 * Writes to romd devices must go through MMIO to enable write.
1211 * Reads to romd devices go through the ram_ptr found above,
1212 * but of course reads to I/O must go through MMIO.
1213 */
1214 write_flags |= TLB_MMIO;
1215 if (!is_romd) {
1216 read_flags = write_flags;
1217 }
1218 }
1219
1220 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1221 TARGET_PAGE_SIZE);
1222
1223 index = tlb_index(env, mmu_idx, addr_page);
1224 te = tlb_entry(env, mmu_idx, addr_page);
1225
1226 /*
1227 * Hold the TLB lock for the rest of the function. We could acquire/release
1228 * the lock several times in the function, but it is faster to amortize the
1229 * acquisition cost by acquiring it just once. Note that this leads to
1230 * a longer critical section, but this is not a concern since the TLB lock
1231 * is unlikely to be contended.
1232 */
1233 qemu_spin_lock(&tlb->c.lock);
1234
1235 /* Note that the tlb is no longer clean. */
1236 tlb->c.dirty |= 1 << mmu_idx;
1237
1238 /* Make sure there's no cached translation for the new page. */
1239 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1240
1241 /*
1242 * Only evict the old entry to the victim tlb if it's for a
1243 * different page; otherwise just overwrite the stale data.
1244 */
1245 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1246 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1247 CPUTLBEntry *tv = &desc->vtable[vidx];
1248
1249 /* Evict the old entry into the victim tlb. */
1250 copy_tlb_helper_locked(tv, te);
1251 desc->vfulltlb[vidx] = desc->fulltlb[index];
1252 tlb_n_used_entries_dec(env, mmu_idx);
1253 }
1254
1255 /* refill the tlb */
1256 /*
1257 * At this point iotlb contains a physical section number in the lower
1258 * TARGET_PAGE_BITS, and either
1259 * + the ram_addr_t of the page base of the target RAM (RAM)
1260 * + the offset within section->mr of the page base (I/O, ROMD)
1261 * We subtract addr_page (which is page aligned and thus won't
1262 * disturb the low bits) to give an offset which can be added to the
1263 * (non-page-aligned) vaddr of the eventual memory access to get
1264 * the MemoryRegion offset for the access. Note that the vaddr we
1265 * subtract here is that of the page base, and not the same as the
1266 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1267 */
1268 desc->fulltlb[index] = *full;
1269 full = &desc->fulltlb[index];
1270 full->xlat_section = iotlb - addr_page;
1271 full->phys_addr = paddr_page;
1272
1273 /* Now calculate the new entry */
1274 tn.addend = addend - addr_page;
1275
1276 tlb_set_compare(full, &tn, addr_page, read_flags,
1277 MMU_INST_FETCH, prot & PAGE_EXEC);
1278
1279 if (wp_flags & BP_MEM_READ) {
1280 read_flags |= TLB_WATCHPOINT;
1281 }
1282 tlb_set_compare(full, &tn, addr_page, read_flags,
1283 MMU_DATA_LOAD, prot & PAGE_READ);
1284
1285 if (prot & PAGE_WRITE_INV) {
1286 write_flags |= TLB_INVALID_MASK;
1287 }
1288 if (wp_flags & BP_MEM_WRITE) {
1289 write_flags |= TLB_WATCHPOINT;
1290 }
1291 tlb_set_compare(full, &tn, addr_page, write_flags,
1292 MMU_DATA_STORE, prot & PAGE_WRITE);
1293
1294 copy_tlb_helper_locked(te, &tn);
1295 tlb_n_used_entries_inc(env, mmu_idx);
1296 qemu_spin_unlock(&tlb->c.lock);
1297 }
1298
1299 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1300 hwaddr paddr, MemTxAttrs attrs, int prot,
1301 int mmu_idx, uint64_t size)
1302 {
1303 CPUTLBEntryFull full = {
1304 .phys_addr = paddr,
1305 .attrs = attrs,
1306 .prot = prot,
1307 .lg_page_size = ctz64(size)
1308 };
1309
1310 assert(is_power_of_2(size));
1311 tlb_set_page_full(cpu, mmu_idx, addr, &full);
1312 }
1313
1314 void tlb_set_page(CPUState *cpu, vaddr addr,
1315 hwaddr paddr, int prot,
1316 int mmu_idx, uint64_t size)
1317 {
1318 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1319 prot, mmu_idx, size);
1320 }
1321
1322 /*
1323 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1324 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1325 * be discarded and looked up again (e.g. via tlb_entry()).
1326 */
1327 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1328 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1329 {
1330 bool ok;
1331
1332 /*
1333 * This is not a probe, so only valid return is success; failure
1334 * should result in exception + longjmp to the cpu loop.
1335 */
1336 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1337 access_type, mmu_idx, false, retaddr);
1338 assert(ok);
1339 }
1340
1341 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1342 MMUAccessType access_type,
1343 int mmu_idx, uintptr_t retaddr)
1344 {
1345 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1346 mmu_idx, retaddr);
1347 }
1348
1349 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1350 vaddr addr, unsigned size,
1351 MMUAccessType access_type,
1352 int mmu_idx, MemTxAttrs attrs,
1353 MemTxResult response,
1354 uintptr_t retaddr)
1355 {
1356 CPUClass *cc = CPU_GET_CLASS(cpu);
1357
1358 if (!cpu->ignore_memory_transaction_failures &&
1359 cc->tcg_ops->do_transaction_failed) {
1360 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1361 access_type, mmu_idx, attrs,
1362 response, retaddr);
1363 }
1364 }
1365
1366 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1367 int mmu_idx, vaddr addr, uintptr_t retaddr,
1368 MMUAccessType access_type, MemOp op)
1369 {
1370 CPUState *cpu = env_cpu(env);
1371 hwaddr mr_offset;
1372 MemoryRegionSection *section;
1373 MemoryRegion *mr;
1374 uint64_t val;
1375 MemTxResult r;
1376
1377 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1378 mr = section->mr;
1379 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1380 cpu->mem_io_pc = retaddr;
1381 if (!cpu->can_do_io) {
1382 cpu_io_recompile(cpu, retaddr);
1383 }
1384
1385 {
1386 QEMU_IOTHREAD_LOCK_GUARD();
1387 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1388 }
1389
1390 if (r != MEMTX_OK) {
1391 hwaddr physaddr = mr_offset +
1392 section->offset_within_address_space -
1393 section->offset_within_region;
1394
1395 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1396 mmu_idx, full->attrs, r, retaddr);
1397 }
1398 return val;
1399 }
1400
1401 /*
1402 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1403 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1404 * because of the side effect of io_writex changing memory layout.
