]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/plugin-gen.c
plugins: implement inline operation relative to cpu_index
[mirror_qemu.git] / accel / tcg / plugin-gen.c
1 /*
2 * plugin-gen.c - TCG-related bits of plugin infrastructure
3 *
4 * Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
5 * License: GNU GPL, version 2 or later.
6 * See the COPYING file in the top-level directory.
7 *
8 * We support instrumentation at an instruction granularity. That is,
9 * if a plugin wants to instrument the memory accesses performed by a
10 * particular instruction, it can just do that instead of instrumenting
11 * all memory accesses. Thus, in order to do this we first have to
12 * translate a TB, so that plugins can decide what/where to instrument.
13 *
14 * Injecting the desired instrumentation could be done with a second
15 * translation pass that combined the instrumentation requests, but that
16 * would be ugly and inefficient since we would decode the guest code twice.
17 * Instead, during TB translation we add "empty" instrumentation calls for all
18 * possible instrumentation events, and then once we collect the instrumentation
19 * requests from plugins, we either "fill in" those empty events or remove them
20 * if they have no requests.
21 *
22 * When "filling in" an event we first copy the empty callback's TCG ops. This
23 * might seem unnecessary, but it is done to support an arbitrary number
24 * of callbacks per event. Take for example a regular instruction callback.
25 * We first generate a callback to an empty helper function. Then, if two
26 * plugins register one callback each for this instruction, we make two copies
27 * of the TCG ops generated for the empty callback, substituting the function
28 * pointer that points to the empty helper function with the plugins' desired
29 * callback functions. After that we remove the empty callback's ops.
30 *
31 * Note that the location in TCGOp.args[] of the pointer to a helper function
32 * varies across different guest and host architectures. Instead of duplicating
33 * the logic that figures this out, we rely on the fact that the empty
34 * callbacks point to empty functions that are unique pointers in the program.
35 * Thus, to find the right location we just have to look for a match in
36 * TCGOp.args[]. This is the main reason why we first copy an empty callback's
37 * TCG ops and then fill them in; regardless of whether we have one or many
38 * callbacks for that event, the logic to add all of them is the same.
39 *
40 * When generating more than one callback per event, we make a small
41 * optimization to avoid generating redundant operations. For instance, for the
42 * second and all subsequent callbacks of an event, we do not need to reload the
43 * CPU's index into a TCG temp, since the first callback did it already.
44 */
45 #include "qemu/osdep.h"
46 #include "qemu/plugin.h"
47 #include "cpu.h"
48 #include "tcg/tcg.h"
49 #include "tcg/tcg-temp-internal.h"
50 #include "tcg/tcg-op.h"
51 #include "exec/exec-all.h"
52 #include "exec/plugin-gen.h"
53 #include "exec/translator.h"
54 #include "exec/helper-proto-common.h"
55
56 #define HELPER_H "accel/tcg/plugin-helpers.h"
57 #include "exec/helper-info.c.inc"
58 #undef HELPER_H
59
60 #ifdef CONFIG_SOFTMMU
61 # define CONFIG_SOFTMMU_GATE 1
62 #else
63 # define CONFIG_SOFTMMU_GATE 0
64 #endif
65
66 /*
67 * plugin_cb_start TCG op args[]:
68 * 0: enum plugin_gen_from
69 * 1: enum plugin_gen_cb
70 * 2: set to 1 for mem callback that is a write, 0 otherwise.
71 */
72
73 enum plugin_gen_from {
74 PLUGIN_GEN_FROM_TB,
75 PLUGIN_GEN_FROM_INSN,
76 PLUGIN_GEN_FROM_MEM,
77 PLUGIN_GEN_AFTER_INSN,
78 PLUGIN_GEN_N_FROMS,
79 };
80
81 enum plugin_gen_cb {
82 PLUGIN_GEN_CB_UDATA,
83 PLUGIN_GEN_CB_UDATA_R,
84 PLUGIN_GEN_CB_INLINE,
85 PLUGIN_GEN_CB_MEM,
86 PLUGIN_GEN_ENABLE_MEM_HELPER,
87 PLUGIN_GEN_DISABLE_MEM_HELPER,
88 PLUGIN_GEN_N_CBS,
89 };
90
91 /*
92 * These helpers are stubs that get dynamically switched out for calls
93 * direct to the plugin if they are subscribed to.
