]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/translate-all.c
Merge remote-tracking branch 'remotes/xtensa/tags/20190204-xtensa' into staging
[mirror_qemu.git] / accel / tcg / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20
21 #include "qemu-common.h"
22 #define NO_CPU_IO_DEFS
23 #include "cpu.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #if defined(CONFIG_USER_ONLY)
29 #include "qemu.h"
30 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
31 #include <sys/param.h>
32 #if __FreeBSD_version >= 700104
33 #define HAVE_KINFO_GETVMMAP
34 #define sigqueue sigqueue_freebsd /* avoid redefinition */
35 #include <sys/proc.h>
36 #include <machine/profile.h>
37 #define _KERNEL
38 #include <sys/user.h>
39 #undef _KERNEL
40 #undef sigqueue
41 #include <libutil.h>
42 #endif
43 #endif
44 #else
45 #include "exec/ram_addr.h"
46 #endif
47
48 #include "exec/cputlb.h"
49 #include "exec/tb-hash.h"
50 #include "translate-all.h"
51 #include "qemu/bitmap.h"
52 #include "qemu/error-report.h"
53 #include "qemu/timer.h"
54 #include "qemu/main-loop.h"
55 #include "exec/log.h"
56 #include "sysemu/cpus.h"
57
58 /* #define DEBUG_TB_INVALIDATE */
59 /* #define DEBUG_TB_FLUSH */
60 /* make various TB consistency checks */
61 /* #define DEBUG_TB_CHECK */
62
63 #ifdef DEBUG_TB_INVALIDATE
64 #define DEBUG_TB_INVALIDATE_GATE 1
65 #else
66 #define DEBUG_TB_INVALIDATE_GATE 0
67 #endif
68
69 #ifdef DEBUG_TB_FLUSH
70 #define DEBUG_TB_FLUSH_GATE 1
71 #else
72 #define DEBUG_TB_FLUSH_GATE 0
73 #endif
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #ifdef DEBUG_TB_CHECK
81 #define DEBUG_TB_CHECK_GATE 1
82 #else
83 #define DEBUG_TB_CHECK_GATE 0
84 #endif
85
86 /* Access to the various translations structures need to be serialised via locks
87 * for consistency.
88 * In user-mode emulation access to the memory related structures are protected
89 * with mmap_lock.
90 * In !user-mode we use per-page locks.
91 */
92 #ifdef CONFIG_SOFTMMU
93 #define assert_memory_lock()
94 #else
95 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
96 #endif
97
98 #define SMC_BITMAP_USE_THRESHOLD 10
99
100 typedef struct PageDesc {
101 /* list of TBs intersecting this ram page */
102 uintptr_t first_tb;
103 #ifdef CONFIG_SOFTMMU
104 /* in order to optimize self modifying code, we count the number
105 of lookups we do to a given page to use a bitmap */
106 unsigned long *code_bitmap;
107 unsigned int code_write_count;
108 #else
109 unsigned long flags;
110 #endif
111 #ifndef CONFIG_USER_ONLY
112 QemuSpin lock;
113 #endif
114 } PageDesc;
115
116 /**
117 * struct page_entry - page descriptor entry
118 * @pd: pointer to the &struct PageDesc of the page this entry represents
119 * @index: page index of the page
120 * @locked: whether the page is locked
121 *
122 * This struct helps us keep track of the locked state of a page, without
123 * bloating &struct PageDesc.
124 *
125 * A page lock protects accesses to all fields of &struct PageDesc.
126 *
127 * See also: &struct page_collection.
128 */
129 struct page_entry {
130 PageDesc *pd;
131 tb_page_addr_t index;
132 bool locked;
133 };
134
135 /**
136 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
137 * @tree: Binary search tree (BST) of the pages, with key == page index
138 * @max: Pointer to the page in @tree with the highest page index
139 *
140 * To avoid deadlock we lock pages in ascending order of page index.
141 * When operating on a set of pages, we need to keep track of them so that
142 * we can lock them in order and also unlock them later. For this we collect
143 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
144 * @tree implementation we use does not provide an O(1) operation to obtain the
145 * highest-ranked element, we use @max to keep track of the inserted page
146 * with the highest index. This is valuable because if a page is not in
147 * the tree and its index is higher than @max's, then we can lock it
148 * without breaking the locking order rule.
149 *
150 * Note on naming: 'struct page_set' would be shorter, but we already have a few
151 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
152 *
153 * See also: page_collection_lock().
