]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/tb-maint.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / accel / tcg / tb-maint.c
1 /*
2 * Translation Block Maintaince
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/interval-tree.h"
22 #include "exec/cputlb.h"
23 #include "exec/log.h"
24 #include "exec/exec-all.h"
25 #include "exec/tb-flush.h"
26 #include "exec/translate-all.h"
27 #include "sysemu/tcg.h"
28 #include "tcg/tcg.h"
29 #include "tb-hash.h"
30 #include "tb-context.h"
31 #include "internal.h"
32
33
34 /* List iterators for lists of tagged pointers in TranslationBlock. */
35 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
36 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
37 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
38 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
39
40 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
41 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
42
43 static bool tb_cmp(const void *ap, const void *bp)
44 {
45 const TranslationBlock *a = ap;
46 const TranslationBlock *b = bp;
47
48 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) &&
49 a->cs_base == b->cs_base &&
50 a->flags == b->flags &&
51 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
52 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
53 tb_page_addr0(a) == tb_page_addr0(b) &&
54 tb_page_addr1(a) == tb_page_addr1(b));
55 }
56
57 void tb_htable_init(void)
58 {
59 unsigned int mode = QHT_MODE_AUTO_RESIZE;
60
61 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
62 }
63
64 typedef struct PageDesc PageDesc;
65
66 #ifdef CONFIG_USER_ONLY
67
68 /*
69 * In user-mode page locks aren't used; mmap_lock is enough.
70 */
71 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
72
73 static inline void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
74 PageDesc **ret_p2, tb_page_addr_t phys2,
75 bool alloc)
76 {
77 *ret_p1 = NULL;
78 *ret_p2 = NULL;
79 }
80
81 static inline void page_unlock(PageDesc *pd) { }
82 static inline void page_lock_tb(const TranslationBlock *tb) { }
83 static inline void page_unlock_tb(const TranslationBlock *tb) { }
84
85 /*
86 * For user-only, since we are protecting all of memory with a single lock,
87 * and because the two pages of a TranslationBlock are always contiguous,
88 * use a single data structure to record all TranslationBlocks.
89 */
90 static IntervalTreeRoot tb_root;
91
92 static void tb_remove_all(void)
93 {
94 assert_memory_lock();
95 memset(&tb_root, 0, sizeof(tb_root));
96 }
97
98 /* Call with mmap_lock held. */
99 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2)
100 {
101 target_ulong addr;
102 int flags;
103
104 assert_memory_lock();
105 tb->itree.last = tb->itree.start + tb->size - 1;
106
107 /* translator_loop() must have made all TB pages non-writable */
108 addr = tb_page_addr0(tb);
109 flags = page_get_flags(addr);
110 assert(!(flags & PAGE_WRITE));
111
112 addr = tb_page_addr1(tb);
113 if (addr != -1) {
114 flags = page_get_flags(addr);
115 assert(!(flags & PAGE_WRITE));
116 }
117
118 interval_tree_insert(&tb->itree, &tb_root);
119 }
120
121 /* Call with mmap_lock held. */
122 static void tb_remove(TranslationBlock *tb)
123 {
124 assert_memory_lock();
125 interval_tree_remove(&tb->itree, &tb_root);
126 }
127
128 /* TODO: For now, still shared with translate-all.c for system mode. */
129 #define PAGE_FOR_EACH_TB(start, end, pagedesc, T, N) \
130 for (T = foreach_tb_first(start, end), \
131 N = foreach_tb_next(T, start, end); \
132 T != NULL; \
133 T = N, N = foreach_tb_next(N, start, end))
134
135 typedef TranslationBlock *PageForEachNext;
136
137 static PageForEachNext foreach_tb_first(tb_page_addr_t start,
138 tb_page_addr_t end)
139 {
140 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, end - 1);
141 return n ? container_of(n, TranslationBlock, itree) : NULL;
142 }
143
144 static PageForEachNext foreach_tb_next(PageForEachNext tb,
145 tb_page_addr_t start,
146 tb_page_addr_t end)
147 {
148 IntervalTreeNode *n;
149
150 if (tb) {
151 n = interval_tree_iter_next(&tb->itree, start, end - 1);
152 if (n) {
153 return container_of(n, TranslationBlock, itree);
154 }
155 }
156 return NULL;
157 }
158
159 #else
160 /*
161 * In system mode we want L1_MAP to be based on ram offsets.