94 */
95 void HELPER(plugin_vcpu_udata_cb_no_wg)(uint32_t cpu_index, void *udata)
96 { }
97
98 void HELPER(plugin_vcpu_udata_cb_no_rwg)(uint32_t cpu_index, void *udata)
99 { }
100
101 void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index,
102 qemu_plugin_meminfo_t info, uint64_t vaddr,
103 void *userdata)
104 { }
105
106 static void gen_empty_udata_cb(void (*gen_helper)(TCGv_i32, TCGv_ptr))
107 {
108 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
109 TCGv_ptr udata = tcg_temp_ebb_new_ptr();
110
111 tcg_gen_movi_ptr(udata, 0);
112 tcg_gen_ld_i32(cpu_index, tcg_env,
113 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
114 gen_helper(cpu_index, udata);
115
116 tcg_temp_free_ptr(udata);
117 tcg_temp_free_i32(cpu_index);
118 }
119
120 static void gen_empty_udata_cb_no_wg(void)
121 {
122 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_wg);
123 }
124
125 static void gen_empty_udata_cb_no_rwg(void)
126 {
127 gen_empty_udata_cb(gen_helper_plugin_vcpu_udata_cb_no_rwg);
128 }
129
130 /*
131 * For now we only support addi_i64.
132 * When we support more ops, we can generate one empty inline cb for each.
133 */
134 static void gen_empty_inline_cb(void)
135 {
136 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
137 TCGv_ptr cpu_index_as_ptr = tcg_temp_ebb_new_ptr();
138 TCGv_i64 val = tcg_temp_ebb_new_i64();
139 TCGv_ptr ptr = tcg_temp_ebb_new_ptr();
140
141 tcg_gen_ld_i32(cpu_index, tcg_env,
142 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
143 /* second operand will be replaced by immediate value */
144 tcg_gen_mul_i32(cpu_index, cpu_index, cpu_index);
145 tcg_gen_ext_i32_ptr(cpu_index_as_ptr, cpu_index);
146
147 tcg_gen_movi_ptr(ptr, 0);
148 tcg_gen_add_ptr(ptr, ptr, cpu_index_as_ptr);
149 tcg_gen_ld_i64(val, ptr, 0);
150 /* second operand will be replaced by immediate value */
151 tcg_gen_add_i64(val, val, val);
152
153 tcg_gen_st_i64(val, ptr, 0);
154 tcg_temp_free_ptr(ptr);
155 tcg_temp_free_i64(val);
156 tcg_temp_free_ptr(cpu_index_as_ptr);
157 tcg_temp_free_i32(cpu_index);
158 }
159
160 static void gen_empty_mem_cb(TCGv_i64 addr, uint32_t info)
161 {
162 TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
163 TCGv_i32 meminfo = tcg_temp_ebb_new_i32();
164 TCGv_ptr udata = tcg_temp_ebb_new_ptr();
165
166 tcg_gen_movi_i32(meminfo, info);
167 tcg_gen_movi_ptr(udata, 0);
168 tcg_gen_ld_i32(cpu_index, tcg_env,
169 -offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
170
171 gen_helper_plugin_vcpu_mem_cb(cpu_index, meminfo, addr, udata);
172
173 tcg_temp_free_ptr(udata);
174 tcg_temp_free_i32(meminfo);
175 tcg_temp_free_i32(cpu_index);
176 }
177
178 /*
179 * Share the same function for enable/disable. When enabling, the NULL
180 * pointer will be overwritten later.
