]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/translate-all.c
tcg: Remove softmmu code_gen_buffer fixed address
[mirror_qemu.git] / accel / tcg / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/tcg.h"
61
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation. */
81 #undef DEBUG_TB_CHECK
82 #endif
83
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89
90 /* Access to the various translations structures need to be serialised via locks
91 * for consistency.
92 * In user-mode emulation access to the memory related structures are protected
93 * with mmap_lock.
94 * In !user-mode we use per-page locks.
95 */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101
102 #define SMC_BITMAP_USE_THRESHOLD 10
103
104 typedef struct PageDesc {
105 /* list of TBs intersecting this ram page */
106 uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108 /* in order to optimize self modifying code, we count the number
109 of lookups we do to a given page to use a bitmap */
110 unsigned long *code_bitmap;
111 unsigned int code_write_count;
112 #else
113 unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116 QemuSpin lock;
117 #endif
118 } PageDesc;
119
120 /**
121 * struct page_entry - page descriptor entry
122 * @pd: pointer to the &struct PageDesc of the page this entry represents
123 * @index: page index of the page
124 * @locked: whether the page is locked
125 *
126 * This struct helps us keep track of the locked state of a page, without
127 * bloating &struct PageDesc.
128 *
129 * A page lock protects accesses to all fields of &struct PageDesc.
130 *
131 * See also: &struct page_collection.
132 */
133 struct page_entry {
134 PageDesc *pd;
135 tb_page_addr_t index;
136 bool locked;
137 };
138
139 /**
140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141 * @tree: Binary search tree (BST) of the pages, with key == page index
142 * @max: Pointer to the page in @tree with the highest page index
143 *
144 * To avoid deadlock we lock pages in ascending order of page index.
145 * When operating on a set of pages, we need to keep track of them so that
146 * we can lock them in order and also unlock them later. For this we collect
147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148 * @tree implementation we use does not provide an O(1) operation to obtain the
149 * highest-ranked element, we use @max to keep track of the inserted page
150 * with the highest index. This is valuable because if a page is not in
151 * the tree and its index is higher than @max's, then we can lock it
152 * without breaking the locking order rule.
153 *
154 * Note on naming: 'struct page_set' would be shorter, but we already have a few
155 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156 *
157 * See also: page_collection_lock().
158 */
159 struct page_collection {
160 GTree *tree;
161 struct page_entry *max;
162 };
163
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172
173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175
176 /* In system mode we want L1_MAP to be based on ram offsets,
177 while in user mode we want it to be based on virtual addresses. */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187
188 /* Size of the L2 (and L3, etc) page tables. */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194 sizeof_field(TranslationBlock, trace_vcpu_dstate)
195 * BITS_PER_BYTE);
196
197 /*
198 * L1 Mapping properties
199 */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203
204 /* The bottom level has pointers to PageDesc, and is indexed by
205 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206 */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210
211 static void *l1_map[V_L1_MAX_SIZE];
212
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218
219 static void page_table_config_init(void)
220 {
221 uint32_t v_l1_bits;
222
223 assert(TARGET_PAGE_BITS);
224 /* The bits remaining after N lower levels of page tables. */
225 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226 if (v_l1_bits < V_L1_MIN_BITS) {
227 v_l1_bits += V_L2_BITS;
228 }
229
230 v_l1_size = 1 << v_l1_bits;
231 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233
234 assert(v_l1_bits <= V_L1_MAX_BITS);
235 assert(v_l1_shift % V_L2_BITS == 0);
236 assert(v_l2_levels >= 0);
237 }
238
239 void cpu_gen_init(void)
240 {
241 tcg_context_init(&tcg_init_ctx);
242 }
243
244 /* Encode VAL as a signed leb128 sequence at P.
245 Return P incremented past the encoded value. */
246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248 int more, byte;
249
250 do {
251 byte = val & 0x7f;
252 val >>= 7;
253 more = !((val == 0 && (byte & 0x40) == 0)
254 || (val == -1 && (byte & 0x40) != 0));
255 if (more) {
256 byte |= 0x80;
257 }
258 *p++ = byte;
259 } while (more);
260
261 return p;
262 }
263
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265 decoded value. Return the decoded value. */
266 static target_long decode_sleb128(uint8_t **pp)
267 {
268 uint8_t *p = *pp;
269 target_long val = 0;
270 int byte, shift = 0;
271
272 do {
273 byte = *p++;
274 val |= (target_ulong)(byte & 0x7f) << shift;
275 shift += 7;
276 } while (byte & 0x80);
277 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278 val |= -(target_ulong)1 << shift;
279 }
280
281 *pp = p;
282 return val;
283 }
284
285 /* Encode the data collected about the instructions while compiling TB.
286 Place the data at BLOCK, and return the number of bytes consumed.
287
288 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289 which come from the target's insn_start data, followed by a uintptr_t
290 which comes from the host pc of the end of the code implementing the insn.
291
292 Each line of the table is encoded as sleb128 deltas from the previous
293 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294 That is, the first column is seeded with the guest pc, the last column
295 with the host pc, and the middle columns with zeros. */
296
297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299 uint8_t *highwater = tcg_ctx->code_gen_highwater;
300 uint8_t *p = block;
301 int i, j, n;
302
303 for (i = 0, n = tb->icount; i < n; ++i) {
304 target_ulong prev;
305
306 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307 if (i == 0) {
308 prev = (j == 0 ? tb->pc : 0);
309 } else {
310 prev = tcg_ctx->gen_insn_data[i - 1][j];
311 }
312 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313 }
314 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316
317 /* Test for (pending) buffer overflow. The assumption is that any
318 one row beginning below the high water mark cannot overrun
319 the buffer completely. Thus we can test for overflow after
320 encoding a row without having to check during encoding. */
321 if (unlikely(p > highwater)) {
322 return -1;
323 }
324 }
325
326 return p - block;
327 }
328
329 /* The cpu state corresponding to 'searched_pc' is restored.
330 * When reset_icount is true, current TB will be interrupted and
331 * icount should be recalculated.
332 */
333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334 uintptr_t searched_pc, bool reset_icount)
335 {
336 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338 CPUArchState *env = cpu->env_ptr;
339 uint8_t *p = tb->tc.ptr + tb->tc.size;
340 int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342 TCGProfile *prof = &tcg_ctx->prof;
343 int64_t ti = profile_getclock();
344 #endif
345
346 searched_pc -= GETPC_ADJ;
347
348 if (searched_pc < host_pc) {
349 return -1;
350 }
351
352 /* Reconstruct the stored insn data while looking for the point at
353 which the end of the insn exceeds the searched_pc. */
354 for (i = 0; i < num_insns; ++i) {
355 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356 data[j] += decode_sleb128(&p);
357 }
358 host_pc += decode_sleb128(&p);
359 if (host_pc > searched_pc) {
360 goto found;
361 }
362 }
363 return -1;
364
365 found:
366 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367 assert(use_icount);
368 /* Reset the cycle counter to the start of the block
369 and shift if to the number of actually executed instructions */
370 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
371 }
372 restore_state_to_opc(env, tb, data);
373
374 #ifdef CONFIG_PROFILER
375 atomic_set(&prof->restore_time,
376 prof->restore_time + profile_getclock() - ti);
377 atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379 return 0;
380 }
381
382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384 TranslationBlock *tb;
385 bool r = false;
386 uintptr_t check_offset;
387
388 /* The host_pc has to be in the region of current code buffer. If
389 * it is not we will not be able to resolve it here. The two cases
390 * where host_pc will not be correct are:
391 *
392 * - fault during translation (instruction fetch)
393 * - fault from helper (not using GETPC() macro)
394 *
395 * Either way we need return early as we can't resolve it here.