1405 */
1406 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1407 hwaddr mr_offset)
1408 {
1409 #ifdef CONFIG_PLUGIN
1410 SavedIOTLB *saved = &cs->saved_iotlb;
1411 saved->section = section;
1412 saved->mr_offset = mr_offset;
1413 #endif
1414 }
1415
1416 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1417 int mmu_idx, uint64_t val, vaddr addr,
1418 uintptr_t retaddr, MemOp op)
1419 {
1420 CPUState *cpu = env_cpu(env);
1421 hwaddr mr_offset;
1422 MemoryRegionSection *section;
1423 MemoryRegion *mr;
1424 MemTxResult r;
1425
1426 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1427 mr = section->mr;
1428 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1429 if (!cpu->can_do_io) {
1430 cpu_io_recompile(cpu, retaddr);
1431 }
1432 cpu->mem_io_pc = retaddr;
1433
1434 /*
1435 * The memory_region_dispatch may trigger a flush/resize
1436 * so for plugins we save the iotlb_data just in case.
1437 */
1438 save_iotlb_data(cpu, section, mr_offset);
1439
1440 {
1441 QEMU_IOTHREAD_LOCK_GUARD();
1442 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1443 }
1444
1445 if (r != MEMTX_OK) {
1446 hwaddr physaddr = mr_offset +
1447 section->offset_within_address_space -
1448 section->offset_within_region;
1449
1450 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1451 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1452 retaddr);
1453 }
1454 }
1455
1456 /* Return true if ADDR is present in the victim tlb, and has been copied
1457 back to the main tlb. */
1458 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1459 MMUAccessType access_type, vaddr page)
1460 {
1461 size_t vidx;
1462
1463 assert_cpu_is_self(env_cpu(env));
1464 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1465 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1466 uint64_t cmp = tlb_read_idx(vtlb, access_type);
1467
1468 if (cmp == page) {
1469 /* Found entry in victim tlb, swap tlb and iotlb. */
1470 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1471
1472 qemu_spin_lock(&env_tlb(env)->c.lock);
1473 copy_tlb_helper_locked(&tmptlb, tlb);
1474 copy_tlb_helper_locked(tlb, vtlb);
1475 copy_tlb_helper_locked(vtlb, &tmptlb);
1476 qemu_spin_unlock(&env_tlb(env)->c.lock);
1477
1478 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1479 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1480 CPUTLBEntryFull tmpf;
1481 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1482 return true;
1483 }
1484 }
1485 return false;
1486 }
1487
1488 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1489 CPUTLBEntryFull *full, uintptr_t retaddr)
1490 {
1491 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1492
1493 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1494
1495 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1496 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1497 }
1498
1499 /*
1500 * Set both VGA and migration bits for simplicity and to remove
1501 * the notdirty callback faster.
1502 */
1503 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1504
1505 /* We remove the notdirty callback only if the code has been flushed. */
1506 if (!cpu_physical_memory_is_clean(ram_addr)) {
1507 trace_memory_notdirty_set_dirty(mem_vaddr);
1508 tlb_set_dirty(cpu, mem_vaddr);
1509 }
1510 }
1511
1512 static int probe_access_internal(CPUArchState *env, vaddr addr,
1513 int fault_size, MMUAccessType access_type,
1514 int mmu_idx, bool nonfault,
1515 void **phost, CPUTLBEntryFull **pfull,
1516 uintptr_t retaddr, bool check_mem_cbs)
1517 {
1518 uintptr_t index = tlb_index(env, mmu_idx, addr);
1519 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1520 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1521 vaddr page_addr = addr & TARGET_PAGE_MASK;
1522 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW;
1523 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env));
1524 CPUTLBEntryFull *full;
1525
1526 if (!tlb_hit_page(tlb_addr, page_addr)) {
1527 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1528 CPUState *cs = env_cpu(env);
1529
1530 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1531 mmu_idx, nonfault, retaddr)) {
1532 /* Non-faulting page table read failed. */
1533 *phost = NULL;
1534 *pfull = NULL;
1535 return TLB_INVALID_MASK;
1536 }
1537
1538 /* TLB resize via tlb_fill may have moved the entry. */
1539 index = tlb_index(env, mmu_idx, addr);
1540 entry = tlb_entry(env, mmu_idx, addr);
1541
1542 /*
1543 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1544 * to force the next access through tlb_fill. We've just
1545 * called tlb_fill, so we know that this entry *is* valid.
1546 */
1547 flags &= ~TLB_INVALID_MASK;
1548 }
1549 tlb_addr = tlb_read_idx(entry, access_type);
1550 }
1551 flags &= tlb_addr;
1552
1553 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1554 flags |= full->slow_flags[access_type];
1555
1556 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1557 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))
1558 ||
1559 (access_type != MMU_INST_FETCH && force_mmio)) {
1560 *phost = NULL;
1561 return TLB_MMIO;
1562 }
1563
1564 /* Everything else is RAM. */
1565 *phost = (void *)((uintptr_t)addr + entry->addend);
1566 return flags;
1567 }
1568
1569 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1570 MMUAccessType access_type, int mmu_idx,
1571 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1572 uintptr_t retaddr)
1573 {
1574 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1575 nonfault, phost, pfull, retaddr, true);
1576
1577 /* Handle clean RAM pages. */
1578 if (unlikely(flags & TLB_NOTDIRTY)) {
1579 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1580 flags &= ~TLB_NOTDIRTY;
1581 }
1582
1583 return flags;
1584 }
1585
1586 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size,
1587 MMUAccessType access_type, int mmu_idx,
1588 void **phost, CPUTLBEntryFull **pfull)
1589 {
1590 void *discard_phost;
1591 CPUTLBEntryFull *discard_tlb;
1592
1593 /* privately handle users that don't need full results */
1594 phost = phost ? phost : &discard_phost;
1595 pfull = pfull ? pfull : &discard_tlb;
1596
1597 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1598 true, phost, pfull, 0, false);
1599
1600 /* Handle clean RAM pages. */
1601 if (unlikely(flags & TLB_NOTDIRTY)) {
1602 notdirty_write(env_cpu(env), addr, 1, *pfull, 0);
1603 flags &= ~TLB_NOTDIRTY;
1604 }
1605
1606 return flags;
1607 }
1608
1609 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1610 MMUAccessType access_type, int mmu_idx,
1611 bool nonfault, void **phost, uintptr_t retaddr)
1612 {
1613 CPUTLBEntryFull *full;
1614 int flags;
1615
1616 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1617
1618 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1619 nonfault, phost, &full, retaddr, true);
1620
1621 /* Handle clean RAM pages. */
1622 if (unlikely(flags & TLB_NOTDIRTY)) {
1623 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1624 flags &= ~TLB_NOTDIRTY;
1625 }
1626
1627 return flags;
1628 }
1629
1630 void *probe_access(CPUArchState *env, vaddr addr, int size,
1631 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1632 {
1633 CPUTLBEntryFull *full;
1634 void *host;
1635 int flags;
1636
1637 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1638
1639 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1640 false, &host, &full, retaddr, true);
1641
1642 /* Per the interface, size == 0 merely faults the access. */
1643 if (size == 0) {
1644 return NULL;
1645 }
1646
1647 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1648 /* Handle watchpoints. */
1649 if (flags & TLB_WATCHPOINT) {
1650 int wp_access = (access_type == MMU_DATA_STORE
1651 ? BP_MEM_WRITE : BP_MEM_READ);
1652 cpu_check_watchpoint(env_cpu(env), addr, size,
1653 full->attrs, wp_access, retaddr);
1654 }
1655
1656 /* Handle clean RAM pages. */
1657 if (flags & TLB_NOTDIRTY) {
1658 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1659 }
1660 }
1661
1662 return host;
1663 }
1664
1665 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1666 MMUAccessType access_type, int mmu_idx)
1667 {
1668 CPUTLBEntryFull *full;
1669 void *host;
1670 int flags;
1671
1672 flags = probe_access_internal(env, addr, 0, access_type,
1673 mmu_idx, true, &host, &full, 0, false);
1674
1675 /* No combination of flags are expected by the caller. */
1676 return flags ? NULL : host;
1677 }
1678
1679 /*
1680 * Return a ram_addr_t for the virtual address for execution.