181 */
182 static void gen_empty_mem_helper(void)
183 {
184 TCGv_ptr ptr = tcg_temp_ebb_new_ptr();
185
186 tcg_gen_movi_ptr(ptr, 0);
187 tcg_gen_st_ptr(ptr, tcg_env, offsetof(CPUState, plugin_mem_cbs) -
188 offsetof(ArchCPU, env));
189 tcg_temp_free_ptr(ptr);
190 }
191
192 static void gen_plugin_cb_start(enum plugin_gen_from from,
193 enum plugin_gen_cb type, unsigned wr)
194 {
195 tcg_gen_plugin_cb_start(from, type, wr);
196 }
197
198 static void gen_wrapped(enum plugin_gen_from from,
199 enum plugin_gen_cb type, void (*func)(void))
200 {
201 gen_plugin_cb_start(from, type, 0);
202 func();
203 tcg_gen_plugin_cb_end();
204 }
205
206 static void plugin_gen_empty_callback(enum plugin_gen_from from)
207 {
208 switch (from) {
209 case PLUGIN_GEN_AFTER_INSN:
210 gen_wrapped(from, PLUGIN_GEN_DISABLE_MEM_HELPER,
211 gen_empty_mem_helper);
212 break;
213 case PLUGIN_GEN_FROM_INSN:
214 /*
215 * Note: plugin_gen_inject() relies on ENABLE_MEM_HELPER being
216 * the first callback of an instruction
217 */
218 gen_wrapped(from, PLUGIN_GEN_ENABLE_MEM_HELPER,
219 gen_empty_mem_helper);
220 /* fall through */
221 case PLUGIN_GEN_FROM_TB:
222 gen_wrapped(from, PLUGIN_GEN_CB_UDATA, gen_empty_udata_cb_no_rwg);
223 gen_wrapped(from, PLUGIN_GEN_CB_UDATA_R, gen_empty_udata_cb_no_wg);
224 gen_wrapped(from, PLUGIN_GEN_CB_INLINE, gen_empty_inline_cb);
225 break;
226 default:
227 g_assert_not_reached();
228 }
229 }
230
231 void plugin_gen_empty_mem_callback(TCGv_i64 addr, uint32_t info)
232 {
233 enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info);
234
235 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_MEM, rw);
236 gen_empty_mem_cb(addr, info);
237 tcg_gen_plugin_cb_end();
238
239 gen_plugin_cb_start(PLUGIN_GEN_FROM_MEM, PLUGIN_GEN_CB_INLINE, rw);
240 gen_empty_inline_cb();
241 tcg_gen_plugin_cb_end();
242 }
243
244 static TCGOp *find_op(TCGOp *op, TCGOpcode opc)
245 {
246 while (op) {
247 if (op->opc == opc) {
248 return op;
249 }
250 op = QTAILQ_NEXT(op, link);
251 }
252 return NULL;
253 }
254
255 static TCGOp *rm_ops_range(TCGOp *begin, TCGOp *end)
256 {
257 TCGOp *ret = QTAILQ_NEXT(end, link);
258
259 QTAILQ_REMOVE_SEVERAL(&tcg_ctx->ops, begin, end, link);
260 return ret;
261 }
262
263 /* remove all ops until (and including) plugin_cb_end */
264 static TCGOp *rm_ops(TCGOp *op)
265 {
266 TCGOp *end_op = find_op(op, INDEX_op_plugin_cb_end);
267
268 tcg_debug_assert(end_op);
269 return rm_ops_range(op, end_op);
270 }
271
272 static TCGOp *copy_op_nocheck(TCGOp **begin_op, TCGOp *op)
273 {
274 TCGOp *old_op = QTAILQ_NEXT(*begin_op, link);
275 unsigned nargs = old_op->nargs;
276
277 *begin_op = old_op;
278 op = tcg_op_insert_after(tcg_ctx, op, old_op->opc, nargs);
279 memcpy(op->args, old_op->args, sizeof(op->args[0]) * nargs);
280
281 return op;
282 }
283
284 static TCGOp *copy_op(TCGOp **begin_op, TCGOp *op, TCGOpcode opc)
285 {
286 op = copy_op_nocheck(begin_op, op);
287 tcg_debug_assert((*begin_op)->opc == opc);
288 return op;
289 }
290
291 static TCGOp *copy_const_ptr(TCGOp **begin_op, TCGOp *op, void *ptr)
292 {
293 if (UINTPTR_MAX == UINT32_MAX) {
294 /* mov_i32 */
295 op = copy_op(begin_op, op, INDEX_op_mov_i32);
296 op->args[1] = tcgv_i32_arg(tcg_constant_i32((uintptr_t)ptr));
297 } else {
298 /* mov_i64 */