396 *
397 * We are using unsigned arithmetic so if host_pc <
398 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399 * above the code_gen_buffer_size
400 */
401 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402
403 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404 tb = tcg_tb_lookup(host_pc);
405 if (tb) {
406 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407 if (tb_cflags(tb) & CF_NOCACHE) {
408 /* one-shot translation, invalidate it immediately */
409 tb_phys_invalidate(tb, -1);
410 tcg_tb_remove(tb);
411 }
412 r = true;
413 }
414 }
415
416 return r;
417 }
418
419 static void page_init(void)
420 {
421 page_size_init();
422 page_table_config_init();
423
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425 {
426 #ifdef HAVE_KINFO_GETVMMAP
427 struct kinfo_vmentry *freep;
428 int i, cnt;
429
430 freep = kinfo_getvmmap(getpid(), &cnt);
431 if (freep) {
432 mmap_lock();
433 for (i = 0; i < cnt; i++) {
434 unsigned long startaddr, endaddr;
435
436 startaddr = freep[i].kve_start;
437 endaddr = freep[i].kve_end;
438 if (h2g_valid(startaddr)) {
439 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440
441 if (h2g_valid(endaddr)) {
442 endaddr = h2g(endaddr);
443 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446 endaddr = ~0ul;
447 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449 }
450 }
451 }
452 free(freep);
453 mmap_unlock();
454 }
455 #else
456 FILE *f;
457
458 last_brk = (unsigned long)sbrk(0);
459
460 f = fopen("/compat/linux/proc/self/maps", "r");
461 if (f) {
462 mmap_lock();
463
464 do {
465 unsigned long startaddr, endaddr;
466 int n;
467
468 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469
470 if (n == 2 && h2g_valid(startaddr)) {
471 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472
473 if (h2g_valid(endaddr)) {
474 endaddr = h2g(endaddr);
475 } else {
476 endaddr = ~0ul;
477 }
478 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479 }
480 } while (!feof(f));
481
482 fclose(f);
483 mmap_unlock();
484 }
485 #endif
486 }
487 #endif
488 }
489
490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492 PageDesc *pd;
493 void **lp;
494 int i;
495
496 /* Level 1. Always allocated. */
497 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498
499 /* Level 2..N-1. */
500 for (i = v_l2_levels; i > 0; i--) {
501 void **p = atomic_rcu_read(lp);
502
503 if (p == NULL) {
504 void *existing;
505
506 if (!alloc) {
507 return NULL;
508 }
509 p = g_new0(void *, V_L2_SIZE);
510 existing = atomic_cmpxchg(lp, NULL, p);
511 if (unlikely(existing)) {
512 g_free(p);
513 p = existing;
514 }
515 }
516
517 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518 }
519
520 pd = atomic_rcu_read(lp);
521 if (pd == NULL) {
522 void *existing;
523
524 if (!alloc) {
525 return NULL;
526 }
527 pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529 {
530 int i;
531
532 for (i = 0; i < V_L2_SIZE; i++) {
533 qemu_spin_init(&pd[i].lock);
534 }
535 }
536 #endif
537 existing = atomic_cmpxchg(lp, NULL, pd);
538 if (unlikely(existing)) {
539 g_free(pd);
540 pd = existing;
541 }
542 }
543
544 return pd + (index & (V_L2_SIZE - 1));
545 }
546
547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549 return page_find_alloc(index, 0);
550 }
551
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559
560 static inline void page_lock(PageDesc *pd)
561 { }
562
563 static inline void page_unlock(PageDesc *pd)
564 { }
565
566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568
569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571
572 struct page_collection *
573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575 return NULL;
576 }
577
578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581
582 #ifdef CONFIG_DEBUG_TCG
583
584 static __thread GHashTable *ht_pages_locked_debug;
585
586 static void ht_pages_locked_debug_init(void)
587 {
588 if (ht_pages_locked_debug) {
589 return;
590 }
591 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593
594 static bool page_is_locked(const PageDesc *pd)
595 {
596 PageDesc *found;
597
598 ht_pages_locked_debug_init();
599 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600 return !!found;
601 }
602
603 static void page_lock__debug(PageDesc *pd)
604 {
605 ht_pages_locked_debug_init();
606 g_assert(!page_is_locked(pd));
607 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609
610 static void page_unlock__debug(const PageDesc *pd)
611 {
612 bool removed;
613
614 ht_pages_locked_debug_init();
615 g_assert(page_is_locked(pd));
616 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617 g_assert(removed);
618 }
619
620 static void
621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623 if (unlikely(!page_is_locked(pd))) {
624 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625 pd, file, line);
626 abort();
627 }
628 }
629
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631
632 void assert_no_pages_locked(void)
633 {
634 ht_pages_locked_debug_init();
635 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637
638 #else /* !CONFIG_DEBUG_TCG */
639
640 #define assert_page_locked(pd)
641
642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645
646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649
650 #endif /* CONFIG_DEBUG_TCG */
651
652 static inline void page_lock(PageDesc *pd)
653 {
654 page_lock__debug(pd);
655 qemu_spin_lock(&pd->lock);
656 }
657
658 static inline void page_unlock(PageDesc *pd)
659 {
660 qemu_spin_unlock(&pd->lock);
661 page_unlock__debug(pd);
662 }
663
664 /* lock the page(s) of a TB in the correct acquisition order */
665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669
670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
673
674 page_unlock(p1);
675 if (unlikely(tb->page_addr[1] != -1)) {
676 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
677
678 if (p2 != p1) {
679 page_unlock(p2);
680 }
681 }
682 }
683
684 static inline struct page_entry *
685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 {
687 struct page_entry *pe = g_malloc(sizeof(*pe));
688
689 pe->index = index;
690 pe->pd = pd;
691 pe->locked = false;
692 return pe;
693 }
694
695 static void page_entry_destroy(gpointer p)
696 {
697 struct page_entry *pe = p;
698
699 g_assert(pe->locked);
700 page_unlock(pe->pd);
701 g_free(pe);
702 }
703
704 /* returns false on success */
705 static bool page_entry_trylock(struct page_entry *pe)
706 {
707 bool busy;
708
709 busy = qemu_spin_trylock(&pe->pd->lock);
710 if (!busy) {
711 g_assert(!pe->locked);
712 pe->locked = true;
713 page_lock__debug(pe->pd);
714 }
715 return busy;
716 }
717
718 static void do_page_entry_lock(struct page_entry *pe)
719 {
720 page_lock(pe->pd);
721 g_assert(!pe->locked);
722 pe->locked = true;
723 }
724
725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 {
727 struct page_entry *pe = value;
728
729 do_page_entry_lock(pe);
730 return FALSE;
731 }
732
733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 {
735 struct page_entry *pe = value;
736
737 if (pe->locked) {
738 pe->locked = false;
739 page_unlock(pe->pd);
740 }
741 return FALSE;
742 }
743
744 /*
745 * Trylock a page, and if successful, add the page to a collection.
746 * Returns true ("busy") if the page could not be locked; false otherwise.
747 */
748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 {
750 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751 struct page_entry *pe;
752 PageDesc *pd;
753
754 pe = g_tree_lookup(set->tree, &index);
755 if (pe) {
756 return false;
757 }
758
759 pd = page_find(index);
760 if (pd == NULL) {
761 return false;
762 }
763
764 pe = page_entry_new(pd, index);
765 g_tree_insert(set->tree, &pe->index, pe);
766
767 /*
768 * If this is either (1) the first insertion or (2) a page whose index
769 * is higher than any other so far, just lock the page and move on.
770 */
771 if (set->max == NULL || pe->index > set->max->index) {
772 set->max = pe;
773 do_page_entry_lock(pe);
774 return false;
775 }
776 /*
777 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778 * locks in order.
779 */
780 return page_entry_trylock(pe);
781 }
782
783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 {
785 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
787
788 if (a == b) {
789 return 0;
790 } else if (a < b) {
791 return -1;
792 }
793 return 1;
794 }
795
796 /*
797 * Lock a range of pages ([@start,@end[) as well as the pages of all
798 * intersecting TBs.
799 * Locking order: acquire locks in ascending order of page index.
800 */
801 struct page_collection *
802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 {
804 struct page_collection *set = g_malloc(sizeof(*set));
805 tb_page_addr_t index;
806 PageDesc *pd;
807
808 start >>= TARGET_PAGE_BITS;
809 end >>= TARGET_PAGE_BITS;
810 g_assert(start <= end);
811
812 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813 page_entry_destroy);
814 set->max = NULL;
815 assert_no_pages_locked();
816
817 retry:
818 g_tree_foreach(set->tree, page_entry_lock, NULL);
819
820 for (index = start; index <= end; index++) {
821 TranslationBlock *tb;
822 int n;
823
824 pd = page_find(index);
825 if (pd == NULL) {
826 continue;
827 }
828 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829 g_tree_foreach(set->tree, page_entry_unlock, NULL);
830 goto retry;
831 }
832 assert_page_locked(pd);
833 PAGE_FOR_EACH_TB(pd, tb, n) {
834 if (page_trylock_add(set, tb->page_addr[0]) ||
835 (tb->page_addr[1] != -1 &&
836 page_trylock_add(set, tb->page_addr[1]))) {
837 /* drop all locks, and reacquire in order */
838 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839 goto retry;
840 }
841 }
842 }
843 return set;
844 }
845
846 void page_collection_unlock(struct page_collection *set)
847 {
848 /* entries are unlocked and freed via page_entry_destroy */
849 g_tree_destroy(set->tree);
850 g_free(set);
851 }
852
853 #endif /* !CONFIG_USER_ONLY */
854
855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
857 {
858 PageDesc *p1, *p2;
859 tb_page_addr_t page1;
860 tb_page_addr_t page2;
861
862 assert_memory_lock();
863 g_assert(phys1 != -1);
864
865 page1 = phys1 >> TARGET_PAGE_BITS;
866 page2 = phys2 >> TARGET_PAGE_BITS;
867
868 p1 = page_find_alloc(page1, alloc);
869 if (ret_p1) {
870 *ret_p1 = p1;
871 }
872 if (likely(phys2 == -1)) {
873 page_lock(p1);
874 return;
875 } else if (page1 == page2) {
876 page_lock(p1);
877 if (ret_p2) {
878 *ret_p2 = p1;
879 }
880 return;
881 }
882 p2 = page_find_alloc(page2, alloc);
883 if (ret_p2) {
884 *ret_p2 = p2;
885 }
886 if (page1 < page2) {
887 page_lock(p1);
888 page_lock(p2);
889 } else {
890 page_lock(p2);
891 page_lock(p1);
892 }
893 }
894
895 /* Minimum size of the code gen buffer. This number is randomly chosen,
896 but not so small that we can't have a fair number of TB's live. */
897 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB)
898
899 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
900 indicated, this is constrained by the range of direct branches on the
901 host cpu, as used by the TCG implementation of goto_tb. */
902 #if defined(__x86_64__)
903 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
904 #elif defined(__sparc__)
905 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
906 #elif defined(__powerpc64__)
907 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
908 #elif defined(__powerpc__)
909 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB)
910 #elif defined(__aarch64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
912 #elif defined(__s390x__)
913 /* We have a +- 4GB range on the branches; leave some slop. */
914 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB)
915 #elif defined(__mips__)
916 /* We have a 256MB branch region, but leave room to make sure the
917 main executable is also within that region. */
918 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB)
919 #else
920 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
921 #endif
922
923 #if TCG_TARGET_REG_BITS == 32
924 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
925 #ifdef CONFIG_USER_ONLY
926 /*
927 * For user mode on smaller 32 bit systems we may run into trouble
928 * allocating big chunks of data in the right place. On these systems
929 * we utilise a static code generation buffer directly in the binary.