162 */
163 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
164 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
165 #else
166 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
167 #endif
168
169 /* Size of the L2 (and L3, etc) page tables. */
170 #define V_L2_BITS 10
171 #define V_L2_SIZE (1 << V_L2_BITS)
172
173 /*
174 * L1 Mapping properties
175 */
176 static int v_l1_size;
177 static int v_l1_shift;
178 static int v_l2_levels;
179
180 /*
181 * The bottom level has pointers to PageDesc, and is indexed by
182 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
183 */
184 #define V_L1_MIN_BITS 4
185 #define V_L1_MAX_BITS (V_L2_BITS + 3)
186 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
187
188 static void *l1_map[V_L1_MAX_SIZE];
189
190 struct PageDesc {
191 QemuSpin lock;
192 /* list of TBs intersecting this ram page */
193 uintptr_t first_tb;
194 };
195
196 void page_table_config_init(void)
197 {
198 uint32_t v_l1_bits;
199
200 assert(TARGET_PAGE_BITS);
201 /* The bits remaining after N lower levels of page tables. */
202 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
203 if (v_l1_bits < V_L1_MIN_BITS) {
204 v_l1_bits += V_L2_BITS;
205 }
206
207 v_l1_size = 1 << v_l1_bits;
208 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
209 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
210
211 assert(v_l1_bits <= V_L1_MAX_BITS);
212 assert(v_l1_shift % V_L2_BITS == 0);
213 assert(v_l2_levels >= 0);
214 }
215
216 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
217 {
218 PageDesc *pd;
219 void **lp;
220 int i;
221
222 /* Level 1. Always allocated. */
223 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
224
225 /* Level 2..N-1. */
226 for (i = v_l2_levels; i > 0; i--) {
227 void **p = qatomic_rcu_read(lp);
228
229 if (p == NULL) {
230 void *existing;
231
232 if (!alloc) {
233 return NULL;
234 }
235 p = g_new0(void *, V_L2_SIZE);
236 existing = qatomic_cmpxchg(lp, NULL, p);
237 if (unlikely(existing)) {
238 g_free(p);
239 p = existing;
240 }
241 }
242
243 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
244 }
245
246 pd = qatomic_rcu_read(lp);
247 if (pd == NULL) {
248 void *existing;
249
250 if (!alloc) {
251 return NULL;
252 }
253
254 pd = g_new0(PageDesc, V_L2_SIZE);
255 for (int i = 0; i < V_L2_SIZE; i++) {
256 qemu_spin_init(&pd[i].lock);
257 }
258
259 existing = qatomic_cmpxchg(lp, NULL, pd);
260 if (unlikely(existing)) {
261 for (int i = 0; i < V_L2_SIZE; i++) {
262 qemu_spin_destroy(&pd[i].lock);
263 }
264 g_free(pd);
265 pd = existing;
266 }
267 }
268
269 return pd + (index & (V_L2_SIZE - 1));
270 }
271
272 static inline PageDesc *page_find(tb_page_addr_t index)
273 {
274 return page_find_alloc(index, false);
275 }
276
277 /**
278 * struct page_entry - page descriptor entry
279 * @pd: pointer to the &struct PageDesc of the page this entry represents
280 * @index: page index of the page
281 * @locked: whether the page is locked
282 *
283 * This struct helps us keep track of the locked state of a page, without
284 * bloating &struct PageDesc.
285 *
286 * A page lock protects accesses to all fields of &struct PageDesc.
287 *
288 * See also: &struct page_collection.
289 */
290 struct page_entry {
291 PageDesc *pd;
292 tb_page_addr_t index;
293 bool locked;
294 };
295
296 /**
297 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
298 * @tree: Binary search tree (BST) of the pages, with key == page index
299 * @max: Pointer to the page in @tree with the highest page index
300 *
301 * To avoid deadlock we lock pages in ascending order of page index.
302 * When operating on a set of pages, we need to keep track of them so that
303 * we can lock them in order and also unlock them later. For this we collect
304 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
305 * @tree implementation we use does not provide an O(1) operation to obtain the
306 * highest-ranked element, we use @max to keep track of the inserted page
307 * with the highest index. This is valuable because if a page is not in
308 * the tree and its index is higher than @max's, then we can lock it
309 * without breaking the locking order rule.
310 *
311 * Note on naming: 'struct page_set' would be shorter, but we already have a few
312 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
313 *
314 * See also: page_collection_lock().