1681 *
1682 * Return -1 if we can't translate and execute from an entire page
1683 * of RAM. This will force us to execute by loading and translating
1684 * one insn at a time, without caching.
1685 *
1686 * NOTE: This function will trigger an exception if the page is
1687 * not executable.
1688 */
1689 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1690 void **hostp)
1691 {
1692 CPUTLBEntryFull *full;
1693 void *p;
1694
1695 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1696 cpu_mmu_index(env, true), false,
1697 &p, &full, 0, false);
1698 if (p == NULL) {
1699 return -1;
1700 }
1701
1702 if (full->lg_page_size < TARGET_PAGE_BITS) {
1703 return -1;
1704 }
1705
1706 if (hostp) {
1707 *hostp = p;
1708 }
1709 return qemu_ram_addr_from_host_nofail(p);
1710 }
1711
1712 /* Load/store with atomicity primitives. */
1713 #include "ldst_atomicity.c.inc"
1714
1715 #ifdef CONFIG_PLUGIN
1716 /*
1717 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1718 * This should be a hot path as we will have just looked this path up
1719 * in the softmmu lookup code (or helper). We don't handle re-fills or
1720 * checking the victim table. This is purely informational.
1721 *
1722 * This almost never fails as the memory access being instrumented
1723 * should have just filled the TLB. The one corner case is io_writex
1724 * which can cause TLB flushes and potential resizing of the TLBs
1725 * losing the information we need. In those cases we need to recover
1726 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1727 * from the same thread (which a mem callback will be) this is safe.
1728 */
1729
1730 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1731 bool is_store, struct qemu_plugin_hwaddr *data)
1732 {
1733 CPUArchState *env = cpu->env_ptr;
1734 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1735 uintptr_t index = tlb_index(env, mmu_idx, addr);
1736 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1737
1738 if (likely(tlb_hit(tlb_addr, addr))) {
1739 /* We must have an iotlb entry for MMIO */
1740 if (tlb_addr & TLB_MMIO) {
1741 CPUTLBEntryFull *full;
1742 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1743 data->is_io = true;
1744 data->v.io.section =
1745 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1746 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1747 } else {
1748 data->is_io = false;
1749 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1750 }
1751 return true;
1752 } else {
1753 SavedIOTLB *saved = &cpu->saved_iotlb;
1754 data->is_io = true;
1755 data->v.io.section = saved->section;
1756 data->v.io.offset = saved->mr_offset;
1757 return true;
1758 }
1759 }
1760
1761 #endif
1762
1763 /*
1764 * Probe for a load/store operation.
1765 * Return the host address and into @flags.
1766 */
1767
1768 typedef struct MMULookupPageData {
1769 CPUTLBEntryFull *full;
1770 void *haddr;
1771 vaddr addr;
1772 int flags;
1773 int size;
1774 } MMULookupPageData;
1775
1776 typedef struct MMULookupLocals {
1777 MMULookupPageData page[2];
1778 MemOp memop;
1779 int mmu_idx;
1780 } MMULookupLocals;
1781
1782 /**
1783 * mmu_lookup1: translate one page
1784 * @env: cpu context
1785 * @data: lookup parameters
1786 * @mmu_idx: virtual address context
1787 * @access_type: load/store/code
1788 * @ra: return address into tcg generated code, or 0
1789 *
1790 * Resolve the translation for the one page at @data.addr, filling in
1791 * the rest of @data with the results. If the translation fails,
1792 * tlb_fill will longjmp out. Return true if the softmmu tlb for
1793 * @mmu_idx may have resized.
1794 */
1795 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1796 int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1797 {
1798 vaddr addr = data->addr;
1799 uintptr_t index = tlb_index(env, mmu_idx, addr);
1800 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1801 uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1802 bool maybe_resized = false;
1803 CPUTLBEntryFull *full;
1804 int flags;
1805
1806 /* If the TLB entry is for a different page, reload and try again. */
1807 if (!tlb_hit(tlb_addr, addr)) {
1808 if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1809 addr & TARGET_PAGE_MASK)) {
1810 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1811 maybe_resized = true;
1812 index = tlb_index(env, mmu_idx, addr);
1813 entry = tlb_entry(env, mmu_idx, addr);
1814 }
1815 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1816 }
1817
1818 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1819 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW);
1820 flags |= full->slow_flags[access_type];
1821
1822 data->full = full;
1823 data->flags = flags;
1824 /* Compute haddr speculatively; depending on flags it might be invalid. */
1825 data->haddr = (void *)((uintptr_t)addr + entry->addend);
1826
1827 return maybe_resized;
1828 }
1829
1830 /**
1831 * mmu_watch_or_dirty
1832 * @env: cpu context
1833 * @data: lookup parameters
1834 * @access_type: load/store/code
1835 * @ra: return address into tcg generated code, or 0
1836 *
1837 * Trigger watchpoints for @data.addr:@data.size;
1838 * record writes to protected clean pages.
1839 */
1840 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1841 MMUAccessType access_type, uintptr_t ra)
1842 {
1843 CPUTLBEntryFull *full = data->full;
1844 vaddr addr = data->addr;
1845 int flags = data->flags;
1846 int size = data->size;
1847
1848 /* On watchpoint hit, this will longjmp out. */
1849 if (flags & TLB_WATCHPOINT) {
1850 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1851 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1852 flags &= ~TLB_WATCHPOINT;
1853 }
1854
1855 /* Note that notdirty is only set for writes. */
1856 if (flags & TLB_NOTDIRTY) {
1857 notdirty_write(env_cpu(env), addr, size, full, ra);
1858 flags &= ~TLB_NOTDIRTY;
1859 }
1860 data->flags = flags;
1861 }
1862
1863 /**
1864 * mmu_lookup: translate page(s)
1865 * @env: cpu context
1866 * @addr: virtual address
1867 * @oi: combined mmu_idx and MemOp
1868 * @ra: return address into tcg generated code, or 0
1869 * @access_type: load/store/code
1870 * @l: output result
1871 *
1872 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1873 * bytes. Return true if the lookup crosses a page boundary.