930 */
931 #define USE_STATIC_CODE_GEN_BUFFER
932 #endif
933 #else /* TCG_TARGET_REG_BITS == 64 */
934 #ifdef CONFIG_USER_ONLY
935 /*
936 * As user-mode emulation typically means running multiple instances
937 * of the translator don't go too nuts with our default code gen
938 * buffer lest we make things too hard for the OS.
939 */
940 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
941 #else
942 /*
943 * We expect most system emulation to run one or two guests per host.
944 * Users running large scale system emulation may want to tweak their
945 * runtime setup via the tb-size control on the command line.
946 */
947 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
948 #endif
949 #endif
950
951 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
952 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
953 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
954
955 static inline size_t size_code_gen_buffer(size_t tb_size)
956 {
957 /* Size the buffer. */
958 if (tb_size == 0) {
959 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
960 }
961 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
962 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
963 }
964 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
965 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
966 }
967 return tb_size;
968 }
969
970 #ifdef __mips__
971 /* In order to use J and JAL within the code_gen_buffer, we require
972 that the buffer not cross a 256MB boundary. */
973 static inline bool cross_256mb(void *addr, size_t size)
974 {
975 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
976 }
977
978 /* We weren't able to allocate a buffer without crossing that boundary,
979 so make do with the larger portion of the buffer that doesn't cross.
980 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
981 static inline void *split_cross_256mb(void *buf1, size_t size1)
982 {
983 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
984 size_t size2 = buf1 + size1 - buf2;
985
986 size1 = buf2 - buf1;
987 if (size1 < size2) {
988 size1 = size2;
989 buf1 = buf2;
990 }
991
992 tcg_ctx->code_gen_buffer_size = size1;
993 return buf1;
994 }
995 #endif
996
997 #ifdef USE_STATIC_CODE_GEN_BUFFER
998 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
999 __attribute__((aligned(CODE_GEN_ALIGN)));
1000
1001 static inline void *alloc_code_gen_buffer(void)
1002 {
1003 void *buf = static_code_gen_buffer;
1004 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1005 size_t size;
1006
1007 /* page-align the beginning and end of the buffer */
1008 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1009 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1010
1011 size = end - buf;
1012
1013 /* Honor a command-line option limiting the size of the buffer. */
1014 if (size > tcg_ctx->code_gen_buffer_size) {
1015 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1016 qemu_real_host_page_size);
1017 }
1018 tcg_ctx->code_gen_buffer_size = size;
1019
1020 #ifdef __mips__
1021 if (cross_256mb(buf, size)) {
1022 buf = split_cross_256mb(buf, size);
1023 size = tcg_ctx->code_gen_buffer_size;
1024 }
1025 #endif
1026
1027 if (qemu_mprotect_rwx(buf, size)) {
1028 abort();
1029 }
1030 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1031
1032 return buf;
1033 }
1034 #elif defined(_WIN32)
1035 static inline void *alloc_code_gen_buffer(void)
1036 {
1037 size_t size = tcg_ctx->code_gen_buffer_size;
1038 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1039 PAGE_EXECUTE_READWRITE);
1040 }
1041 #else
1042 static inline void *alloc_code_gen_buffer(void)
1043 {
1044 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1045 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1046 size_t size = tcg_ctx->code_gen_buffer_size;
1047 void *buf;
1048
1049 buf = mmap(NULL, size, prot, flags, -1, 0);
1050 if (buf == MAP_FAILED) {
1051 return NULL;
1052 }
1053
1054 #ifdef __mips__
1055 if (cross_256mb(buf, size)) {
1056 /*
1057 * Try again, with the original still mapped, to avoid re-acquiring
1058 * the same 256mb crossing.
1059 */
1060 size_t size2;
1061 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1062 switch ((int)(buf2 != MAP_FAILED)) {
1063 case 1:
1064 if (!cross_256mb(buf2, size)) {
1065 /* Success! Use the new buffer. */
1066 munmap(buf, size);
1067 break;
1068 }
1069 /* Failure. Work with what we had. */
1070 munmap(buf2, size);
1071 /* fallthru */
1072 default:
1073 /* Split the original buffer. Free the smaller half. */
1074 buf2 = split_cross_256mb(buf, size);
1075 size2 = tcg_ctx->code_gen_buffer_size;
1076 if (buf == buf2) {
1077 munmap(buf + size2, size - size2);
1078 } else {
1079 munmap(buf, size - size2);
1080 }
1081 size = size2;
1082 break;
1083 }
1084 buf = buf2;
1085 }
1086 #endif
1087
1088 /* Request large pages for the buffer. */
1089 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1090
1091 return buf;
1092 }
1093 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1094
1095 static inline void code_gen_alloc(size_t tb_size)
1096 {
1097 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1098 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1099 if (tcg_ctx->code_gen_buffer == NULL) {
1100 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1101 exit(1);
1102 }
1103 }
1104
1105 static bool tb_cmp(const void *ap, const void *bp)
1106 {
1107 const TranslationBlock *a = ap;
1108 const TranslationBlock *b = bp;
1109
1110 return a->pc == b->pc &&
1111 a->cs_base == b->cs_base &&
1112 a->flags == b->flags &&
1113 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1114 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1115 a->page_addr[0] == b->page_addr[0] &&
1116 a->page_addr[1] == b->page_addr[1];
1117 }
1118
1119 static void tb_htable_init(void)
1120 {
1121 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1122
1123 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1124 }
1125
1126 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1127 (in bytes) allocated to the translation buffer. Zero means default
1128 size. */
1129 void tcg_exec_init(unsigned long tb_size)
1130 {
1131 tcg_allowed = true;
1132 cpu_gen_init();
1133 page_init();
1134 tb_htable_init();
1135 code_gen_alloc(tb_size);
1136 #if defined(CONFIG_SOFTMMU)
1137 /* There's no guest base to take into account, so go ahead and
1138 initialize the prologue now. */
1139 tcg_prologue_init(tcg_ctx);
1140 #endif
1141 }
1142
1143 /* call with @p->lock held */
1144 static inline void invalidate_page_bitmap(PageDesc *p)
1145 {
1146 assert_page_locked(p);
1147 #ifdef CONFIG_SOFTMMU
1148 g_free(p->code_bitmap);
1149 p->code_bitmap = NULL;
1150 p->code_write_count = 0;
1151 #endif
1152 }
1153
1154 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1155 static void page_flush_tb_1(int level, void **lp)
1156 {
1157 int i;
1158
1159 if (*lp == NULL) {
1160 return;
1161 }
1162 if (level == 0) {
1163 PageDesc *pd = *lp;
1164
1165 for (i = 0; i < V_L2_SIZE; ++i) {
1166 page_lock(&pd[i]);
1167 pd[i].first_tb = (uintptr_t)NULL;
1168 invalidate_page_bitmap(pd + i);
1169 page_unlock(&pd[i]);
1170 }
1171 } else {
1172 void **pp = *lp;
1173
1174 for (i = 0; i < V_L2_SIZE; ++i) {
1175 page_flush_tb_1(level - 1, pp + i);
1176 }
1177 }
1178 }
1179
1180 static void page_flush_tb(void)
1181 {
1182 int i, l1_sz = v_l1_size;
1183
1184 for (i = 0; i < l1_sz; i++) {
1185 page_flush_tb_1(v_l2_levels, l1_map + i);
1186 }
1187 }
1188
1189 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1190 {
1191 const TranslationBlock *tb = value;
1192 size_t *size = data;
1193
1194 *size += tb->tc.size;
1195 return false;
1196 }
1197
1198 /* flush all the translation blocks */
1199 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1200 {
1201 bool did_flush = false;
1202
1203 mmap_lock();
1204 /* If it is already been done on request of another CPU,
1205 * just retry.