299 op = copy_op(begin_op, op, INDEX_op_mov_i64);
300 op->args[1] = tcgv_i64_arg(tcg_constant_i64((uintptr_t)ptr));
301 }
302 return op;
303 }
304
305 static TCGOp *copy_ld_i32(TCGOp **begin_op, TCGOp *op)
306 {
307 return copy_op(begin_op, op, INDEX_op_ld_i32);
308 }
309
310 static TCGOp *copy_ext_i32_ptr(TCGOp **begin_op, TCGOp *op)
311 {
312 if (UINTPTR_MAX == UINT32_MAX) {
313 op = copy_op(begin_op, op, INDEX_op_mov_i32);
314 } else {
315 op = copy_op(begin_op, op, INDEX_op_ext_i32_i64);
316 }
317 return op;
318 }
319
320 static TCGOp *copy_add_ptr(TCGOp **begin_op, TCGOp *op)
321 {
322 if (UINTPTR_MAX == UINT32_MAX) {
323 op = copy_op(begin_op, op, INDEX_op_add_i32);
324 } else {
325 op = copy_op(begin_op, op, INDEX_op_add_i64);
326 }
327 return op;
328 }
329
330 static TCGOp *copy_ld_i64(TCGOp **begin_op, TCGOp *op)
331 {
332 if (TCG_TARGET_REG_BITS == 32) {
333 /* 2x ld_i32 */
334 op = copy_ld_i32(begin_op, op);
335 op = copy_ld_i32(begin_op, op);
336 } else {
337 /* ld_i64 */
338 op = copy_op(begin_op, op, INDEX_op_ld_i64);
339 }
340 return op;
341 }
342
343 static TCGOp *copy_st_i64(TCGOp **begin_op, TCGOp *op)
344 {
345 if (TCG_TARGET_REG_BITS == 32) {
346 /* 2x st_i32 */
347 op = copy_op(begin_op, op, INDEX_op_st_i32);
348 op = copy_op(begin_op, op, INDEX_op_st_i32);
349 } else {
350 /* st_i64 */
351 op = copy_op(begin_op, op, INDEX_op_st_i64);
352 }
353 return op;
354 }
355
356 static TCGOp *copy_add_i64(TCGOp **begin_op, TCGOp *op, uint64_t v)
357 {
358 if (TCG_TARGET_REG_BITS == 32) {
359 /* all 32-bit backends must implement add2_i32 */
360 g_assert(TCG_TARGET_HAS_add2_i32);
361 op = copy_op(begin_op, op, INDEX_op_add2_i32);
362 op->args[4] = tcgv_i32_arg(tcg_constant_i32(v));
363 op->args[5] = tcgv_i32_arg(tcg_constant_i32(v >> 32));
364 } else {
365 op = copy_op(begin_op, op, INDEX_op_add_i64);
366 op->args[2] = tcgv_i64_arg(tcg_constant_i64(v));
367 }
368 return op;
369 }
370
371 static TCGOp *copy_mul_i32(TCGOp **begin_op, TCGOp *op, uint32_t v)
372 {
373 op = copy_op(begin_op, op, INDEX_op_mul_i32);
374 op->args[2] = tcgv_i32_arg(tcg_constant_i32(v));
375 return op;
376 }
377
378 static TCGOp *copy_st_ptr(TCGOp **begin_op, TCGOp *op)
379 {
380 if (UINTPTR_MAX == UINT32_MAX) {
381 /* st_i32 */
382 op = copy_op(begin_op, op, INDEX_op_st_i32);
383 } else {
384 /* st_i64 */
385 op = copy_st_i64(begin_op, op);
386 }
387 return op;
388 }
389
390 static TCGOp *copy_call(TCGOp **begin_op, TCGOp *op, void *func, int *cb_idx)
391 {
392 TCGOp *old_op;
393 int func_idx;
394
395 /* copy all ops until the call */
396 do {
397 op = copy_op_nocheck(begin_op, op);
398 } while (op->opc != INDEX_op_call);
399
400 /* fill in the op call */
401 old_op = *begin_op;
402 TCGOP_CALLI(op) = TCGOP_CALLI(old_op);
403 TCGOP_CALLO(op) = TCGOP_CALLO(old_op);
404 tcg_debug_assert(op->life == 0);
405
406 func_idx = TCGOP_CALLO(op) + TCGOP_CALLI(op);
407 *cb_idx = func_idx;
408 op->args[func_idx] = (uintptr_t)func;
409
410 return op;
411 }
412
413 /*
414 * When we append/replace ops here we are sensitive to changing patterns of
415 * TCGOps generated by the tcg_gen_FOO calls when we generated the
416 * empty callbacks. This will assert very quickly in a debug build as
417 * we assert the ops we are replacing are the correct ones.