1874 */
1875 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1876 uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1877 {
1878 unsigned a_bits;
1879 bool crosspage;
1880 int flags;
1881
1882 l->memop = get_memop(oi);
1883 l->mmu_idx = get_mmuidx(oi);
1884
1885 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1886
1887 /* Handle CPU specific unaligned behaviour */
1888 a_bits = get_alignment_bits(l->memop);
1889 if (addr & ((1 << a_bits) - 1)) {
1890 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1891 }
1892
1893 l->page[0].addr = addr;
1894 l->page[0].size = memop_size(l->memop);
1895 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1896 l->page[1].size = 0;
1897 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1898
1899 if (likely(!crosspage)) {
1900 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1901
1902 flags = l->page[0].flags;
1903 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1904 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1905 }
1906 if (unlikely(flags & TLB_BSWAP)) {
1907 l->memop ^= MO_BSWAP;
1908 }
1909 } else {
1910 /* Finish compute of page crossing. */
1911 int size0 = l->page[1].addr - addr;
1912 l->page[1].size = l->page[0].size - size0;
1913 l->page[0].size = size0;
1914
1915 /*
1916 * Lookup both pages, recognizing exceptions from either. If the
1917 * second lookup potentially resized, refresh first CPUTLBEntryFull.
1918 */
1919 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1920 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1921 uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1922 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1923 }
1924
1925 flags = l->page[0].flags | l->page[1].flags;
1926 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1927 mmu_watch_or_dirty(env, &l->page[0], type, ra);
1928 mmu_watch_or_dirty(env, &l->page[1], type, ra);
1929 }
1930
1931 /*
1932 * Since target/sparc is the only user of TLB_BSWAP, and all
1933 * Sparc accesses are aligned, any treatment across two pages
1934 * would be arbitrary. Refuse it until there's a use.
1935 */
1936 tcg_debug_assert((flags & TLB_BSWAP) == 0);
1937 }
1938
1939 return crosspage;
1940 }
1941
1942 /*
1943 * Probe for an atomic operation. Do not allow unaligned operations,
1944 * or io operations to proceed. Return the host address.
1945 */
1946 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1947 int size, uintptr_t retaddr)
1948 {
1949 uintptr_t mmu_idx = get_mmuidx(oi);
1950 MemOp mop = get_memop(oi);
1951 int a_bits = get_alignment_bits(mop);
1952 uintptr_t index;
1953 CPUTLBEntry *tlbe;
1954 vaddr tlb_addr;
1955 void *hostaddr;
1956 CPUTLBEntryFull *full;
1957
1958 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1959
1960 /* Adjust the given return address. */
1961 retaddr -= GETPC_ADJ;
1962
1963 /* Enforce guest required alignment. */
1964 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1965 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1966 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1967 mmu_idx, retaddr);
1968 }
1969
1970 /* Enforce qemu required alignment. */
1971 if (unlikely(addr & (size - 1))) {
1972 /* We get here if guest alignment was not requested,
1973 or was not enforced by cpu_unaligned_access above.
1974 We might widen the access and emulate, but for now
1975 mark an exception and exit the cpu loop. */
1976 goto stop_the_world;
1977 }
1978
1979 index = tlb_index(env, mmu_idx, addr);
1980 tlbe = tlb_entry(env, mmu_idx, addr);
1981
1982 /* Check TLB entry and enforce page permissions. */
1983 tlb_addr = tlb_addr_write(tlbe);
1984 if (!tlb_hit(tlb_addr, addr)) {
1985 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1986 addr & TARGET_PAGE_MASK)) {
1987 tlb_fill(env_cpu(env), addr, size,
1988 MMU_DATA_STORE, mmu_idx, retaddr);
1989 index = tlb_index(env, mmu_idx, addr);
1990 tlbe = tlb_entry(env, mmu_idx, addr);
1991 }
1992 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1993 }
1994
1995 /*
1996 * Let the guest notice RMW on a write-only page.
1997 * We have just verified that the page is writable.
1998 * Subpage lookups may have left TLB_INVALID_MASK set,
1999 * but addr_read will only be -1 if PAGE_READ was unset.
2000 */
2001 if (unlikely(tlbe->addr_read == -1)) {
2002 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
2003 /*
2004 * Since we don't support reads and writes to different
2005 * addresses, and we do have the proper page loaded for
2006 * write, this shouldn't ever return. But just in case,
2007 * handle via stop-the-world.
2008 */
2009 goto stop_the_world;
2010 }
2011 /* Collect tlb flags for read. */
2012 tlb_addr |= tlbe->addr_read;
2013
2014 /* Notice an IO access or a needs-MMU-lookup access */
2015 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
2016 /* There's really nothing that can be done to
2017 support this apart from stop-the-world. */
2018 goto stop_the_world;
2019 }
2020
2021 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
2022 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2023
2024 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
2025 notdirty_write(env_cpu(env), addr, size, full, retaddr);
2026 }
2027
2028 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) {
2029 int wp_flags = 0;
2030
2031 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) {
2032 wp_flags |= BP_MEM_WRITE;
2033 }
2034 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) {
2035 wp_flags |= BP_MEM_READ;
2036 }
2037 if (wp_flags) {
2038 cpu_check_watchpoint(env_cpu(env), addr, size,
2039 full->attrs, wp_flags, retaddr);
2040 }
2041 }
2042
2043 return hostaddr;
2044
2045 stop_the_world:
2046 cpu_loop_exit_atomic(env_cpu(env), retaddr);
2047 }
2048
2049 /*
2050 * Load Helpers
2051 *
2052 * We support two different access types. SOFTMMU_CODE_ACCESS is
2053 * specifically for reading instructions from system memory. It is
2054 * called by the translation loop and in some helpers where the code
2055 * is disassembled. It shouldn't be called directly by guest code.
2056 *
2057 * For the benefit of TCG generated code, we want to avoid the
2058 * complication of ABI-specific return type promotion and always
2059 * return a value extended to the register size of the host. This is
2060 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2061 * data, and for that we always have uint64_t.
2062 *
2063 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2064 */
2065
2066 /**
2067 * do_ld_mmio_beN:
2068 * @env: cpu context
2069 * @p: translation parameters
2070 * @ret_be: accumulated data
2071 * @mmu_idx: virtual address context
2072 * @ra: return address into tcg generated code, or 0
2073 *
2074 * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2075 * The bytes are concatenated in big-endian order with @ret_be.
2076 */
2077 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2078 uint64_t ret_be, int mmu_idx,
2079 MMUAccessType type, uintptr_t ra)
2080 {
2081 CPUTLBEntryFull *full = p->full;
2082 vaddr addr = p->addr;
2083 int i, size = p->size;
2084
2085 QEMU_IOTHREAD_LOCK_GUARD();
2086 for (i = 0; i < size; i++) {
2087 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2088 ret_be = (ret_be << 8) | x;
2089 }
2090 return ret_be;
2091 }
2092
2093 /**
2094 * do_ld_bytes_beN
2095 * @p: translation parameters
2096 * @ret_be: accumulated data
2097 *
2098 * Load @p->size bytes from @p->haddr, which is RAM.
2099 * The bytes to concatenated in big-endian order with @ret_be.