1206 */
1207 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1208 goto done;
1209 }
1210 did_flush = true;
1211
1212 if (DEBUG_TB_FLUSH_GATE) {
1213 size_t nb_tbs = tcg_nb_tbs();
1214 size_t host_size = 0;
1215
1216 tcg_tb_foreach(tb_host_size_iter, &host_size);
1217 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1218 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1219 }
1220
1221 CPU_FOREACH(cpu) {
1222 cpu_tb_jmp_cache_clear(cpu);
1223 }
1224
1225 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1226 page_flush_tb();
1227
1228 tcg_region_reset_all();
1229 /* XXX: flush processor icache at this point if cache flush is
1230 expensive */
1231 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1232
1233 done:
1234 mmap_unlock();
1235 if (did_flush) {
1236 qemu_plugin_flush_cb();
1237 }
1238 }
1239
1240 void tb_flush(CPUState *cpu)
1241 {
1242 if (tcg_enabled()) {
1243 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1244
1245 if (cpu_in_exclusive_context(cpu)) {
1246 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1247 } else {
1248 async_safe_run_on_cpu(cpu, do_tb_flush,
1249 RUN_ON_CPU_HOST_INT(tb_flush_count));
1250 }
1251 }
1252 }
1253
1254 /*
1255 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1256 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1257 * and let the optimizer get rid of them by wrapping their user-only callers
1258 * with if (DEBUG_TB_CHECK_GATE).
1259 */
1260 #ifdef CONFIG_USER_ONLY
1261
1262 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1263 {
1264 TranslationBlock *tb = p;
1265 target_ulong addr = *(target_ulong *)userp;
1266
1267 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1268 printf("ERROR invalidate: address=" TARGET_FMT_lx
1269 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1270 }
1271 }
1272
1273 /* verify that all the pages have correct rights for code
1274 *
1275 * Called with mmap_lock held.
1276 */
1277 static void tb_invalidate_check(target_ulong address)
1278 {
1279 address &= TARGET_PAGE_MASK;
1280 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1281 }
1282
1283 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1284 {
1285 TranslationBlock *tb = p;
1286 int flags1, flags2;
1287
1288 flags1 = page_get_flags(tb->pc);
1289 flags2 = page_get_flags(tb->pc + tb->size - 1);
1290 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1291 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1292 (long)tb->pc, tb->size, flags1, flags2);
1293 }
1294 }
1295
1296 /* verify that all the pages have correct rights for code */
1297 static void tb_page_check(void)
1298 {
1299 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1300 }
1301
1302 #endif /* CONFIG_USER_ONLY */
1303
1304 /*
1305 * user-mode: call with mmap_lock held
1306 * !user-mode: call with @pd->lock held
1307 */
1308 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1309 {
1310 TranslationBlock *tb1;
1311 uintptr_t *pprev;
1312 unsigned int n1;
1313
1314 assert_page_locked(pd);
1315 pprev = &pd->first_tb;
1316 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1317 if (tb1 == tb) {
1318 *pprev = tb1->page_next[n1];
1319 return;
1320 }
1321 pprev = &tb1->page_next[n1];
1322 }
1323 g_assert_not_reached();
1324 }
1325
1326 /* remove @orig from its @n_orig-th jump list */
1327 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1328 {
1329 uintptr_t ptr, ptr_locked;
1330 TranslationBlock *dest;
1331 TranslationBlock *tb;
1332 uintptr_t *pprev;
1333 int n;
1334
1335 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1336 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1337 dest = (TranslationBlock *)(ptr & ~1);
1338 if (dest == NULL) {
1339 return;
1340 }
1341
1342 qemu_spin_lock(&dest->jmp_lock);
1343 /*
1344 * While acquiring the lock, the jump might have been removed if the
1345 * destination TB was invalidated; check again.
1346 */
1347 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1348 if (ptr_locked != ptr) {
1349 qemu_spin_unlock(&dest->jmp_lock);
1350 /*
1351 * The only possibility is that the jump was unlinked via
1352 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1353 * because we set the LSB above.
1354 */
1355 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1356 return;
1357 }
1358 /*
1359 * We first acquired the lock, and since the destination pointer matches,
1360 * we know for sure that @orig is in the jmp list.
1361 */
1362 pprev = &dest->jmp_list_head;
1363 TB_FOR_EACH_JMP(dest, tb, n) {
1364 if (tb == orig && n == n_orig) {
1365 *pprev = tb->jmp_list_next[n];
1366 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1367 qemu_spin_unlock(&dest->jmp_lock);
1368 return;
1369 }
1370 pprev = &tb->jmp_list_next[n];
1371 }
1372 g_assert_not_reached();
1373 }
1374
1375 /* reset the jump entry 'n' of a TB so that it is not chained to
1376 another TB */
1377 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1378 {
1379 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1380 tb_set_jmp_target(tb, n, addr);
1381 }
1382
1383 /* remove any jumps to the TB */
1384 static inline void tb_jmp_unlink(TranslationBlock *dest)
1385 {
1386 TranslationBlock *tb;
1387 int n;
1388
1389 qemu_spin_lock(&dest->jmp_lock);
1390
1391 TB_FOR_EACH_JMP(dest, tb, n) {
1392 tb_reset_jump(tb, n);
1393 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1394 /* No need to clear the list entry; setting the dest ptr is enough */
1395 }
1396 dest->jmp_list_head = (uintptr_t)NULL;
1397
1398 qemu_spin_unlock(&dest->jmp_lock);
1399 }
1400
1401 /*
1402 * In user-mode, call with mmap_lock held.
1403 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1404 * locks held.
1405 */
1406 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1407 {
1408 CPUState *cpu;
1409 PageDesc *p;
1410 uint32_t h;
1411 tb_page_addr_t phys_pc;
1412
1413 assert_memory_lock();
1414
1415 /* make sure no further incoming jumps will be chained to this TB */
1416 qemu_spin_lock(&tb->jmp_lock);
1417 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1418 qemu_spin_unlock(&tb->jmp_lock);
1419
1420 /* remove the TB from the hash list */
1421 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1422 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1423 tb->trace_vcpu_dstate);
1424 if (!(tb->cflags & CF_NOCACHE) &&
1425 !qht_remove(&tb_ctx.htable, tb, h)) {
1426 return;
1427 }
1428
1429 /* remove the TB from the page list */
1430 if (rm_from_page_list) {
1431 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1432 tb_page_remove(p, tb);
1433 invalidate_page_bitmap(p);
1434 if (tb->page_addr[1] != -1) {
1435 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1436 tb_page_remove(p, tb);
1437 invalidate_page_bitmap(p);
1438 }
1439 }
1440
1441 /* remove the TB from the hash list */
1442 h = tb_jmp_cache_hash_func(tb->pc);
1443 CPU_FOREACH(cpu) {
1444 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1445 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1446 }
1447 }
1448
1449 /* suppress this TB from the two jump lists */
1450 tb_remove_from_jmp_list(tb, 0);
1451 tb_remove_from_jmp_list(tb, 1);
1452
1453 /* suppress any remaining jumps to this TB */
1454 tb_jmp_unlink(tb);
1455
1456 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1457 tcg_ctx->tb_phys_invalidate_count + 1);
1458 }
1459
1460 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1461 {
1462 do_tb_phys_invalidate(tb, true);
1463 }
1464
1465 /* invalidate one TB
1466 *
1467 * Called with mmap_lock held in user-mode.
1468 */
1469 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1470 {
1471 if (page_addr == -1 && tb->page_addr[0] != -1) {
1472 page_lock_tb(tb);
1473 do_tb_phys_invalidate(tb, true);
1474 page_unlock_tb(tb);
1475 } else {
1476 do_tb_phys_invalidate(tb, false);
1477 }
1478 }
1479
1480 #ifdef CONFIG_SOFTMMU
1481 /* call with @p->lock held */
1482 static void build_page_bitmap(PageDesc *p)
1483 {
1484 int n, tb_start, tb_end;
1485 TranslationBlock *tb;
1486
1487 assert_page_locked(p);
1488 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1489
1490 PAGE_FOR_EACH_TB(p, tb, n) {
1491 /* NOTE: this is subtle as a TB may span two physical pages */
1492 if (n == 0) {
1493 /* NOTE: tb_end may be after the end of the page, but
1494 it is not a problem */
1495 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1496 tb_end = tb_start + tb->size;
1497 if (tb_end > TARGET_PAGE_SIZE) {
1498 tb_end = TARGET_PAGE_SIZE;
1499 }
1500 } else {
1501 tb_start = 0;
1502 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1503 }
1504 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1505 }
1506 }
1507 #endif
1508
1509 /* add the tb in the target page and protect it if necessary
1510 *
1511 * Called with mmap_lock held for user-mode emulation.