315 */
316 struct page_collection {
317 GTree *tree;
318 struct page_entry *max;
319 };
320
321 typedef int PageForEachNext;
322 #define PAGE_FOR_EACH_TB(start, end, pagedesc, tb, n) \
323 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
324
325 #ifdef CONFIG_DEBUG_TCG
326
327 static __thread GHashTable *ht_pages_locked_debug;
328
329 static void ht_pages_locked_debug_init(void)
330 {
331 if (ht_pages_locked_debug) {
332 return;
333 }
334 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
335 }
336
337 static bool page_is_locked(const PageDesc *pd)
338 {
339 PageDesc *found;
340
341 ht_pages_locked_debug_init();
342 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
343 return !!found;
344 }
345
346 static void page_lock__debug(PageDesc *pd)
347 {
348 ht_pages_locked_debug_init();
349 g_assert(!page_is_locked(pd));
350 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
351 }
352
353 static void page_unlock__debug(const PageDesc *pd)
354 {
355 bool removed;
356
357 ht_pages_locked_debug_init();
358 g_assert(page_is_locked(pd));
359 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
360 g_assert(removed);
361 }
362
363 static void do_assert_page_locked(const PageDesc *pd,
364 const char *file, int line)
365 {
366 if (unlikely(!page_is_locked(pd))) {
367 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
368 pd, file, line);
369 abort();
370 }
371 }
372 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
373
374 void assert_no_pages_locked(void)
375 {
376 ht_pages_locked_debug_init();
377 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
378 }
379
380 #else /* !CONFIG_DEBUG_TCG */
381
382 static inline void page_lock__debug(const PageDesc *pd) { }
383 static inline void page_unlock__debug(const PageDesc *pd) { }
384 static inline void assert_page_locked(const PageDesc *pd) { }
385
386 #endif /* CONFIG_DEBUG_TCG */
387
388 static void page_lock(PageDesc *pd)
389 {
390 page_lock__debug(pd);
391 qemu_spin_lock(&pd->lock);
392 }
393
394 static void page_unlock(PageDesc *pd)
395 {
396 qemu_spin_unlock(&pd->lock);
397 page_unlock__debug(pd);
398 }
399
400 static inline struct page_entry *
401 page_entry_new(PageDesc *pd, tb_page_addr_t index)
402 {
403 struct page_entry *pe = g_malloc(sizeof(*pe));
404
405 pe->index = index;
406 pe->pd = pd;
407 pe->locked = false;
408 return pe;
409 }
410
411 static void page_entry_destroy(gpointer p)
412 {
413 struct page_entry *pe = p;
414
415 g_assert(pe->locked);
416 page_unlock(pe->pd);
417 g_free(pe);
418 }
419
420 /* returns false on success */
421 static bool page_entry_trylock(struct page_entry *pe)
422 {
423 bool busy;
424
425 busy = qemu_spin_trylock(&pe->pd->lock);
426 if (!busy) {
427 g_assert(!pe->locked);
428 pe->locked = true;
429 page_lock__debug(pe->pd);
430 }
431 return busy;
432 }
433
434 static void do_page_entry_lock(struct page_entry *pe)
435 {
436 page_lock(pe->pd);
437 g_assert(!pe->locked);
438 pe->locked = true;
439 }
440
441 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
442 {
443 struct page_entry *pe = value;
444
445 do_page_entry_lock(pe);
446 return FALSE;
447 }
448
449 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
450 {
451 struct page_entry *pe = value;
452
453 if (pe->locked) {
454 pe->locked = false;
455 page_unlock(pe->pd);
456 }
457 return FALSE;
458 }
459
460 /*
461 * Trylock a page, and if successful, add the page to a collection.
462 * Returns true ("busy") if the page could not be locked; false otherwise.
463 */
464 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
465 {
466 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
467 struct page_entry *pe;
468 PageDesc *pd;
469
470 pe = g_tree_lookup(set->tree, &index);
471 if (pe) {
472 return false;
473 }
474
475 pd = page_find(index);
476 if (pd == NULL) {
477 return false;
478 }
479
480 pe = page_entry_new(pd, index);
481 g_tree_insert(set->tree, &pe->index, pe);
482
483 /*
484 * If this is either (1) the first insertion or (2) a page whose index
485 * is higher than any other so far, just lock the page and move on.
486 */
487 if (set->max == NULL || pe->index > set->max->index) {
488 set->max = pe;
489 do_page_entry_lock(pe);
490 return false;
491 }
492 /*
493 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
494 * locks in order.