2100 */
2101 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2102 {
2103 uint8_t *haddr = p->haddr;
2104 int i, size = p->size;
2105
2106 for (i = 0; i < size; i++) {
2107 ret_be = (ret_be << 8) | haddr[i];
2108 }
2109 return ret_be;
2110 }
2111
2112 /**
2113 * do_ld_parts_beN
2114 * @p: translation parameters
2115 * @ret_be: accumulated data
2116 *
2117 * As do_ld_bytes_beN, but atomically on each aligned part.
2118 */
2119 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2120 {
2121 void *haddr = p->haddr;
2122 int size = p->size;
2123
2124 do {
2125 uint64_t x;
2126 int n;
2127
2128 /*
2129 * Find minimum of alignment and size.
2130 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2131 * would have only checked the low bits of addr|size once at the start,
2132 * but is just as easy.
2133 */
2134 switch (((uintptr_t)haddr | size) & 7) {
2135 case 4:
2136 x = cpu_to_be32(load_atomic4(haddr));
2137 ret_be = (ret_be << 32) | x;
2138 n = 4;
2139 break;
2140 case 2:
2141 case 6:
2142 x = cpu_to_be16(load_atomic2(haddr));
2143 ret_be = (ret_be << 16) | x;
2144 n = 2;
2145 break;
2146 default:
2147 x = *(uint8_t *)haddr;
2148 ret_be = (ret_be << 8) | x;
2149 n = 1;
2150 break;
2151 case 0:
2152 g_assert_not_reached();
2153 }
2154 haddr += n;
2155 size -= n;
2156 } while (size != 0);
2157 return ret_be;
2158 }
2159
2160 /**
2161 * do_ld_parts_be4
2162 * @p: translation parameters
2163 * @ret_be: accumulated data
2164 *
2165 * As do_ld_bytes_beN, but with one atomic load.
2166 * Four aligned bytes are guaranteed to cover the load.
2167 */
2168 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2169 {
2170 int o = p->addr & 3;
2171 uint32_t x = load_atomic4(p->haddr - o);
2172
2173 x = cpu_to_be32(x);
2174 x <<= o * 8;
2175 x >>= (4 - p->size) * 8;
2176 return (ret_be << (p->size * 8)) | x;
2177 }
2178
2179 /**
2180 * do_ld_parts_be8
2181 * @p: translation parameters
2182 * @ret_be: accumulated data
2183 *
2184 * As do_ld_bytes_beN, but with one atomic load.
2185 * Eight aligned bytes are guaranteed to cover the load.
2186 */
2187 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2188 MMULookupPageData *p, uint64_t ret_be)
2189 {
2190 int o = p->addr & 7;
2191 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2192
2193 x = cpu_to_be64(x);
2194 x <<= o * 8;
2195 x >>= (8 - p->size) * 8;
2196 return (ret_be << (p->size * 8)) | x;
2197 }
2198
2199 /**
2200 * do_ld_parts_be16
2201 * @p: translation parameters
2202 * @ret_be: accumulated data
2203 *
2204 * As do_ld_bytes_beN, but with one atomic load.
2205 * 16 aligned bytes are guaranteed to cover the load.
2206 */
2207 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2208 MMULookupPageData *p, uint64_t ret_be)
2209 {
2210 int o = p->addr & 15;
2211 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2212 int size = p->size;
2213
2214 if (!HOST_BIG_ENDIAN) {
2215 y = bswap128(y);
2216 }
2217 y = int128_lshift(y, o * 8);
2218 y = int128_urshift(y, (16 - size) * 8);
2219 x = int128_make64(ret_be);
2220 x = int128_lshift(x, size * 8);
2221 return int128_or(x, y);
2222 }
2223
2224 /*
2225 * Wrapper for the above.
2226 */
2227 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2228 uint64_t ret_be, int mmu_idx, MMUAccessType type,
2229 MemOp mop, uintptr_t ra)
2230 {
2231 MemOp atom;
2232 unsigned tmp, half_size;
2233
2234 if (unlikely(p->flags & TLB_MMIO)) {
2235 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2236 }
2237
2238 /*
2239 * It is a given that we cross a page and therefore there is no
2240 * atomicity for the load as a whole, but subobjects may need attention.
2241 */
2242 atom = mop & MO_ATOM_MASK;
2243 switch (atom) {
2244 case MO_ATOM_SUBALIGN:
2245 return do_ld_parts_beN(p, ret_be);
2246
2247 case MO_ATOM_IFALIGN_PAIR:
2248 case MO_ATOM_WITHIN16_PAIR:
2249 tmp = mop & MO_SIZE;
2250 tmp = tmp ? tmp - 1 : 0;
2251 half_size = 1 << tmp;
2252 if (atom == MO_ATOM_IFALIGN_PAIR
2253 ? p->size == half_size
2254 : p->size >= half_size) {
2255 if (!HAVE_al8_fast && p->size < 4) {
2256 return do_ld_whole_be4(p, ret_be);
2257 } else {
2258 return do_ld_whole_be8(env, ra, p, ret_be);
2259 }
2260 }
2261 /* fall through */
2262
2263 case MO_ATOM_IFALIGN:
2264 case MO_ATOM_WITHIN16:
2265 case MO_ATOM_NONE:
2266 return do_ld_bytes_beN(p, ret_be);
2267
2268 default:
2269 g_assert_not_reached();
2270 }
2271 }
2272
2273 /*
2274 * Wrapper for the above, for 8 < size < 16.
2275 */
2276 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2277 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2278 {
2279 int size = p->size;
2280 uint64_t b;
2281 MemOp atom;
2282
2283 if (unlikely(p->flags & TLB_MMIO)) {
2284 p->size = size - 8;
2285 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra);
2286 p->addr += p->size;
2287 p->size = 8;
2288 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra);
2289 return int128_make128(b, a);
2290 }
2291
2292 /*
2293 * It is a given that we cross a page and therefore there is no
2294 * atomicity for the load as a whole, but subobjects may need attention.
2295 */
2296 atom = mop & MO_ATOM_MASK;
2297 switch (atom) {
2298 case MO_ATOM_SUBALIGN:
2299 p->size = size - 8;
2300 a = do_ld_parts_beN(p, a);
2301 p->haddr += size - 8;
2302 p->size = 8;
2303 b = do_ld_parts_beN(p, 0);
2304 break;
2305
2306 case MO_ATOM_WITHIN16_PAIR:
2307 /* Since size > 8, this is the half that must be atomic. */
2308 return do_ld_whole_be16(env, ra, p, a);
2309
2310 case MO_ATOM_IFALIGN_PAIR:
2311 /*
2312 * Since size > 8, both halves are misaligned,
2313 * and so neither is atomic.