1512 * Called with @p->lock held in !user-mode.
1513 */
1514 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1515 unsigned int n, tb_page_addr_t page_addr)
1516 {
1517 #ifndef CONFIG_USER_ONLY
1518 bool page_already_protected;
1519 #endif
1520
1521 assert_page_locked(p);
1522
1523 tb->page_addr[n] = page_addr;
1524 tb->page_next[n] = p->first_tb;
1525 #ifndef CONFIG_USER_ONLY
1526 page_already_protected = p->first_tb != (uintptr_t)NULL;
1527 #endif
1528 p->first_tb = (uintptr_t)tb | n;
1529 invalidate_page_bitmap(p);
1530
1531 #if defined(CONFIG_USER_ONLY)
1532 if (p->flags & PAGE_WRITE) {
1533 target_ulong addr;
1534 PageDesc *p2;
1535 int prot;
1536
1537 /* force the host page as non writable (writes will have a
1538 page fault + mprotect overhead) */
1539 page_addr &= qemu_host_page_mask;
1540 prot = 0;
1541 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1542 addr += TARGET_PAGE_SIZE) {
1543
1544 p2 = page_find(addr >> TARGET_PAGE_BITS);
1545 if (!p2) {
1546 continue;
1547 }
1548 prot |= p2->flags;
1549 p2->flags &= ~PAGE_WRITE;
1550 }
1551 mprotect(g2h(page_addr), qemu_host_page_size,
1552 (prot & PAGE_BITS) & ~PAGE_WRITE);
1553 if (DEBUG_TB_INVALIDATE_GATE) {
1554 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1555 }
1556 }
1557 #else
1558 /* if some code is already present, then the pages are already
1559 protected. So we handle the case where only the first TB is
1560 allocated in a physical page */
1561 if (!page_already_protected) {
1562 tlb_protect_code(page_addr);
1563 }
1564 #endif
1565 }
1566
1567 /* add a new TB and link it to the physical page tables. phys_page2 is
1568 * (-1) to indicate that only one page contains the TB.
1569 *
1570 * Called with mmap_lock held for user-mode emulation.
1571 *
1572 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1573 * Note that in !user-mode, another thread might have already added a TB
1574 * for the same block of guest code that @tb corresponds to. In that case,
1575 * the caller should discard the original @tb, and use instead the returned TB.
1576 */
1577 static TranslationBlock *
1578 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1579 tb_page_addr_t phys_page2)
1580 {
1581 PageDesc *p;
1582 PageDesc *p2 = NULL;
1583
1584 assert_memory_lock();
1585
1586 if (phys_pc == -1) {
1587 /*
1588 * If the TB is not associated with a physical RAM page then
1589 * it must be a temporary one-insn TB, and we have nothing to do
1590 * except fill in the page_addr[] fields.
1591 */
1592 assert(tb->cflags & CF_NOCACHE);
1593 tb->page_addr[0] = tb->page_addr[1] = -1;
1594 return tb;
1595 }
1596
1597 /*
1598 * Add the TB to the page list, acquiring first the pages's locks.
1599 * We keep the locks held until after inserting the TB in the hash table,
1600 * so that if the insertion fails we know for sure that the TBs are still
1601 * in the page descriptors.
1602 * Note that inserting into the hash table first isn't an option, since
1603 * we can only insert TBs that are fully initialized.
1604 */
1605 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1606 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1607 if (p2) {
1608 tb_page_add(p2, tb, 1, phys_page2);
1609 } else {
1610 tb->page_addr[1] = -1;
1611 }
1612
1613 if (!(tb->cflags & CF_NOCACHE)) {
1614 void *existing_tb = NULL;
1615 uint32_t h;
1616
1617 /* add in the hash table */
1618 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1619 tb->trace_vcpu_dstate);
1620 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1621
1622 /* remove TB from the page(s) if we couldn't insert it */
1623 if (unlikely(existing_tb)) {
1624 tb_page_remove(p, tb);
1625 invalidate_page_bitmap(p);
1626 if (p2) {
1627 tb_page_remove(p2, tb);
1628 invalidate_page_bitmap(p2);
1629 }
1630 tb = existing_tb;
1631 }
1632 }
1633
1634 if (p2 && p2 != p) {
1635 page_unlock(p2);
1636 }
1637 page_unlock(p);
1638
1639 #ifdef CONFIG_USER_ONLY
1640 if (DEBUG_TB_CHECK_GATE) {
1641 tb_page_check();
1642 }
1643 #endif
1644 return tb;
1645 }
1646
1647 /* Called with mmap_lock held for user mode emulation. */
1648 TranslationBlock *tb_gen_code(CPUState *cpu,
1649 target_ulong pc, target_ulong cs_base,
1650 uint32_t flags, int cflags)
1651 {
1652 CPUArchState *env = cpu->env_ptr;
1653 TranslationBlock *tb, *existing_tb;
1654 tb_page_addr_t phys_pc, phys_page2;
1655 target_ulong virt_page2;
1656 tcg_insn_unit *gen_code_buf;
1657 int gen_code_size, search_size, max_insns;
1658 #ifdef CONFIG_PROFILER
1659 TCGProfile *prof = &tcg_ctx->prof;
1660 int64_t ti;
1661 #endif
1662
1663 assert_memory_lock();
1664
1665 phys_pc = get_page_addr_code(env, pc);
1666
1667 if (phys_pc == -1) {
1668 /* Generate a temporary TB with 1 insn in it */
1669 cflags &= ~CF_COUNT_MASK;
1670 cflags |= CF_NOCACHE | 1;
1671 }
1672
1673 cflags &= ~CF_CLUSTER_MASK;
1674 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1675
1676 max_insns = cflags & CF_COUNT_MASK;
1677 if (max_insns == 0) {
1678 max_insns = CF_COUNT_MASK;
1679 }
1680 if (max_insns > TCG_MAX_INSNS) {
1681 max_insns = TCG_MAX_INSNS;
1682 }
1683 if (cpu->singlestep_enabled || singlestep) {
1684 max_insns = 1;
1685 }
1686
1687 buffer_overflow:
1688 tb = tcg_tb_alloc(tcg_ctx);
1689 if (unlikely(!tb)) {
1690 /* flush must be done */
1691 tb_flush(cpu);
1692 mmap_unlock();
1693 /* Make the execution loop process the flush as soon as possible. */
1694 cpu->exception_index = EXCP_INTERRUPT;
1695 cpu_loop_exit(cpu);
1696 }
1697
1698 gen_code_buf = tcg_ctx->code_gen_ptr;
1699 tb->tc.ptr = gen_code_buf;
1700 tb->pc = pc;
1701 tb->cs_base = cs_base;
1702 tb->flags = flags;
1703 tb->cflags = cflags;
1704 tb->orig_tb = NULL;
1705 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1706 tcg_ctx->tb_cflags = cflags;
1707 tb_overflow:
1708
1709 #ifdef CONFIG_PROFILER
1710 /* includes aborted translations because of exceptions */
1711 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1712 ti = profile_getclock();
1713 #endif
1714
1715 tcg_func_start(tcg_ctx);
1716
1717 tcg_ctx->cpu = env_cpu(env);
1718 gen_intermediate_code(cpu, tb, max_insns);
1719 tcg_ctx->cpu = NULL;
1720
1721 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1722
1723 /* generate machine code */
1724 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1725 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1726 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1727 if (TCG_TARGET_HAS_direct_jump) {
1728 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1729 tcg_ctx->tb_jmp_target_addr = NULL;
1730 } else {
1731 tcg_ctx->tb_jmp_insn_offset = NULL;
1732 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1733 }
1734
1735 #ifdef CONFIG_PROFILER
1736 atomic_set(&prof->tb_count, prof->tb_count + 1);
1737 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1738 ti = profile_getclock();
1739 #endif
1740
1741 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1742 if (unlikely(gen_code_size < 0)) {
1743 switch (gen_code_size) {
1744 case -1:
1745 /*
1746 * Overflow of code_gen_buffer, or the current slice of it.
1747 *
1748 * TODO: We don't need to re-do gen_intermediate_code, nor
1749 * should we re-do the tcg optimization currently hidden
1750 * inside tcg_gen_code. All that should be required is to
1751 * flush the TBs, allocate a new TB, re-initialize it per
1752 * above, and re-do the actual code generation.
1753 */
1754 goto buffer_overflow;
1755
1756 case -2:
1757 /*
1758 * The code generated for the TranslationBlock is too large.
1759 * The maximum size allowed by the unwind info is 64k.
1760 * There may be stricter constraints from relocations
1761 * in the tcg backend.
1762 *
1763 * Try again with half as many insns as we attempted this time.
1764 * If a single insn overflows, there's a bug somewhere...