495 */
496 return page_entry_trylock(pe);
497 }
498
499 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
500 {
501 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
502 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
503
504 if (a == b) {
505 return 0;
506 } else if (a < b) {
507 return -1;
508 }
509 return 1;
510 }
511
512 /*
513 * Lock a range of pages ([@start,@end[) as well as the pages of all
514 * intersecting TBs.
515 * Locking order: acquire locks in ascending order of page index.
516 */
517 static struct page_collection *page_collection_lock(tb_page_addr_t start,
518 tb_page_addr_t end)
519 {
520 struct page_collection *set = g_malloc(sizeof(*set));
521 tb_page_addr_t index;
522 PageDesc *pd;
523
524 start >>= TARGET_PAGE_BITS;
525 end >>= TARGET_PAGE_BITS;
526 g_assert(start <= end);
527
528 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
529 page_entry_destroy);
530 set->max = NULL;
531 assert_no_pages_locked();
532
533 retry:
534 g_tree_foreach(set->tree, page_entry_lock, NULL);
535
536 for (index = start; index <= end; index++) {
537 TranslationBlock *tb;
538 PageForEachNext n;
539
540 pd = page_find(index);
541 if (pd == NULL) {
542 continue;
543 }
544 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
545 g_tree_foreach(set->tree, page_entry_unlock, NULL);
546 goto retry;
547 }
548 assert_page_locked(pd);
549 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) {
550 if (page_trylock_add(set, tb_page_addr0(tb)) ||
551 (tb_page_addr1(tb) != -1 &&
552 page_trylock_add(set, tb_page_addr1(tb)))) {
553 /* drop all locks, and reacquire in order */
554 g_tree_foreach(set->tree, page_entry_unlock, NULL);
555 goto retry;
556 }
557 }
558 }
559 return set;
560 }
561
562 static void page_collection_unlock(struct page_collection *set)
563 {
564 /* entries are unlocked and freed via page_entry_destroy */
565 g_tree_destroy(set->tree);
566 g_free(set);
567 }
568
569 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
570 static void tb_remove_all_1(int level, void **lp)
571 {
572 int i;
573
574 if (*lp == NULL) {
575 return;
576 }
577 if (level == 0) {
578 PageDesc *pd = *lp;
579
580 for (i = 0; i < V_L2_SIZE; ++i) {
581 page_lock(&pd[i]);
582 pd[i].first_tb = (uintptr_t)NULL;
583 page_unlock(&pd[i]);
584 }
585 } else {
586 void **pp = *lp;
587
588 for (i = 0; i < V_L2_SIZE; ++i) {
589 tb_remove_all_1(level - 1, pp + i);
590 }
591 }
592 }
593
594 static void tb_remove_all(void)
595 {
596 int i, l1_sz = v_l1_size;
597
598 for (i = 0; i < l1_sz; i++) {
599 tb_remove_all_1(v_l2_levels, l1_map + i);
600 }
601 }
602
603 /*
604 * Add the tb in the target page and protect it if necessary.
605 * Called with @p->lock held.
606 */
607 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
608 unsigned int n)
609 {
610 bool page_already_protected;
611
612 assert_page_locked(p);
613
614 tb->page_next[n] = p->first_tb;
615 page_already_protected = p->first_tb != 0;
616 p->first_tb = (uintptr_t)tb | n;
617
618 /*
619 * If some code is already present, then the pages are already
620 * protected. So we handle the case where only the first TB is
621 * allocated in a physical page.