2314 */
2315 case MO_ATOM_IFALIGN:
2316 case MO_ATOM_WITHIN16:
2317 case MO_ATOM_NONE:
2318 p->size = size - 8;
2319 a = do_ld_bytes_beN(p, a);
2320 b = ldq_be_p(p->haddr + size - 8);
2321 break;
2322
2323 default:
2324 g_assert_not_reached();
2325 }
2326
2327 return int128_make128(b, a);
2328 }
2329
2330 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2331 MMUAccessType type, uintptr_t ra)
2332 {
2333 if (unlikely(p->flags & TLB_MMIO)) {
2334 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2335 } else {
2336 return *(uint8_t *)p->haddr;
2337 }
2338 }
2339
2340 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2341 MMUAccessType type, MemOp memop, uintptr_t ra)
2342 {
2343 uint64_t ret;
2344
2345 if (unlikely(p->flags & TLB_MMIO)) {
2346 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2347 }
2348
2349 /* Perform the load host endian, then swap if necessary. */
2350 ret = load_atom_2(env, ra, p->haddr, memop);
2351 if (memop & MO_BSWAP) {
2352 ret = bswap16(ret);
2353 }
2354 return ret;
2355 }
2356
2357 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2358 MMUAccessType type, MemOp memop, uintptr_t ra)
2359 {
2360 uint32_t ret;
2361
2362 if (unlikely(p->flags & TLB_MMIO)) {
2363 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2364 }
2365
2366 /* Perform the load host endian. */
2367 ret = load_atom_4(env, ra, p->haddr, memop);
2368 if (memop & MO_BSWAP) {
2369 ret = bswap32(ret);
2370 }
2371 return ret;
2372 }
2373
2374 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2375 MMUAccessType type, MemOp memop, uintptr_t ra)
2376 {
2377 uint64_t ret;
2378
2379 if (unlikely(p->flags & TLB_MMIO)) {
2380 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2381 }
2382
2383 /* Perform the load host endian. */
2384 ret = load_atom_8(env, ra, p->haddr, memop);
2385 if (memop & MO_BSWAP) {
2386 ret = bswap64(ret);
2387 }
2388 return ret;
2389 }
2390
2391 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2392 uintptr_t ra, MMUAccessType access_type)
2393 {
2394 MMULookupLocals l;
2395 bool crosspage;
2396
2397 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2398 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2399 tcg_debug_assert(!crosspage);
2400
2401 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2402 }
2403
2404 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2405 MemOpIdx oi, uintptr_t retaddr)
2406 {
2407 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2408 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2409 }
2410
2411 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2412 uintptr_t ra, MMUAccessType access_type)
2413 {
2414 MMULookupLocals l;
2415 bool crosspage;
2416 uint16_t ret;
2417 uint8_t a, b;
2418
2419 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2420 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2421 if (likely(!crosspage)) {
2422 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2423 }
2424
2425 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2426 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2427
2428 if ((l.memop & MO_BSWAP) == MO_LE) {
2429 ret = a | (b << 8);
2430 } else {
2431 ret = b | (a << 8);
2432 }
2433 return ret;
2434 }
2435
2436 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2437 MemOpIdx oi, uintptr_t retaddr)
2438 {
2439 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2440 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2441 }
2442
2443 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2444 uintptr_t ra, MMUAccessType access_type)
2445 {
2446 MMULookupLocals l;
2447 bool crosspage;
2448 uint32_t ret;
2449
2450 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2451 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2452 if (likely(!crosspage)) {
2453 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2454 }
2455
2456 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2457 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2458 if ((l.memop & MO_BSWAP) == MO_LE) {
2459 ret = bswap32(ret);
2460 }
2461 return ret;
2462 }
2463
2464 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2465 MemOpIdx oi, uintptr_t retaddr)
2466 {
2467 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2468 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2469 }
2470
2471 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2472 uintptr_t ra, MMUAccessType access_type)
2473 {
2474 MMULookupLocals l;
2475 bool crosspage;
2476 uint64_t ret;
2477
2478 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2479 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2480 if (likely(!crosspage)) {
2481 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2482 }
2483
2484 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2485 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2486 if ((l.memop & MO_BSWAP) == MO_LE) {
2487 ret = bswap64(ret);
2488 }
2489 return ret;
2490 }
2491
2492 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2493 MemOpIdx oi, uintptr_t retaddr)
2494 {
2495 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2496 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2497 }
2498
2499 /*
2500 * Provide signed versions of the load routines as well. We can of course
2501 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2502 */
2503
2504 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2505 MemOpIdx oi, uintptr_t retaddr)
2506 {
2507 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2508 }
2509
2510 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2511 MemOpIdx oi, uintptr_t retaddr)
2512 {
2513 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2514 }
2515
2516 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2517 MemOpIdx oi, uintptr_t retaddr)
2518 {
2519 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2520 }
2521
2522 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2523 MemOpIdx oi, uintptr_t ra)
2524 {
2525 MMULookupLocals l;
2526 bool crosspage;
2527 uint64_t a, b;
2528 Int128 ret;
2529 int first;
2530
2531 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
2532 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2533 if (likely(!crosspage)) {
2534 /* Perform the load host endian. */
2535 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2536 QEMU_IOTHREAD_LOCK_GUARD();
2537 a = io_readx(env, l.page[0].full, l.mmu_idx, addr,
2538 ra, MMU_DATA_LOAD, MO_64);
2539 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8,
2540 ra, MMU_DATA_LOAD, MO_64);
2541 ret = int128_make128(HOST_BIG_ENDIAN ? b : a,
2542 HOST_BIG_ENDIAN ? a : b);
2543 } else {
2544 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2545 }
2546 if (l.memop & MO_BSWAP) {
2547 ret = bswap128(ret);
2548 }
2549 return ret;
2550 }
2551
2552 first = l.page[0].size;
2553 if (first == 8) {
2554 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2555
2556 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2557 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2558 if ((mop8 & MO_BSWAP) == MO_LE) {
2559 ret = int128_make128(a, b);
2560 } else {
2561 ret = int128_make128(b, a);
2562 }
2563 return ret;
2564 }
2565
2566 if (first < 8) {
2567 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2568 MMU_DATA_LOAD, l.memop, ra);
2569 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2570 } else {
2571 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2572 b = int128_getlo(ret);
2573 ret = int128_lshift(ret, l.page[1].size * 8);
2574 a = int128_gethi(ret);
2575 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2576 MMU_DATA_LOAD, l.memop, ra);
2577 ret = int128_make128(b, a);
2578 }
2579 if ((l.memop & MO_BSWAP) == MO_LE) {
2580 ret = bswap128(ret);
2581 }
2582 return ret;
2583 }
2584
2585 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2586 uint32_t oi, uintptr_t retaddr)
2587 {
2588 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2589 return do_ld16_mmu(env, addr, oi, retaddr);
2590 }
2591
2592 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2593 {
2594 return helper_ld16_mmu(env, addr, oi, GETPC());
2595 }
2596
2597 /*
2598 * Load helpers for cpu_ldst.h.