418 */
419 static TCGOp *append_udata_cb(const struct qemu_plugin_dyn_cb *cb,
420 TCGOp *begin_op, TCGOp *op, int *cb_idx)
421 {
422 /* const_ptr */
423 op = copy_const_ptr(&begin_op, op, cb->userp);
424
425 /* copy the ld_i32, but note that we only have to copy it once */
426 if (*cb_idx == -1) {
427 op = copy_op(&begin_op, op, INDEX_op_ld_i32);
428 } else {
429 begin_op = QTAILQ_NEXT(begin_op, link);
430 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32);
431 }
432
433 /* call */
434 op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx);
435
436 return op;
437 }
438
439 static TCGOp *append_inline_cb(const struct qemu_plugin_dyn_cb *cb,
440 TCGOp *begin_op, TCGOp *op,
441 int *unused)
442 {
443 char *ptr = cb->userp;
444 size_t elem_size = 0;
445 size_t offset = 0;
446 op = copy_ld_i32(&begin_op, op);
447 op = copy_mul_i32(&begin_op, op, elem_size);
448 op = copy_ext_i32_ptr(&begin_op, op);
449 op = copy_const_ptr(&begin_op, op, ptr + offset);
450 op = copy_add_ptr(&begin_op, op);
451 op = copy_ld_i64(&begin_op, op);
452 op = copy_add_i64(&begin_op, op, cb->inline_insn.imm);
453 op = copy_st_i64(&begin_op, op);
454 return op;
455 }
456
457 static TCGOp *append_mem_cb(const struct qemu_plugin_dyn_cb *cb,
458 TCGOp *begin_op, TCGOp *op, int *cb_idx)
459 {
460 enum plugin_gen_cb type = begin_op->args[1];
461
462 tcg_debug_assert(type == PLUGIN_GEN_CB_MEM);
463
464 /* const_i32 == mov_i32 ("info", so it remains as is) */
465 op = copy_op(&begin_op, op, INDEX_op_mov_i32);
466
467 /* const_ptr */
468 op = copy_const_ptr(&begin_op, op, cb->userp);
469
470 /* copy the ld_i32, but note that we only have to copy it once */
471 if (*cb_idx == -1) {
472 op = copy_op(&begin_op, op, INDEX_op_ld_i32);
473 } else {
474 begin_op = QTAILQ_NEXT(begin_op, link);
475 tcg_debug_assert(begin_op && begin_op->opc == INDEX_op_ld_i32);
476 }
477
478 if (type == PLUGIN_GEN_CB_MEM) {
479 /* call */
480 op = copy_call(&begin_op, op, cb->f.vcpu_udata, cb_idx);
481 }
482
483 return op;
484 }
485
486 typedef TCGOp *(*inject_fn)(const struct qemu_plugin_dyn_cb *cb,
487 TCGOp *begin_op, TCGOp *op, int *intp);
488 typedef bool (*op_ok_fn)(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb);
489
490 static bool op_ok(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb)
491 {
492 return true;
493 }
494
495 static bool op_rw(const TCGOp *op, const struct qemu_plugin_dyn_cb *cb)
496 {
497 int w;
498
499 w = op->args[2];
500 return !!(cb->rw & (w + 1));
501 }
502
503 static void inject_cb_type(const GArray *cbs, TCGOp *begin_op,
504 inject_fn inject, op_ok_fn ok)
505 {
506 TCGOp *end_op;
507 TCGOp *op;
508 int cb_idx = -1;
509 int i;
510
511 if (!cbs || cbs->len == 0) {
512 rm_ops(begin_op);
513 return;
514 }
515
516 end_op = find_op(begin_op, INDEX_op_plugin_cb_end);
517 tcg_debug_assert(end_op);
518
519 op = end_op;
520 for (i = 0; i < cbs->len; i++) {
521 struct qemu_plugin_dyn_cb *cb =
522 &g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
523
524 if (!ok(begin_op, cb)) {
525 continue;
526 }
527 op = inject(cb, begin_op, op, &cb_idx);
528 }
529 rm_ops_range(begin_op, end_op);
530 }
531
532 static void
533 inject_udata_cb(const GArray *cbs, TCGOp *begin_op)
534 {
535 inject_cb_type(cbs, begin_op, append_udata_cb, op_ok);
536 }
537
538 static void
539 inject_inline_cb(const GArray *cbs, TCGOp *begin_op, op_ok_fn ok)
540 {
541 inject_cb_type(cbs, begin_op, append_inline_cb, ok);
542 }
543
544 static void
545 inject_mem_cb(const GArray *cbs, TCGOp *begin_op)
546 {
547 inject_cb_type(cbs, begin_op, append_mem_cb, op_rw);
548 }
549
550 /* we could change the ops in place, but we can reuse more code by copying */
551 static void inject_mem_helper(TCGOp *begin_op, GArray *arr)
552 {
553 TCGOp *orig_op = begin_op;
554 TCGOp *end_op;
555 TCGOp *op;
556
557 end_op = find_op(begin_op, INDEX_op_plugin_cb_end);
558 tcg_debug_assert(end_op);
559
560 /* const ptr */
561 op = copy_const_ptr(&begin_op, end_op, arr);
562
563 /* st_ptr */
564 op = copy_st_ptr(&begin_op, op);
565
566 rm_ops_range(orig_op, end_op);
567 }
568
569 /*
570 * Tracking memory accesses performed from helpers requires extra work.