622 */
623 if (!page_already_protected) {
624 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK);
625 }
626 }
627
628 static void tb_record(TranslationBlock *tb, PageDesc *p1, PageDesc *p2)
629 {
630 tb_page_add(p1, tb, 0);
631 if (unlikely(p2)) {
632 tb_page_add(p2, tb, 1);
633 }
634 }
635
636 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
637 {
638 TranslationBlock *tb1;
639 uintptr_t *pprev;
640 PageForEachNext n1;
641
642 assert_page_locked(pd);
643 pprev = &pd->first_tb;
644 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) {
645 if (tb1 == tb) {
646 *pprev = tb1->page_next[n1];
647 return;
648 }
649 pprev = &tb1->page_next[n1];
650 }
651 g_assert_not_reached();
652 }
653
654 static void tb_remove(TranslationBlock *tb)
655 {
656 PageDesc *pd;
657
658 pd = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
659 tb_page_remove(pd, tb);
660 if (unlikely(tb->page_addr[1] != -1)) {
661 pd = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
662 tb_page_remove(pd, tb);
663 }
664 }
665
666 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
667 PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc)
668 {
669 PageDesc *p1, *p2;
670 tb_page_addr_t page1;
671 tb_page_addr_t page2;
672
673 assert_memory_lock();
674 g_assert(phys1 != -1);
675
676 page1 = phys1 >> TARGET_PAGE_BITS;
677 page2 = phys2 >> TARGET_PAGE_BITS;
678
679 p1 = page_find_alloc(page1, alloc);
680 if (ret_p1) {
681 *ret_p1 = p1;
682 }
683 if (likely(phys2 == -1)) {
684 page_lock(p1);
685 return;
686 } else if (page1 == page2) {
687 page_lock(p1);
688 if (ret_p2) {
689 *ret_p2 = p1;
690 }
691 return;
692 }
693 p2 = page_find_alloc(page2, alloc);
694 if (ret_p2) {
695 *ret_p2 = p2;
696 }
697 if (page1 < page2) {
698 page_lock(p1);
699 page_lock(p2);
700 } else {
701 page_lock(p2);
702 page_lock(p1);
703 }
704 }
705
706 /* lock the page(s) of a TB in the correct acquisition order */
707 static void page_lock_tb(const TranslationBlock *tb)
708 {
709 page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false);
710 }
711
712 static void page_unlock_tb(const TranslationBlock *tb)
713 {
714 PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS);
715
716 page_unlock(p1);
717 if (unlikely(tb_page_addr1(tb) != -1)) {
718 PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS);
719
720 if (p2 != p1) {
721 page_unlock(p2);
722 }
723 }
724 }
725 #endif /* CONFIG_USER_ONLY */
726
727 /* flush all the translation blocks */
728 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
729 {
730 bool did_flush = false;
731
732 mmap_lock();
733 /* If it is already been done on request of another CPU, just retry. */
734 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
735 goto done;
736 }
737 did_flush = true;
738
739 CPU_FOREACH(cpu) {
740 tcg_flush_jmp_cache(cpu);
741 }
742
743 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
744 tb_remove_all();
745
746 tcg_region_reset_all();
747 /* XXX: flush processor icache at this point if cache flush is expensive */
748 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
749
750 done:
751 mmap_unlock();
752 if (did_flush) {
753 qemu_plugin_flush_cb();
754 }
755 }
756
757 void tb_flush(CPUState *cpu)
758 {
759 if (tcg_enabled()) {
760 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
761
762 if (cpu_in_exclusive_context(cpu)) {
763 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
764 } else {
765 async_safe_run_on_cpu(cpu, do_tb_flush,
766 RUN_ON_CPU_HOST_INT(tb_flush_count));
767 }
768 }
769 }
770
771 /* remove @orig from its @n_orig-th jump list */
772 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
773 {
774 uintptr_t ptr, ptr_locked;
775 TranslationBlock *dest;
776 TranslationBlock *tb;
777 uintptr_t *pprev;
778 int n;
779
780 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
781 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
782 dest = (TranslationBlock *)(ptr & ~1);
783 if (dest == NULL) {
784 return;
785 }
786
787 qemu_spin_lock(&dest->jmp_lock);
788 /*
789 * While acquiring the lock, the jump might have been removed if the
790 * destination TB was invalidated; check again.
791 */
792 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
793 if (ptr_locked != ptr) {
794 qemu_spin_unlock(&dest->jmp_lock);
795 /*
796 * The only possibility is that the jump was unlinked via
797 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
798 * because we set the LSB above.
799 */
800 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
801 return;
802 }
803 /*
804 * We first acquired the lock, and since the destination pointer matches,
805 * we know for sure that @orig is in the jmp list.
806 */
807 pprev = &dest->jmp_list_head;
808 TB_FOR_EACH_JMP(dest, tb, n) {
809 if (tb == orig && n == n_orig) {
810 *pprev = tb->jmp_list_next[n];
811 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
812 qemu_spin_unlock(&dest->jmp_lock);
813 return;
814 }
815 pprev = &tb->jmp_list_next[n];
816 }
817 g_assert_not_reached();
818 }
819
820 /*
821 * Reset the jump entry 'n' of a TB so that it is not chained to another TB.