2599 */
2600
2601 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2602 {
2603 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2604 }
2605
2606 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2607 {
2608 uint8_t ret;
2609
2610 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2611 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2612 plugin_load_cb(env, addr, oi);
2613 return ret;
2614 }
2615
2616 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2617 MemOpIdx oi, uintptr_t ra)
2618 {
2619 uint16_t ret;
2620
2621 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2622 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2623 plugin_load_cb(env, addr, oi);
2624 return ret;
2625 }
2626
2627 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2628 MemOpIdx oi, uintptr_t ra)
2629 {
2630 uint32_t ret;
2631
2632 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2633 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2634 plugin_load_cb(env, addr, oi);
2635 return ret;
2636 }
2637
2638 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2639 MemOpIdx oi, uintptr_t ra)
2640 {
2641 uint64_t ret;
2642
2643 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2644 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2645 plugin_load_cb(env, addr, oi);
2646 return ret;
2647 }
2648
2649 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2650 MemOpIdx oi, uintptr_t ra)
2651 {
2652 Int128 ret;
2653
2654 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2655 ret = do_ld16_mmu(env, addr, oi, ra);
2656 plugin_load_cb(env, addr, oi);
2657 return ret;
2658 }
2659
2660 /*
2661 * Store Helpers
2662 */
2663
2664 /**
2665 * do_st_mmio_leN:
2666 * @env: cpu context
2667 * @p: translation parameters
2668 * @val_le: data to store
2669 * @mmu_idx: virtual address context
2670 * @ra: return address into tcg generated code, or 0
2671 *
2672 * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2673 * The bytes to store are extracted in little-endian order from @val_le;
2674 * return the bytes of @val_le beyond @p->size that have not been stored.
2675 */
2676 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2677 uint64_t val_le, int mmu_idx, uintptr_t ra)
2678 {
2679 CPUTLBEntryFull *full = p->full;
2680 vaddr addr = p->addr;
2681 int i, size = p->size;
2682
2683 QEMU_IOTHREAD_LOCK_GUARD();
2684 for (i = 0; i < size; i++, val_le >>= 8) {
2685 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2686 }
2687 return val_le;
2688 }
2689
2690 /*
2691 * Wrapper for the above.
2692 */
2693 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2694 uint64_t val_le, int mmu_idx,
2695 MemOp mop, uintptr_t ra)
2696 {
2697 MemOp atom;
2698 unsigned tmp, half_size;
2699
2700 if (unlikely(p->flags & TLB_MMIO)) {
2701 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2702 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2703 return val_le >> (p->size * 8);
2704 }
2705
2706 /*
2707 * It is a given that we cross a page and therefore there is no atomicity
2708 * for the store as a whole, but subobjects may need attention.
2709 */
2710 atom = mop & MO_ATOM_MASK;
2711 switch (atom) {
2712 case MO_ATOM_SUBALIGN:
2713 return store_parts_leN(p->haddr, p->size, val_le);
2714
2715 case MO_ATOM_IFALIGN_PAIR:
2716 case MO_ATOM_WITHIN16_PAIR:
2717 tmp = mop & MO_SIZE;
2718 tmp = tmp ? tmp - 1 : 0;
2719 half_size = 1 << tmp;
2720 if (atom == MO_ATOM_IFALIGN_PAIR
2721 ? p->size == half_size
2722 : p->size >= half_size) {
2723 if (!HAVE_al8_fast && p->size <= 4) {
2724 return store_whole_le4(p->haddr, p->size, val_le);
2725 } else if (HAVE_al8) {
2726 return store_whole_le8(p->haddr, p->size, val_le);
2727 } else {
2728 cpu_loop_exit_atomic(env_cpu(env), ra);
2729 }
2730 }
2731 /* fall through */
2732
2733 case MO_ATOM_IFALIGN:
2734 case MO_ATOM_WITHIN16:
2735 case MO_ATOM_NONE:
2736 return store_bytes_leN(p->haddr, p->size, val_le);
2737
2738 default:
2739 g_assert_not_reached();
2740 }
2741 }
2742
2743 /*
2744 * Wrapper for the above, for 8 < size < 16.
2745 */
2746 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2747 Int128 val_le, int mmu_idx,
2748 MemOp mop, uintptr_t ra)
2749 {
2750 int size = p->size;
2751 MemOp atom;
2752
2753 if (unlikely(p->flags & TLB_MMIO)) {
2754 p->size = 8;
2755 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra);
2756 p->size = size - 8;
2757 p->addr += 8;
2758 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra);
2759 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2760 return int128_gethi(val_le) >> ((size - 8) * 8);
2761 }
2762
2763 /*
2764 * It is a given that we cross a page and therefore there is no atomicity
2765 * for the store as a whole, but subobjects may need attention.
2766 */
2767 atom = mop & MO_ATOM_MASK;
2768 switch (atom) {
2769 case MO_ATOM_SUBALIGN:
2770 store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2771 return store_parts_leN(p->haddr + 8, p->size - 8,
2772 int128_gethi(val_le));
2773
2774 case MO_ATOM_WITHIN16_PAIR:
2775 /* Since size > 8, this is the half that must be atomic. */
2776 if (!HAVE_ATOMIC128_RW) {
2777 cpu_loop_exit_atomic(env_cpu(env), ra);
2778 }
2779 return store_whole_le16(p->haddr, p->size, val_le);
2780
2781 case MO_ATOM_IFALIGN_PAIR:
2782 /*
2783 * Since size > 8, both halves are misaligned,
2784 * and so neither is atomic.
2785 */
2786 case MO_ATOM_IFALIGN:
2787 case MO_ATOM_WITHIN16:
2788 case MO_ATOM_NONE:
2789 stq_le_p(p->haddr, int128_getlo(val_le));
2790 return store_bytes_leN(p->haddr + 8, p->size - 8,
2791 int128_gethi(val_le));
2792
2793 default:
2794 g_assert_not_reached();
2795 }
2796 }
2797
2798 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2799 int mmu_idx, uintptr_t ra)
2800 {
2801 if (unlikely(p->flags & TLB_MMIO)) {
2802 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2803 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2804 /* nothing */
2805 } else {
2806 *(uint8_t *)p->haddr = val;
2807 }
2808 }
2809
2810 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2811 int mmu_idx, MemOp memop, uintptr_t ra)
2812 {
2813 if (unlikely(p->flags & TLB_MMIO)) {
2814 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2815 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2816 /* nothing */
2817 } else {
2818 /* Swap to host endian if necessary, then store. */
2819 if (memop & MO_BSWAP) {
2820 val = bswap16(val);
2821 }
2822 store_atom_2(env, ra, p->haddr, memop, val);
2823 }
2824 }
2825
2826 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2827 int mmu_idx, MemOp memop, uintptr_t ra)
2828 {
2829 if (unlikely(p->flags & TLB_MMIO)) {
2830 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2831 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2832 /* nothing */
2833 } else {
2834 /* Swap to host endian if necessary, then store. */
2835 if (memop & MO_BSWAP) {
2836 val = bswap32(val);
2837 }
2838 store_atom_4(env, ra, p->haddr, memop, val);
2839 }
2840 }
2841
2842 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2843 int mmu_idx, MemOp memop, uintptr_t ra)
2844 {
2845 if (unlikely(p->flags & TLB_MMIO)) {
2846 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2847 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2848 /* nothing */
2849 } else {
2850 /* Swap to host endian if necessary, then store. */
2851 if (memop & MO_BSWAP) {
2852 val = bswap64(val);
2853 }
2854 store_atom_8(env, ra, p->haddr, memop, val);
2855 }
2856 }
2857
2858 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2859 MemOpIdx oi, uintptr_t ra)
2860 {
2861 MMULookupLocals l;
2862 bool crosspage;
2863
2864 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2865 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2866 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2867 tcg_debug_assert(!crosspage);
2868
2869 do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2870 }
2871
2872 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2873 MemOpIdx oi, uintptr_t ra)
2874 {
2875 MMULookupLocals l;
2876 bool crosspage;
2877 uint8_t a, b;
2878
2879 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2880 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2881 if (likely(!crosspage)) {