1765 */
1766 max_insns = tb->icount;
1767 assert(max_insns > 1);
1768 max_insns /= 2;
1769 goto tb_overflow;
1770
1771 default:
1772 g_assert_not_reached();
1773 }
1774 }
1775 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1776 if (unlikely(search_size < 0)) {
1777 goto buffer_overflow;
1778 }
1779 tb->tc.size = gen_code_size;
1780
1781 #ifdef CONFIG_PROFILER
1782 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1783 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1784 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1785 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1786 #endif
1787
1788 #ifdef DEBUG_DISAS
1789 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1790 qemu_log_in_addr_range(tb->pc)) {
1791 FILE *logfile = qemu_log_lock();
1792 qemu_log("OUT: [size=%d]\n", gen_code_size);
1793 if (tcg_ctx->data_gen_ptr) {
1794 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1795 size_t data_size = gen_code_size - code_size;
1796 size_t i;
1797
1798 log_disas(tb->tc.ptr, code_size);
1799
1800 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1801 if (sizeof(tcg_target_ulong) == 8) {
1802 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1803 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1804 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1805 } else {
1806 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1807 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1808 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1809 }
1810 }
1811 } else {
1812 log_disas(tb->tc.ptr, gen_code_size);
1813 }
1814 qemu_log("\n");
1815 qemu_log_flush();
1816 qemu_log_unlock(logfile);
1817 }
1818 #endif
1819
1820 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1821 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1822 CODE_GEN_ALIGN));
1823
1824 /* init jump list */
1825 qemu_spin_init(&tb->jmp_lock);
1826 tb->jmp_list_head = (uintptr_t)NULL;
1827 tb->jmp_list_next[0] = (uintptr_t)NULL;
1828 tb->jmp_list_next[1] = (uintptr_t)NULL;
1829 tb->jmp_dest[0] = (uintptr_t)NULL;
1830 tb->jmp_dest[1] = (uintptr_t)NULL;
1831
1832 /* init original jump addresses which have been set during tcg_gen_code() */
1833 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1834 tb_reset_jump(tb, 0);
1835 }
1836 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1837 tb_reset_jump(tb, 1);
1838 }
1839
1840 /* check next page if needed */
1841 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1842 phys_page2 = -1;
1843 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1844 phys_page2 = get_page_addr_code(env, virt_page2);
1845 }
1846 /*
1847 * No explicit memory barrier is required -- tb_link_page() makes the
1848 * TB visible in a consistent state.
1849 */
1850 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1851 /* if the TB already exists, discard what we just translated */
1852 if (unlikely(existing_tb != tb)) {
1853 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1854
1855 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1856 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1857 return existing_tb;
1858 }
1859 tcg_tb_insert(tb);
1860 return tb;
1861 }
1862
1863 /*
1864 * @p must be non-NULL.
1865 * user-mode: call with mmap_lock held.
1866 * !user-mode: call with all @pages locked.
1867 */
1868 static void
1869 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1870 PageDesc *p, tb_page_addr_t start,
1871 tb_page_addr_t end,
1872 uintptr_t retaddr)
1873 {
1874 TranslationBlock *tb;
1875 tb_page_addr_t tb_start, tb_end;
1876 int n;
1877 #ifdef TARGET_HAS_PRECISE_SMC
1878 CPUState *cpu = current_cpu;
1879 CPUArchState *env = NULL;
1880 bool current_tb_not_found = retaddr != 0;
1881 bool current_tb_modified = false;
1882 TranslationBlock *current_tb = NULL;
1883 target_ulong current_pc = 0;
1884 target_ulong current_cs_base = 0;
1885 uint32_t current_flags = 0;
1886 #endif /* TARGET_HAS_PRECISE_SMC */
1887
1888 assert_page_locked(p);
1889
1890 #if defined(TARGET_HAS_PRECISE_SMC)
1891 if (cpu != NULL) {
1892 env = cpu->env_ptr;
1893 }
1894 #endif
1895
1896 /* we remove all the TBs in the range [start, end[ */
1897 /* XXX: see if in some cases it could be faster to invalidate all
1898 the code */
1899 PAGE_FOR_EACH_TB(p, tb, n) {
1900 assert_page_locked(p);
1901 /* NOTE: this is subtle as a TB may span two physical pages */
1902 if (n == 0) {
1903 /* NOTE: tb_end may be after the end of the page, but
1904 it is not a problem */
1905 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1906 tb_end = tb_start + tb->size;
1907 } else {
1908 tb_start = tb->page_addr[1];
1909 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1910 }
1911 if (!(tb_end <= start || tb_start >= end)) {
1912 #ifdef TARGET_HAS_PRECISE_SMC
1913 if (current_tb_not_found) {
1914 current_tb_not_found = false;
1915 /* now we have a real cpu fault */
1916 current_tb = tcg_tb_lookup(retaddr);
1917 }
1918 if (current_tb == tb &&
1919 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1920 /*
1921 * If we are modifying the current TB, we must stop
1922 * its execution. We could be more precise by checking
1923 * that the modification is after the current PC, but it
1924 * would require a specialized function to partially
1925 * restore the CPU state.
1926 */
1927 current_tb_modified = true;
1928 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1929 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1930 &current_flags);
1931 }
1932 #endif /* TARGET_HAS_PRECISE_SMC */
1933 tb_phys_invalidate__locked(tb);
1934 }
1935 }
1936 #if !defined(CONFIG_USER_ONLY)
1937 /* if no code remaining, no need to continue to use slow writes */
1938 if (!p->first_tb) {
1939 invalidate_page_bitmap(p);
1940 tlb_unprotect_code(start);
1941 }
1942 #endif
1943 #ifdef TARGET_HAS_PRECISE_SMC
1944 if (current_tb_modified) {
1945 page_collection_unlock(pages);
1946 /* Force execution of one insn next time. */
1947 cpu->cflags_next_tb = 1 | curr_cflags();
1948 mmap_unlock();
1949 cpu_loop_exit_noexc(cpu);
1950 }
1951 #endif
1952 }
1953
1954 /*
1955 * Invalidate all TBs which intersect with the target physical address range
1956 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1957 * 'is_cpu_write_access' should be true if called from a real cpu write
1958 * access: the virtual CPU will exit the current TB if code is modified inside
1959 * this TB.
1960 *
1961 * Called with mmap_lock held for user-mode emulation
1962 */
1963 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1964 {
1965 struct page_collection *pages;
1966 PageDesc *p;
1967
1968 assert_memory_lock();
1969
1970 p = page_find(start >> TARGET_PAGE_BITS);
1971 if (p == NULL) {
1972 return;
1973 }
1974 pages = page_collection_lock(start, end);
1975 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1976 page_collection_unlock(pages);
1977 }
1978
1979 /*
1980 * Invalidate all TBs which intersect with the target physical address range
1981 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1982 * 'is_cpu_write_access' should be true if called from a real cpu write
1983 * access: the virtual CPU will exit the current TB if code is modified inside
1984 * this TB.
1985 *
1986 * Called with mmap_lock held for user-mode emulation.
1987 */
1988 #ifdef CONFIG_SOFTMMU
1989 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1990 #else
1991 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1992 #endif
1993 {
1994 struct page_collection *pages;
1995 tb_page_addr_t next;
1996
1997 assert_memory_lock();
1998
1999 pages = page_collection_lock(start, end);
2000 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2001 start < end;
2002 start = next, next += TARGET_PAGE_SIZE) {
2003 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2004 tb_page_addr_t bound = MIN(next, end);
2005
2006 if (pd == NULL) {
2007 continue;
2008 }
2009 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2010 }
2011 page_collection_unlock(pages);
2012 }
2013
2014 #ifdef CONFIG_SOFTMMU
2015 /* len must be <= 8 and start must be a multiple of len.
2016 * Called via softmmu_template.h when code areas are written to with
2017 * iothread mutex not held.
2018 *
2019 * Call with all @pages in the range [@start, @start + len[ locked.
2020 */
2021 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2022 tb_page_addr_t start, int len,
2023 uintptr_t retaddr)
2024 {
2025 PageDesc *p;
2026
2027 assert_memory_lock();
2028
2029 p = page_find(start >> TARGET_PAGE_BITS);
2030 if (!p) {
2031 return;
2032 }
2033
2034 assert_page_locked(p);
2035 if (!p->code_bitmap &&
2036 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2037 build_page_bitmap(p);
2038 }
2039 if (p->code_bitmap) {
2040 unsigned int nr;
2041 unsigned long b;
2042
2043 nr = start & ~TARGET_PAGE_MASK;
2044 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2045 if (b & ((1 << len) - 1)) {
2046 goto do_invalidate;
2047 }
2048 } else {
2049 do_invalidate:
2050 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2051 retaddr);
2052 }
2053 }
2054 #else
2055 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2056 * host PC of the faulting store instruction that caused this invalidate.
2057 * Returns true if the caller needs to abort execution of the current
2058 * TB (because it was modified by this store and the guest CPU has
2059 * precise-SMC semantics).