822 */
823 void tb_reset_jump(TranslationBlock *tb, int n)
824 {
825 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
826 tb_set_jmp_target(tb, n, addr);
827 }
828
829 /* remove any jumps to the TB */
830 static inline void tb_jmp_unlink(TranslationBlock *dest)
831 {
832 TranslationBlock *tb;
833 int n;
834
835 qemu_spin_lock(&dest->jmp_lock);
836
837 TB_FOR_EACH_JMP(dest, tb, n) {
838 tb_reset_jump(tb, n);
839 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
840 /* No need to clear the list entry; setting the dest ptr is enough */
841 }
842 dest->jmp_list_head = (uintptr_t)NULL;
843
844 qemu_spin_unlock(&dest->jmp_lock);
845 }
846
847 static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
848 {
849 CPUState *cpu;
850
851 if (tb_cflags(tb) & CF_PCREL) {
852 /* A TB may be at any virtual address */
853 CPU_FOREACH(cpu) {
854 tcg_flush_jmp_cache(cpu);
855 }
856 } else {
857 uint32_t h = tb_jmp_cache_hash_func(tb->pc);
858
859 CPU_FOREACH(cpu) {
860 CPUJumpCache *jc = cpu->tb_jmp_cache;
861
862 if (qatomic_read(&jc->array[h].tb) == tb) {
863 qatomic_set(&jc->array[h].tb, NULL);
864 }
865 }
866 }
867 }
868
869 /*
870 * In user-mode, call with mmap_lock held.
871 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
872 * locks held.
873 */
874 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
875 {
876 uint32_t h;
877 tb_page_addr_t phys_pc;
878 uint32_t orig_cflags = tb_cflags(tb);
879
880 assert_memory_lock();
881
882 /* make sure no further incoming jumps will be chained to this TB */
883 qemu_spin_lock(&tb->jmp_lock);
884 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
885 qemu_spin_unlock(&tb->jmp_lock);
886
887 /* remove the TB from the hash list */
888 phys_pc = tb_page_addr0(tb);
889 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc),
890 tb->flags, orig_cflags, tb->trace_vcpu_dstate);
891 if (!qht_remove(&tb_ctx.htable, tb, h)) {
892 return;
893 }
894
895 /* remove the TB from the page list */
896 if (rm_from_page_list) {
897 tb_remove(tb);
898 }
899
900 /* remove the TB from the hash list */
901 tb_jmp_cache_inval_tb(tb);
902
903 /* suppress this TB from the two jump lists */
904 tb_remove_from_jmp_list(tb, 0);
905 tb_remove_from_jmp_list(tb, 1);
906
907 /* suppress any remaining jumps to this TB */
908 tb_jmp_unlink(tb);
909
910 qatomic_set(&tb_ctx.tb_phys_invalidate_count,
911 tb_ctx.tb_phys_invalidate_count + 1);
912 }
913
914 static void tb_phys_invalidate__locked(TranslationBlock *tb)
915 {
916 qemu_thread_jit_write();
917 do_tb_phys_invalidate(tb, true);
918 qemu_thread_jit_execute();
919 }
920
921 /*
922 * Invalidate one TB.
923 * Called with mmap_lock held in user-mode.
924 */
925 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
926 {
927 if (page_addr == -1 && tb_page_addr0(tb) != -1) {
928 page_lock_tb(tb);
929 do_tb_phys_invalidate(tb, true);
930 page_unlock_tb(tb);
931 } else {
932 do_tb_phys_invalidate(tb, false);
933 }
934 }
935
936 /*
937 * Add a new TB and link it to the physical page tables. phys_page2 is
938 * (-1) to indicate that only one page contains the TB.
939 *
940 * Called with mmap_lock held for user-mode emulation.
941 *
942 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
943 * Note that in !user-mode, another thread might have already added a TB
944 * for the same block of guest code that @tb corresponds to. In that case,
945 * the caller should discard the original @tb, and use instead the returned TB.
946 */
947 TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
948 tb_page_addr_t phys_page2)
949 {
950 PageDesc *p;
951 PageDesc *p2 = NULL;
952 void *existing_tb = NULL;
953 uint32_t h;
954
955 assert_memory_lock();
956 tcg_debug_assert(!(tb->cflags & CF_INVALID));
957
958 /*
959 * Add the TB to the page list, acquiring first the pages's locks.
960 * We keep the locks held until after inserting the TB in the hash table,
961 * so that if the insertion fails we know for sure that the TBs are still
962 * in the page descriptors.
963 * Note that inserting into the hash table first isn't an option, since
964 * we can only insert TBs that are fully initialized.