571 * If an instruction is emulated with helpers, we do two things:
572 * (1) copy the CB descriptors, and keep track of it so that they can be
573 * freed later on, and (2) point CPUState.plugin_mem_cbs to the descriptors, so
574 * that we can read them at run-time (i.e. when the helper executes).
575 * This run-time access is performed from qemu_plugin_vcpu_mem_cb.
576 *
577 * Note that plugin_gen_disable_mem_helpers undoes (2). Since it
578 * is possible that the code we generate after the instruction is
579 * dead, we also add checks before generating tb_exit etc.
580 */
581 static void inject_mem_enable_helper(struct qemu_plugin_tb *ptb,
582 struct qemu_plugin_insn *plugin_insn,
583 TCGOp *begin_op)
584 {
585 GArray *cbs[2];
586 GArray *arr;
587 size_t n_cbs, i;
588
589 cbs[0] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR];
590 cbs[1] = plugin_insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE];
591
592 n_cbs = 0;
593 for (i = 0; i < ARRAY_SIZE(cbs); i++) {
594 n_cbs += cbs[i]->len;
595 }
596
597 plugin_insn->mem_helper = plugin_insn->calls_helpers && n_cbs;
598 if (likely(!plugin_insn->mem_helper)) {
599 rm_ops(begin_op);
600 return;
601 }
602 ptb->mem_helper = true;
603
604 arr = g_array_sized_new(false, false,
605 sizeof(struct qemu_plugin_dyn_cb), n_cbs);
606
607 for (i = 0; i < ARRAY_SIZE(cbs); i++) {
608 g_array_append_vals(arr, cbs[i]->data, cbs[i]->len);
609 }
610
611 qemu_plugin_add_dyn_cb_arr(arr);
612 inject_mem_helper(begin_op, arr);
613 }
614
615 static void inject_mem_disable_helper(struct qemu_plugin_insn *plugin_insn,
616 TCGOp *begin_op)
617 {
618 if (likely(!plugin_insn->mem_helper)) {
619 rm_ops(begin_op);
620 return;
621 }
622 inject_mem_helper(begin_op, NULL);
623 }
624
625 /* called before finishing a TB with exit_tb, goto_tb or goto_ptr */
626 void plugin_gen_disable_mem_helpers(void)
627 {
628 /*
629 * We could emit the clearing unconditionally and be done. However, this can
630 * be wasteful if for instance plugins don't track memory accesses, or if
631 * most TBs don't use helpers. Instead, emit the clearing iff the TB calls
632 * helpers that might access guest memory.
633 *
634 * Note: we do not reset plugin_tb->mem_helper here; a TB might have several
635 * exit points, and we want to emit the clearing from all of them.