2060 */
2061 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2062 {
2063 TranslationBlock *tb;
2064 PageDesc *p;
2065 int n;
2066 #ifdef TARGET_HAS_PRECISE_SMC
2067 TranslationBlock *current_tb = NULL;
2068 CPUState *cpu = current_cpu;
2069 CPUArchState *env = NULL;
2070 int current_tb_modified = 0;
2071 target_ulong current_pc = 0;
2072 target_ulong current_cs_base = 0;
2073 uint32_t current_flags = 0;
2074 #endif
2075
2076 assert_memory_lock();
2077
2078 addr &= TARGET_PAGE_MASK;
2079 p = page_find(addr >> TARGET_PAGE_BITS);
2080 if (!p) {
2081 return false;
2082 }
2083
2084 #ifdef TARGET_HAS_PRECISE_SMC
2085 if (p->first_tb && pc != 0) {
2086 current_tb = tcg_tb_lookup(pc);
2087 }
2088 if (cpu != NULL) {
2089 env = cpu->env_ptr;
2090 }
2091 #endif
2092 assert_page_locked(p);
2093 PAGE_FOR_EACH_TB(p, tb, n) {
2094 #ifdef TARGET_HAS_PRECISE_SMC
2095 if (current_tb == tb &&
2096 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2097 /* If we are modifying the current TB, we must stop
2098 its execution. We could be more precise by checking
2099 that the modification is after the current PC, but it
2100 would require a specialized function to partially
2101 restore the CPU state */
2102
2103 current_tb_modified = 1;
2104 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2105 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2106 &current_flags);
2107 }
2108 #endif /* TARGET_HAS_PRECISE_SMC */
2109 tb_phys_invalidate(tb, addr);
2110 }
2111 p->first_tb = (uintptr_t)NULL;
2112 #ifdef TARGET_HAS_PRECISE_SMC
2113 if (current_tb_modified) {
2114 /* Force execution of one insn next time. */
2115 cpu->cflags_next_tb = 1 | curr_cflags();
2116 return true;
2117 }
2118 #endif
2119
2120 return false;
2121 }
2122 #endif
2123
2124 /* user-mode: call with mmap_lock held */
2125 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2126 {
2127 TranslationBlock *tb;
2128
2129 assert_memory_lock();
2130
2131 tb = tcg_tb_lookup(retaddr);
2132 if (tb) {
2133 /* We can use retranslation to find the PC. */
2134 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2135 tb_phys_invalidate(tb, -1);
2136 } else {
2137 /* The exception probably happened in a helper. The CPU state should
2138 have been saved before calling it. Fetch the PC from there. */
2139 CPUArchState *env = cpu->env_ptr;
2140 target_ulong pc, cs_base;
2141 tb_page_addr_t addr;
2142 uint32_t flags;
2143
2144 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2145 addr = get_page_addr_code(env, pc);
2146 if (addr != -1) {
2147 tb_invalidate_phys_range(addr, addr + 1);
2148 }
2149 }
2150 }
2151
2152 #ifndef CONFIG_USER_ONLY
2153 /* in deterministic execution mode, instructions doing device I/Os
2154 * must be at the end of the TB.
2155 *
2156 * Called by softmmu_template.h, with iothread mutex not held.
2157 */
2158 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2159 {
2160 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2161 CPUArchState *env = cpu->env_ptr;
2162 #endif
2163 TranslationBlock *tb;
2164 uint32_t n;
2165
2166 tb = tcg_tb_lookup(retaddr);
2167 if (!tb) {
2168 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2169 (void *)retaddr);
2170 }
2171 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2172
2173 /* On MIPS and SH, delay slot instructions can only be restarted if
2174 they were already the first instruction in the TB. If this is not
2175 the first instruction in a TB then re-execute the preceding
2176 branch. */
2177 n = 1;
2178 #if defined(TARGET_MIPS)
2179 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2180 && env->active_tc.PC != tb->pc) {
2181 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2182 cpu_neg(cpu)->icount_decr.u16.low++;
2183 env->hflags &= ~MIPS_HFLAG_BMASK;
2184 n = 2;
2185 }
2186 #elif defined(TARGET_SH4)
2187 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2188 && env->pc != tb->pc) {
2189 env->pc -= 2;
2190 cpu_neg(cpu)->icount_decr.u16.low++;
2191 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2192 n = 2;
2193 }
2194 #endif
2195
2196 /* Generate a new TB executing the I/O insn. */
2197 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2198
2199 if (tb_cflags(tb) & CF_NOCACHE) {
2200 if (tb->orig_tb) {
2201 /* Invalidate original TB if this TB was generated in
2202 * cpu_exec_nocache() */
2203 tb_phys_invalidate(tb->orig_tb, -1);
2204 }
2205 tcg_tb_remove(tb);
2206 }
2207
2208 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2209 * the first in the TB) then we end up generating a whole new TB and
2210 * repeating the fault, which is horribly inefficient.
2211 * Better would be to execute just this insn uncached, or generate a
2212 * second new TB.
2213 */
2214 cpu_loop_exit_noexc(cpu);
2215 }
2216
2217 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2218 {
2219 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2220
2221 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2222 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2223 }
2224 }
2225
2226 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2227 {
2228 /* Discard jump cache entries for any tb which might potentially
2229 overlap the flushed page. */
2230 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2231 tb_jmp_cache_clear_page(cpu, addr);
2232 }
2233
2234 static void print_qht_statistics(struct qht_stats hst)
2235 {
2236 uint32_t hgram_opts;
2237 size_t hgram_bins;
2238 char *hgram;
2239
2240 if (!hst.head_buckets) {
2241 return;
2242 }
2243 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2244 hst.used_head_buckets, hst.head_buckets,
2245 (double)hst.used_head_buckets / hst.head_buckets * 100);
2246
2247 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2248 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2249 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2250 hgram_opts |= QDIST_PR_NODECIMAL;
2251 }
2252 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2253 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2254 qdist_avg(&hst.occupancy) * 100, hgram);
2255 g_free(hgram);
2256
2257 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2258 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2259 if (hgram_bins > 10) {
2260 hgram_bins = 10;
2261 } else {
2262 hgram_bins = 0;
2263 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2264 }
2265 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2266 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2267 qdist_avg(&hst.chain), hgram);
2268 g_free(hgram);
2269 }
2270
2271 struct tb_tree_stats {
2272 size_t nb_tbs;
2273 size_t host_size;
2274 size_t target_size;
2275 size_t max_target_size;
2276 size_t direct_jmp_count;
2277 size_t direct_jmp2_count;
2278 size_t cross_page;
2279 };
2280
2281 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2282 {
2283 const TranslationBlock *tb = value;
2284 struct tb_tree_stats *tst = data;
2285
2286 tst->nb_tbs++;
2287 tst->host_size += tb->tc.size;
2288 tst->target_size += tb->size;
2289 if (tb->size > tst->max_target_size) {
2290 tst->max_target_size = tb->size;
2291 }
2292 if (tb->page_addr[1] != -1) {
2293 tst->cross_page++;
2294 }
2295 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2296 tst->direct_jmp_count++;
2297 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2298 tst->direct_jmp2_count++;
2299 }
2300 }
2301 return false;
2302 }
2303
2304 void dump_exec_info(void)
2305 {
2306 struct tb_tree_stats tst = {};
2307 struct qht_stats hst;
2308 size_t nb_tbs, flush_full, flush_part, flush_elide;
2309
2310 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2311 nb_tbs = tst.nb_tbs;
2312 /* XXX: avoid using doubles ? */
2313 qemu_printf("Translation buffer state:\n");
2314 /*
2315 * Report total code size including the padding and TB structs;
2316 * otherwise users might think "-tb-size" is not honoured.
2317 * For avg host size we use the precise numbers from tb_tree_stats though.
2318 */
2319 qemu_printf("gen code size %zu/%zu\n",
2320 tcg_code_size(), tcg_code_capacity());
2321 qemu_printf("TB count %zu\n", nb_tbs);
2322 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2323 nb_tbs ? tst.target_size / nb_tbs : 0,
2324 tst.max_target_size);
2325 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2326 nb_tbs ? tst.host_size / nb_tbs : 0,
2327 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2328 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2329 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2330 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2331 tst.direct_jmp_count,
2332 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2333 tst.direct_jmp2_count,
2334 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2335
2336 qht_statistics_init(&tb_ctx.htable, &hst);
2337 print_qht_statistics(hst);
2338 qht_statistics_destroy(&hst);
2339
2340 qemu_printf("\nStatistics:\n");
2341 qemu_printf("TB flush count %u\n",
2342 atomic_read(&tb_ctx.tb_flush_count));
2343 qemu_printf("TB invalidate count %zu\n",
2344 tcg_tb_phys_invalidate_count());
2345
2346 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2347 qemu_printf("TLB full flushes %zu\n", flush_full);
2348 qemu_printf("TLB partial flushes %zu\n", flush_part);
2349 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2350 tcg_dump_info();
2351 }
2352
2353 void dump_opcount_info(void)
2354 {
2355 tcg_dump_op_count();
2356 }
2357
2358 #else /* CONFIG_USER_ONLY */
2359
2360 void cpu_interrupt(CPUState *cpu, int mask)
2361 {
2362 g_assert(qemu_mutex_iothread_locked());
2363 cpu->interrupt_request |= mask;
2364 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2365 }
2366
2367 /*
2368 * Walks guest process memory "regions" one by one
2369 * and calls callback function 'fn' for each region.