965 */
966 page_lock_pair(&p, phys_pc, &p2, phys_page2, true);
967 tb_record(tb, p, p2);
968
969 /* add in the hash table */
970 h = tb_hash_func(phys_pc, (tb->cflags & CF_PCREL ? 0 : tb->pc),
971 tb->flags, tb->cflags, tb->trace_vcpu_dstate);
972 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
973
974 /* remove TB from the page(s) if we couldn't insert it */
975 if (unlikely(existing_tb)) {
976 tb_remove(tb);
977 tb = existing_tb;
978 }
979
980 if (p2 && p2 != p) {
981 page_unlock(p2);
982 }
983 page_unlock(p);
984 return tb;
985 }
986
987 #ifdef CONFIG_USER_ONLY
988 /*
989 * Invalidate all TBs which intersect with the target address range.
990 * Called with mmap_lock held for user-mode emulation.
991 * NOTE: this function must not be called while a TB is running.
992 */
993 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
994 {
995 TranslationBlock *tb;
996 PageForEachNext n;
997
998 assert_memory_lock();
999
1000 PAGE_FOR_EACH_TB(start, end, unused, tb, n) {
1001 tb_phys_invalidate__locked(tb);
1002 }
1003 }
1004
1005 /*
1006 * Invalidate all TBs which intersect with the target address page @addr.
1007 * Called with mmap_lock held for user-mode emulation
1008 * NOTE: this function must not be called while a TB is running.
1009 */
1010 void tb_invalidate_phys_page(tb_page_addr_t addr)
1011 {
1012 tb_page_addr_t start, end;
1013
1014 start = addr & TARGET_PAGE_MASK;
1015 end = start + TARGET_PAGE_SIZE;
1016 tb_invalidate_phys_range(start, end);
1017 }
1018
1019 /*
1020 * Called with mmap_lock held. If pc is not 0 then it indicates the
1021 * host PC of the faulting store instruction that caused this invalidate.
1022 * Returns true if the caller needs to abort execution of the current
1023 * TB (because it was modified by this store and the guest CPU has
1024 * precise-SMC semantics).
1025 */
1026 bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
1027 {
1028 TranslationBlock *current_tb;
1029 bool current_tb_modified;
1030 TranslationBlock *tb;
1031 PageForEachNext n;
1032
1033 /*
1034 * Without precise smc semantics, or when outside of a TB,
1035 * we can skip to invalidate.
1036 */
1037 #ifndef TARGET_HAS_PRECISE_SMC
1038 pc = 0;
1039 #endif
1040 if (!pc) {
1041 tb_invalidate_phys_page(addr);
1042 return false;
1043 }
1044
1045 assert_memory_lock();
1046 current_tb = tcg_tb_lookup(pc);
1047
1048 addr &= TARGET_PAGE_MASK;
1049 current_tb_modified = false;
1050
1051 PAGE_FOR_EACH_TB(addr, addr + TARGET_PAGE_SIZE, unused, tb, n) {
1052 if (current_tb == tb &&
1053 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1054 /*
1055 * If we are modifying the current TB, we must stop its
1056 * execution. We could be more precise by checking that
1057 * the modification is after the current PC, but it would
1058 * require a specialized function to partially restore
1059 * the CPU state.
1060 */
1061 current_tb_modified = true;
1062 cpu_restore_state_from_tb(current_cpu, current_tb, pc);
1063 }
1064 tb_phys_invalidate__locked(tb);
1065 }
1066
1067 if (current_tb_modified) {
1068 /* Force execution of one insn next time. */
1069 CPUState *cpu = current_cpu;
1070 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1071 return true;
1072 }
1073 return false;
1074 }
1075 #else
1076 /*
1077 * @p must be non-NULL.
1078 * Call with all @pages locked.
1079 */
1080 static void
1081 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1082 PageDesc *p, tb_page_addr_t start,
1083 tb_page_addr_t end,
1084 uintptr_t retaddr)
1085 {
1086 TranslationBlock *tb;
1087 tb_page_addr_t tb_start, tb_end;
1088 PageForEachNext n;
1089 #ifdef TARGET_HAS_PRECISE_SMC
1090 bool current_tb_modified = false;
1091 TranslationBlock *current_tb = retaddr ? tcg_tb_lookup(retaddr) : NULL;
1092 #endif /* TARGET_HAS_PRECISE_SMC */
1093
1094 /*
1095 * We remove all the TBs in the range [start, end[.