636 */
637 if (!tcg_ctx->plugin_tb->mem_helper) {
638 return;
639 }
640 tcg_gen_st_ptr(tcg_constant_ptr(NULL), tcg_env,
641 offsetof(CPUState, plugin_mem_cbs) - offsetof(ArchCPU, env));
642 }
643
644 static void plugin_gen_tb_udata(const struct qemu_plugin_tb *ptb,
645 TCGOp *begin_op)
646 {
647 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR], begin_op);
648 }
649
650 static void plugin_gen_tb_udata_r(const struct qemu_plugin_tb *ptb,
651 TCGOp *begin_op)
652 {
653 inject_udata_cb(ptb->cbs[PLUGIN_CB_REGULAR_R], begin_op);
654 }
655
656 static void plugin_gen_tb_inline(const struct qemu_plugin_tb *ptb,
657 TCGOp *begin_op)
658 {
659 inject_inline_cb(ptb->cbs[PLUGIN_CB_INLINE], begin_op, op_ok);
660 }
661
662 static void plugin_gen_insn_udata(const struct qemu_plugin_tb *ptb,
663 TCGOp *begin_op, int insn_idx)
664 {
665 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
666
667 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], begin_op);
668 }
669
670 static void plugin_gen_insn_udata_r(const struct qemu_plugin_tb *ptb,
671 TCGOp *begin_op, int insn_idx)
672 {
673 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
674
675 inject_udata_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR_R], begin_op);
676 }
677
678 static void plugin_gen_insn_inline(const struct qemu_plugin_tb *ptb,
679 TCGOp *begin_op, int insn_idx)
680 {
681 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
682 inject_inline_cb(insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE],
683 begin_op, op_ok);
684 }
685
686 static void plugin_gen_mem_regular(const struct qemu_plugin_tb *ptb,
687 TCGOp *begin_op, int insn_idx)
688 {
689 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
690 inject_mem_cb(insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], begin_op);
691 }
692
693 static void plugin_gen_mem_inline(const struct qemu_plugin_tb *ptb,
694 TCGOp *begin_op, int insn_idx)
695 {
696 const GArray *cbs;
697 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
698
699 cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE];
700 inject_inline_cb(cbs, begin_op, op_rw);
701 }
702
703 static void plugin_gen_enable_mem_helper(struct qemu_plugin_tb *ptb,
704 TCGOp *begin_op, int insn_idx)
705 {
706 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
707 inject_mem_enable_helper(ptb, insn, begin_op);
708 }
709
710 static void plugin_gen_disable_mem_helper(struct qemu_plugin_tb *ptb,
711 TCGOp *begin_op, int insn_idx)
712 {
713 struct qemu_plugin_insn *insn = g_ptr_array_index(ptb->insns, insn_idx);
714 inject_mem_disable_helper(insn, begin_op);
715 }
716
717 /* #define DEBUG_PLUGIN_GEN_OPS */
718 static void pr_ops(void)
719 {
720 #ifdef DEBUG_PLUGIN_GEN_OPS
721 TCGOp *op;
722 int i = 0;
723
724 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) {
725 const char *name = "";
726 const char *type = "";
727
728 if (op->opc == INDEX_op_plugin_cb_start) {
729 switch (op->args[0]) {
730 case PLUGIN_GEN_FROM_TB:
731 name = "tb";
732 break;
733 case PLUGIN_GEN_FROM_INSN:
734 name = "insn";
735 break;
736 case PLUGIN_GEN_FROM_MEM:
737 name = "mem";
738 break;
739 case PLUGIN_GEN_AFTER_INSN:
740 name = "after insn";
741 break;
742 default:
743 break;
744 }
745 switch (op->args[1]) {
746 case PLUGIN_GEN_CB_UDATA:
747 type = "udata";
748 break;
749 case PLUGIN_GEN_CB_INLINE:
750 type = "inline";
751 break;
752 case PLUGIN_GEN_CB_MEM:
753 type = "mem";
754 break;
755 case PLUGIN_GEN_ENABLE_MEM_HELPER:
756 type = "enable mem helper";
757 break;
758 case PLUGIN_GEN_DISABLE_MEM_HELPER:
759 type = "disable mem helper";
760 break;
761 default:
762 break;
763 }
764 }
765 printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type);
766 i++;
767 }
768 #endif
769 }
770
771 static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb)
772 {
773 TCGOp *op;
774 int insn_idx = -1;
775
776 pr_ops();
777
778 QTAILQ_FOREACH(op, &tcg_ctx->ops, link) {
779 switch (op->opc) {
780 case INDEX_op_insn_start:
781 insn_idx++;
782 break;
783 case INDEX_op_plugin_cb_start:
784 {
785 enum plugin_gen_from from = op->args[0];
786 enum plugin_gen_cb type = op->args[1];
787
788 switch (from) {
789 case PLUGIN_GEN_FROM_TB:
790 {
791 g_assert(insn_idx == -1);