2882 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2883 return;
2884 }
2885
2886 if ((l.memop & MO_BSWAP) == MO_LE) {
2887 a = val, b = val >> 8;
2888 } else {
2889 b = val, a = val >> 8;
2890 }
2891 do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2892 do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2893 }
2894
2895 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2896 MemOpIdx oi, uintptr_t retaddr)
2897 {
2898 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2899 do_st2_mmu(env, addr, val, oi, retaddr);
2900 }
2901
2902 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2903 MemOpIdx oi, uintptr_t ra)
2904 {
2905 MMULookupLocals l;
2906 bool crosspage;
2907
2908 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2909 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2910 if (likely(!crosspage)) {
2911 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2912 return;
2913 }
2914
2915 /* Swap to little endian for simplicity, then store by bytes. */
2916 if ((l.memop & MO_BSWAP) != MO_LE) {
2917 val = bswap32(val);
2918 }
2919 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2920 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2921 }
2922
2923 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2924 MemOpIdx oi, uintptr_t retaddr)
2925 {
2926 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2927 do_st4_mmu(env, addr, val, oi, retaddr);
2928 }
2929
2930 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
2931 MemOpIdx oi, uintptr_t ra)
2932 {
2933 MMULookupLocals l;
2934 bool crosspage;
2935
2936 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2937 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2938 if (likely(!crosspage)) {
2939 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2940 return;
2941 }
2942
2943 /* Swap to little endian for simplicity, then store by bytes. */
2944 if ((l.memop & MO_BSWAP) != MO_LE) {
2945 val = bswap64(val);
2946 }
2947 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2948 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2949 }
2950
2951 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
2952 MemOpIdx oi, uintptr_t retaddr)
2953 {
2954 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2955 do_st8_mmu(env, addr, val, oi, retaddr);
2956 }
2957
2958 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
2959 MemOpIdx oi, uintptr_t ra)
2960 {
2961 MMULookupLocals l;
2962 bool crosspage;
2963 uint64_t a, b;
2964 int first;
2965
2966 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
2967 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2968 if (likely(!crosspage)) {
2969 /* Swap to host endian if necessary, then store. */
2970 if (l.memop & MO_BSWAP) {
2971 val = bswap128(val);
2972 }
2973 if (unlikely(l.page[0].flags & TLB_MMIO)) {
2974 QEMU_IOTHREAD_LOCK_GUARD();
2975 if (HOST_BIG_ENDIAN) {
2976 b = int128_getlo(val), a = int128_gethi(val);
2977 } else {
2978 a = int128_getlo(val), b = int128_gethi(val);
2979 }
2980 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64);
2981 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64);
2982 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2983 /* nothing */
2984 } else {
2985 store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
2986 }
2987 return;
2988 }
2989
2990 first = l.page[0].size;
2991 if (first == 8) {
2992 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2993
2994 if (l.memop & MO_BSWAP) {
2995 val = bswap128(val);
2996 }
2997 if (HOST_BIG_ENDIAN) {
2998 b = int128_getlo(val), a = int128_gethi(val);
2999 } else {
3000 a = int128_getlo(val), b = int128_gethi(val);
3001 }
3002 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
3003 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
3004 return;
3005 }
3006
3007 if ((l.memop & MO_BSWAP) != MO_LE) {
3008 val = bswap128(val);
3009 }
3010 if (first < 8) {
3011 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
3012 val = int128_urshift(val, first * 8);
3013 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
3014 } else {
3015 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
3016 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
3017 }
3018 }
3019
3020 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
3021 MemOpIdx oi, uintptr_t retaddr)
3022 {
3023 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3024 do_st16_mmu(env, addr, val, oi, retaddr);
3025 }
3026
3027 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
3028 {
3029 helper_st16_mmu(env, addr, val, oi, GETPC());
3030 }
3031
3032 /*
3033 * Store Helpers for cpu_ldst.h
3034 */
3035
3036 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
3037 {
3038 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
3039 }
3040
3041 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
3042 MemOpIdx oi, uintptr_t retaddr)
3043 {
3044 helper_stb_mmu(env, addr, val, oi, retaddr);
3045 plugin_store_cb(env, addr, oi);
3046 }
3047
3048 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
3049 MemOpIdx oi, uintptr_t retaddr)
3050 {
3051 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
3052 do_st2_mmu(env, addr, val, oi, retaddr);
3053 plugin_store_cb(env, addr, oi);
3054 }
3055
3056 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
3057 MemOpIdx oi, uintptr_t retaddr)
3058 {
3059 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
3060 do_st4_mmu(env, addr, val, oi, retaddr);
3061 plugin_store_cb(env, addr, oi);
3062 }
3063
3064 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
3065 MemOpIdx oi, uintptr_t retaddr)
3066 {
3067 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3068 do_st8_mmu(env, addr, val, oi, retaddr);
3069 plugin_store_cb(env, addr, oi);
3070 }
3071
3072 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3073 MemOpIdx oi, uintptr_t retaddr)
3074 {
3075 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3076 do_st16_mmu(env, addr, val, oi, retaddr);
3077 plugin_store_cb(env, addr, oi);
3078 }
3079
3080 #include "ldst_common.c.inc"
3081
3082 /*
3083 * First set of functions passes in OI and RETADDR.
3084 * This makes them callable from other helpers.
3085 */
3086
3087 #define ATOMIC_NAME(X) \
3088 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3089
3090 #define ATOMIC_MMU_CLEANUP
3091
3092 #include "atomic_common.c.inc"
3093
3094 #define DATA_SIZE 1
3095 #include "atomic_template.h"
3096
3097 #define DATA_SIZE 2
3098 #include "atomic_template.h"
3099
3100 #define DATA_SIZE 4
3101 #include "atomic_template.h"
3102
3103 #ifdef CONFIG_ATOMIC64
3104 #define DATA_SIZE 8
3105 #include "atomic_template.h"
3106 #endif
3107
3108 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
3109 #define DATA_SIZE 16
3110 #include "atomic_template.h"
3111 #endif
3112
3113 /* Code access functions. */
3114
3115 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3116 {
3117 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3118 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3119 }
3120
3121 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3122 {
3123 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3124 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3125 }
3126
3127 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3128 {
3129 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3130 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3131 }
3132
3133 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3134 {
3135 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3136 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3137 }
3138
3139 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3140 MemOpIdx oi, uintptr_t retaddr)
3141 {
3142 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3143 }
3144
3145 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3146 MemOpIdx oi, uintptr_t retaddr)
3147 {
3148 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3149 }
3150
3151 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3152 MemOpIdx oi, uintptr_t retaddr)
3153 {
3154 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3155 }
3156
3157 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3158 MemOpIdx oi, uintptr_t retaddr)
3159 {
3160 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3161 }