1096 * XXX: see if in some cases it could be faster to invalidate all the code
1097 */
1098 PAGE_FOR_EACH_TB(start, end, p, tb, n) {
1099 /* NOTE: this is subtle as a TB may span two physical pages */
1100 if (n == 0) {
1101 /* NOTE: tb_end may be after the end of the page, but
1102 it is not a problem */
1103 tb_start = tb_page_addr0(tb);
1104 tb_end = tb_start + tb->size;
1105 } else {
1106 tb_start = tb_page_addr1(tb);
1107 tb_end = tb_start + ((tb_page_addr0(tb) + tb->size)
1108 & ~TARGET_PAGE_MASK);
1109 }
1110 if (!(tb_end <= start || tb_start >= end)) {
1111 #ifdef TARGET_HAS_PRECISE_SMC
1112 if (current_tb == tb &&
1113 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1114 /*
1115 * If we are modifying the current TB, we must stop
1116 * its execution. We could be more precise by checking
1117 * that the modification is after the current PC, but it
1118 * would require a specialized function to partially
1119 * restore the CPU state.
1120 */
1121 current_tb_modified = true;
1122 cpu_restore_state_from_tb(current_cpu, current_tb, retaddr);
1123 }
1124 #endif /* TARGET_HAS_PRECISE_SMC */
1125 tb_phys_invalidate__locked(tb);
1126 }
1127 }
1128
1129 /* if no code remaining, no need to continue to use slow writes */
1130 if (!p->first_tb) {
1131 tlb_unprotect_code(start);
1132 }
1133
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (current_tb_modified) {
1136 page_collection_unlock(pages);
1137 /* Force execution of one insn next time. */
1138 current_cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(current_cpu);
1139 mmap_unlock();
1140 cpu_loop_exit_noexc(current_cpu);
1141 }
1142 #endif
1143 }
1144
1145 /*
1146 * Invalidate all TBs which intersect with the target physical
1147 * address page @addr.
1148 */
1149 void tb_invalidate_phys_page(tb_page_addr_t addr)
1150 {
1151 struct page_collection *pages;
1152 tb_page_addr_t start, end;
1153 PageDesc *p;
1154
1155 p = page_find(addr >> TARGET_PAGE_BITS);
1156 if (p == NULL) {
1157 return;
1158 }
1159
1160 start = addr & TARGET_PAGE_MASK;
1161 end = start + TARGET_PAGE_SIZE;
1162 pages = page_collection_lock(start, end);
1163 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1164 page_collection_unlock(pages);
1165 }
1166
1167 /*
1168 * Invalidate all TBs which intersect with the target physical address range
1169 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1170 * 'is_cpu_write_access' should be true if called from a real cpu write
1171 * access: the virtual CPU will exit the current TB if code is modified inside
1172 * this TB.
1173 */
1174 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1175 {
1176 struct page_collection *pages;
1177 tb_page_addr_t next;
1178
1179 pages = page_collection_lock(start, end);
1180 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1181 start < end;
1182 start = next, next += TARGET_PAGE_SIZE) {
1183 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1184 tb_page_addr_t bound = MIN(next, end);
1185
1186 if (pd == NULL) {
1187 continue;
1188 }
1189 assert_page_locked(pd);
1190 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1191 }
1192 page_collection_unlock(pages);
1193 }
1194
1195 /*
1196 * Call with all @pages in the range [@start, @start + len[ locked.
1197 */
1198 static void tb_invalidate_phys_page_fast__locked(struct page_collection *pages,
1199 tb_page_addr_t start,
1200 unsigned len, uintptr_t ra)
1201 {
1202 PageDesc *p;
1203
1204 p = page_find(start >> TARGET_PAGE_BITS);
1205 if (!p) {
1206 return;
1207 }
1208
1209 assert_page_locked(p);
1210 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, ra);
1211 }
1212
1213 /*
1214 * len must be <= 8 and start must be a multiple of len.
1215 * Called via softmmu_template.h when code areas are written to with
1216 * iothread mutex not held.
1217 */
1218 void tb_invalidate_phys_range_fast(ram_addr_t ram_addr,
1219 unsigned size,
1220 uintptr_t retaddr)
1221 {
1222 struct page_collection *pages;
1223
1224 pages = page_collection_lock(ram_addr, ram_addr + size);
1225 tb_invalidate_phys_page_fast__locked(pages, ram_addr, size, retaddr);
1226 page_collection_unlock(pages);
1227 }
1228
1229 #endif /* CONFIG_USER_ONLY */