792
793 switch (type) {
794 case PLUGIN_GEN_CB_UDATA:
795 plugin_gen_tb_udata(plugin_tb, op);
796 break;
797 case PLUGIN_GEN_CB_UDATA_R:
798 plugin_gen_tb_udata_r(plugin_tb, op);
799 break;
800 case PLUGIN_GEN_CB_INLINE:
801 plugin_gen_tb_inline(plugin_tb, op);
802 break;
803 default:
804 g_assert_not_reached();
805 }
806 break;
807 }
808 case PLUGIN_GEN_FROM_INSN:
809 {
810 g_assert(insn_idx >= 0);
811
812 switch (type) {
813 case PLUGIN_GEN_CB_UDATA:
814 plugin_gen_insn_udata(plugin_tb, op, insn_idx);
815 break;
816 case PLUGIN_GEN_CB_UDATA_R:
817 plugin_gen_insn_udata_r(plugin_tb, op, insn_idx);
818 break;
819 case PLUGIN_GEN_CB_INLINE:
820 plugin_gen_insn_inline(plugin_tb, op, insn_idx);
821 break;
822 case PLUGIN_GEN_ENABLE_MEM_HELPER:
823 plugin_gen_enable_mem_helper(plugin_tb, op, insn_idx);
824 break;
825 default:
826 g_assert_not_reached();
827 }
828 break;
829 }
830 case PLUGIN_GEN_FROM_MEM:
831 {
832 g_assert(insn_idx >= 0);
833
834 switch (type) {
835 case PLUGIN_GEN_CB_MEM:
836 plugin_gen_mem_regular(plugin_tb, op, insn_idx);
837 break;
838 case PLUGIN_GEN_CB_INLINE:
839 plugin_gen_mem_inline(plugin_tb, op, insn_idx);
840 break;
841 default:
842 g_assert_not_reached();
843 }
844
845 break;
846 }
847 case PLUGIN_GEN_AFTER_INSN:
848 {
849 g_assert(insn_idx >= 0);
850
851 switch (type) {
852 case PLUGIN_GEN_DISABLE_MEM_HELPER:
853 plugin_gen_disable_mem_helper(plugin_tb, op, insn_idx);
854 break;
855 default:
856 g_assert_not_reached();
857 }
858 break;
859 }
860 default:
861 g_assert_not_reached();
862 }
863 break;
864 }
865 default:
866 /* plugins don't care about any other ops */
867 break;
868 }
869 }
870 pr_ops();
871 }
872
873 bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db,
874 bool mem_only)
875 {
876 bool ret = false;
877
878 if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) {
879 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
880 int i;
881
882 /* reset callbacks */
883 for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) {
884 if (ptb->cbs[i]) {
885 g_array_set_size(ptb->cbs[i], 0);
886 }
887 }
888 ptb->n = 0;
889
890 ret = true;
891
892 ptb->vaddr = db->pc_first;
893 ptb->vaddr2 = -1;
894 ptb->haddr1 = db->host_addr[0];
895 ptb->haddr2 = NULL;
896 ptb->mem_only = mem_only;
897 ptb->mem_helper = false;
898
899 plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB);
900 }
901
902 tcg_ctx->plugin_insn = NULL;
903
904 return ret;
905 }
906
907 void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db)
908 {
909 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
910 struct qemu_plugin_insn *pinsn;
911
912 pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next);
913 tcg_ctx->plugin_insn = pinsn;
914 plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN);
915
916 /*
917 * Detect page crossing to get the new host address.
918 * Note that we skip this when haddr1 == NULL, e.g. when we're
919 * fetching instructions from a region not backed by RAM.
920 */
921 if (ptb->haddr1 == NULL) {
922 pinsn->haddr = NULL;
923 } else if (is_same_page(db, db->pc_next)) {
924 pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr;
925 } else {
926 if (ptb->vaddr2 == -1) {
927 ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first);
928 get_page_addr_code_hostp(cpu_env(cpu), ptb->vaddr2, &ptb->haddr2);
929 }
930 pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2;
931 }
932 }
933
934 void plugin_gen_insn_end(void)
935 {
936 plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN);
937 }
938
939 /*
940 * There are cases where we never get to finalise a translation - for
941 * example a page fault during translation. As a result we shouldn't
942 * do any clean-up here and make sure things are reset in
943 * plugin_gen_tb_start.
944 */
945 void plugin_gen_tb_end(CPUState *cpu, size_t num_insns)
946 {
947 struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
948
949 /* translator may have removed instructions, update final count */
950 g_assert(num_insns <= ptb->n);
951 ptb->n = num_insns;
952
953 /* collect instrumentation requests */
954 qemu_plugin_tb_trans_cb(cpu, ptb);
955
956 /* inject the instrumentation at the appropriate places */
957 plugin_gen_inject(ptb);
958 }