2370 */
2371 struct walk_memory_regions_data {
2372 walk_memory_regions_fn fn;
2373 void *priv;
2374 target_ulong start;
2375 int prot;
2376 };
2377
2378 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2379 target_ulong end, int new_prot)
2380 {
2381 if (data->start != -1u) {
2382 int rc = data->fn(data->priv, data->start, end, data->prot);
2383 if (rc != 0) {
2384 return rc;
2385 }
2386 }
2387
2388 data->start = (new_prot ? end : -1u);
2389 data->prot = new_prot;
2390
2391 return 0;
2392 }
2393
2394 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2395 target_ulong base, int level, void **lp)
2396 {
2397 target_ulong pa;
2398 int i, rc;
2399
2400 if (*lp == NULL) {
2401 return walk_memory_regions_end(data, base, 0);
2402 }
2403
2404 if (level == 0) {
2405 PageDesc *pd = *lp;
2406
2407 for (i = 0; i < V_L2_SIZE; ++i) {
2408 int prot = pd[i].flags;
2409
2410 pa = base | (i << TARGET_PAGE_BITS);
2411 if (prot != data->prot) {
2412 rc = walk_memory_regions_end(data, pa, prot);
2413 if (rc != 0) {
2414 return rc;
2415 }
2416 }
2417 }
2418 } else {
2419 void **pp = *lp;
2420
2421 for (i = 0; i < V_L2_SIZE; ++i) {
2422 pa = base | ((target_ulong)i <<
2423 (TARGET_PAGE_BITS + V_L2_BITS * level));
2424 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2425 if (rc != 0) {
2426 return rc;
2427 }
2428 }
2429 }
2430
2431 return 0;
2432 }
2433
2434 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2435 {
2436 struct walk_memory_regions_data data;
2437 uintptr_t i, l1_sz = v_l1_size;
2438
2439 data.fn = fn;
2440 data.priv = priv;
2441 data.start = -1u;
2442 data.prot = 0;
2443
2444 for (i = 0; i < l1_sz; i++) {
2445 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2446 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2447 if (rc != 0) {
2448 return rc;
2449 }
2450 }
2451
2452 return walk_memory_regions_end(&data, 0, 0);
2453 }
2454
2455 static int dump_region(void *priv, target_ulong start,
2456 target_ulong end, unsigned long prot)
2457 {
2458 FILE *f = (FILE *)priv;
2459
2460 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2461 " "TARGET_FMT_lx" %c%c%c\n",
2462 start, end, end - start,
2463 ((prot & PAGE_READ) ? 'r' : '-'),
2464 ((prot & PAGE_WRITE) ? 'w' : '-'),
2465 ((prot & PAGE_EXEC) ? 'x' : '-'));
2466
2467 return 0;
2468 }
2469
2470 /* dump memory mappings */
2471 void page_dump(FILE *f)
2472 {
2473 const int length = sizeof(target_ulong) * 2;
2474 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2475 length, "start", length, "end", length, "size", "prot");
2476 walk_memory_regions(f, dump_region);
2477 }
2478
2479 int page_get_flags(target_ulong address)
2480 {
2481 PageDesc *p;
2482
2483 p = page_find(address >> TARGET_PAGE_BITS);
2484 if (!p) {
2485 return 0;
2486 }
2487 return p->flags;
2488 }
2489
2490 /* Modify the flags of a page and invalidate the code if necessary.
2491 The flag PAGE_WRITE_ORG is positioned automatically depending
2492 on PAGE_WRITE. The mmap_lock should already be held. */
2493 void page_set_flags(target_ulong start, target_ulong end, int flags)
2494 {
2495 target_ulong addr, len;
2496
2497 /* This function should never be called with addresses outside the
2498 guest address space. If this assert fires, it probably indicates
2499 a missing call to h2g_valid. */
2500 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2501 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2502 #endif
2503 assert(start < end);
2504 assert_memory_lock();
2505
2506 start = start & TARGET_PAGE_MASK;
2507 end = TARGET_PAGE_ALIGN(end);
2508
2509 if (flags & PAGE_WRITE) {
2510 flags |= PAGE_WRITE_ORG;
2511 }
2512
2513 for (addr = start, len = end - start;
2514 len != 0;
2515 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2516 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2517
2518 /* If the write protection bit is set, then we invalidate
2519 the code inside. */
2520 if (!(p->flags & PAGE_WRITE) &&
2521 (flags & PAGE_WRITE) &&
2522 p->first_tb) {
2523 tb_invalidate_phys_page(addr, 0);
2524 }
2525 p->flags = flags;
2526 }
2527 }
2528
2529 int page_check_range(target_ulong start, target_ulong len, int flags)
2530 {
2531 PageDesc *p;
2532 target_ulong end;
2533 target_ulong addr;
2534
2535 /* This function should never be called with addresses outside the
2536 guest address space. If this assert fires, it probably indicates
2537 a missing call to h2g_valid. */
2538 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2539 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2540 #endif
2541
2542 if (len == 0) {
2543 return 0;
2544 }
2545 if (start + len - 1 < start) {
2546 /* We've wrapped around. */
2547 return -1;
2548 }
2549
2550 /* must do before we loose bits in the next step */
2551 end = TARGET_PAGE_ALIGN(start + len);
2552 start = start & TARGET_PAGE_MASK;
2553
2554 for (addr = start, len = end - start;
2555 len != 0;
2556 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2557 p = page_find(addr >> TARGET_PAGE_BITS);
2558 if (!p) {
2559 return -1;
2560 }
2561 if (!(p->flags & PAGE_VALID)) {
2562 return -1;
2563 }
2564
2565 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2566 return -1;
2567 }
2568 if (flags & PAGE_WRITE) {
2569 if (!(p->flags & PAGE_WRITE_ORG)) {
2570 return -1;
2571 }
2572 /* unprotect the page if it was put read-only because it
2573 contains translated code */
2574 if (!(p->flags & PAGE_WRITE)) {
2575 if (!page_unprotect(addr, 0)) {
2576 return -1;
2577 }
2578 }
2579 }
2580 }
2581 return 0;
2582 }
2583
2584 /* called from signal handler: invalidate the code and unprotect the
2585 * page. Return 0 if the fault was not handled, 1 if it was handled,
2586 * and 2 if it was handled but the caller must cause the TB to be
2587 * immediately exited. (We can only return 2 if the 'pc' argument is
2588 * non-zero.)
2589 */
2590 int page_unprotect(target_ulong address, uintptr_t pc)
2591 {
2592 unsigned int prot;
2593 bool current_tb_invalidated;
2594 PageDesc *p;
2595 target_ulong host_start, host_end, addr;
2596
2597 /* Technically this isn't safe inside a signal handler. However we
2598 know this only ever happens in a synchronous SEGV handler, so in
2599 practice it seems to be ok. */
2600 mmap_lock();
2601
2602 p = page_find(address >> TARGET_PAGE_BITS);
2603 if (!p) {
2604 mmap_unlock();
2605 return 0;
2606 }
2607
2608 /* if the page was really writable, then we change its
2609 protection back to writable */
2610 if (p->flags & PAGE_WRITE_ORG) {
2611 current_tb_invalidated = false;
2612 if (p->flags & PAGE_WRITE) {
2613 /* If the page is actually marked WRITE then assume this is because
2614 * this thread raced with another one which got here first and
2615 * set the page to PAGE_WRITE and did the TB invalidate for us.
2616 */
2617 #ifdef TARGET_HAS_PRECISE_SMC
2618 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2619 if (current_tb) {
2620 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2621 }
2622 #endif
2623 } else {
2624 host_start = address & qemu_host_page_mask;
2625 host_end = host_start + qemu_host_page_size;
2626
2627 prot = 0;
2628 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2629 p = page_find(addr >> TARGET_PAGE_BITS);
2630 p->flags |= PAGE_WRITE;
2631 prot |= p->flags;
2632
2633 /* and since the content will be modified, we must invalidate
2634 the corresponding translated code. */
2635 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2636 #ifdef CONFIG_USER_ONLY
2637 if (DEBUG_TB_CHECK_GATE) {
2638 tb_invalidate_check(addr);
2639 }
2640 #endif
2641 }
2642 mprotect((void *)g2h(host_start), qemu_host_page_size,
2643 prot & PAGE_BITS);
2644 }
2645 mmap_unlock();
2646 /* If current TB was invalidated return to main loop */
2647 return current_tb_invalidated ? 2 : 1;
2648 }
2649 mmap_unlock();
2650 return 0;
2651 }
2652 #endif /* CONFIG_USER_ONLY */
2653
2654 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2655 void tcg_flush_softmmu_tlb(CPUState *cs)
2656 {
2657 #ifdef CONFIG_SOFTMMU
2658 tlb_flush(cs);
2659 #endif
2660 }