154 */
155 struct page_collection {
156 GTree *tree;
157 struct page_entry *max;
158 };
159
160 /* list iterators for lists of tagged pointers in TranslationBlock */
161 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
162 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
163 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
164 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
165
166 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
167 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
168
169 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
170 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
171
172 /* In system mode we want L1_MAP to be based on ram offsets,
173 while in user mode we want it to be based on virtual addresses. */
174 #if !defined(CONFIG_USER_ONLY)
175 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
176 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
177 #else
178 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
179 #endif
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
182 #endif
183
184 /* Size of the L2 (and L3, etc) page tables. */
185 #define V_L2_BITS 10
186 #define V_L2_SIZE (1 << V_L2_BITS)
187
188 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
189 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
190 sizeof_field(TranslationBlock, trace_vcpu_dstate)
191 * BITS_PER_BYTE);
192
193 /*
194 * L1 Mapping properties
195 */
196 static int v_l1_size;
197 static int v_l1_shift;
198 static int v_l2_levels;
199
200 /* The bottom level has pointers to PageDesc, and is indexed by
201 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
202 */
203 #define V_L1_MIN_BITS 4
204 #define V_L1_MAX_BITS (V_L2_BITS + 3)
205 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
206
207 static void *l1_map[V_L1_MAX_SIZE];
208
209 /* code generation context */
210 TCGContext tcg_init_ctx;
211 __thread TCGContext *tcg_ctx;
212 TBContext tb_ctx;
213 bool parallel_cpus;
214
215 static void page_table_config_init(void)
216 {
217 uint32_t v_l1_bits;
218
219 assert(TARGET_PAGE_BITS);
220 /* The bits remaining after N lower levels of page tables. */
221 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
222 if (v_l1_bits < V_L1_MIN_BITS) {
223 v_l1_bits += V_L2_BITS;
224 }
225
226 v_l1_size = 1 << v_l1_bits;
227 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
228 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
229
230 assert(v_l1_bits <= V_L1_MAX_BITS);
231 assert(v_l1_shift % V_L2_BITS == 0);
232 assert(v_l2_levels >= 0);
233 }
234
235 void cpu_gen_init(void)
236 {
237 tcg_context_init(&tcg_init_ctx);
238 }
239
240 /* Encode VAL as a signed leb128 sequence at P.
241 Return P incremented past the encoded value. */
242 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
243 {
244 int more, byte;
245
246 do {
247 byte = val & 0x7f;
248 val >>= 7;
249 more = !((val == 0 && (byte & 0x40) == 0)
250 || (val == -1 && (byte & 0x40) != 0));
251 if (more) {
252 byte |= 0x80;
253 }
254 *p++ = byte;
255 } while (more);
256
257 return p;
258 }
259
260 /* Decode a signed leb128 sequence at *PP; increment *PP past the
261 decoded value. Return the decoded value. */
262 static target_long decode_sleb128(uint8_t **pp)
263 {
264 uint8_t *p = *pp;
265 target_long val = 0;
266 int byte, shift = 0;
267
268 do {
269 byte = *p++;
270 val |= (target_ulong)(byte & 0x7f) << shift;
271 shift += 7;
272 } while (byte & 0x80);
273 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
274 val |= -(target_ulong)1 << shift;
275 }
276
277 *pp = p;
278 return val;
279 }
280
281 /* Encode the data collected about the instructions while compiling TB.
282 Place the data at BLOCK, and return the number of bytes consumed.
283
284 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
285 which come from the target's insn_start data, followed by a uintptr_t
286 which comes from the host pc of the end of the code implementing the insn.
287
288 Each line of the table is encoded as sleb128 deltas from the previous
289 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
290 That is, the first column is seeded with the guest pc, the last column
291 with the host pc, and the middle columns with zeros. */
292
293 static int encode_search(TranslationBlock *tb, uint8_t *block)
294 {
295 uint8_t *highwater = tcg_ctx->code_gen_highwater;
296 uint8_t *p = block;
297 int i, j, n;
298
299 for (i = 0, n = tb->icount; i < n; ++i) {
300 target_ulong prev;
301
302 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
303 if (i == 0) {
304 prev = (j == 0 ? tb->pc : 0);
305 } else {
306 prev = tcg_ctx->gen_insn_data[i - 1][j];
307 }
308 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
309 }
310 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
311 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
312
313 /* Test for (pending) buffer overflow. The assumption is that any
314 one row beginning below the high water mark cannot overrun
315 the buffer completely. Thus we can test for overflow after
316 encoding a row without having to check during encoding. */
317 if (unlikely(p > highwater)) {
318 return -1;
319 }
320 }
321
322 return p - block;
323 }
324
325 /* The cpu state corresponding to 'searched_pc' is restored.
326 * When reset_icount is true, current TB will be interrupted and
327 * icount should be recalculated.
328 */
329 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
330 uintptr_t searched_pc, bool reset_icount)
331 {
332 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
333 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
334 CPUArchState *env = cpu->env_ptr;
335 uint8_t *p = tb->tc.ptr + tb->tc.size;
336 int i, j, num_insns = tb->icount;
337 #ifdef CONFIG_PROFILER
338 TCGProfile *prof = &tcg_ctx->prof;
339 int64_t ti = profile_getclock();
340 #endif
341
342 searched_pc -= GETPC_ADJ;
343
344 if (searched_pc < host_pc) {
345 return -1;
346 }
347
348 /* Reconstruct the stored insn data while looking for the point at
349 which the end of the insn exceeds the searched_pc. */
350 for (i = 0; i < num_insns; ++i) {
351 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
352 data[j] += decode_sleb128(&p);
353 }
354 host_pc += decode_sleb128(&p);
355 if (host_pc > searched_pc) {
356 goto found;
357 }
358 }
359 return -1;
360
361 found:
362 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
363 assert(use_icount);
364 /* Reset the cycle counter to the start of the block
365 and shift if to the number of actually executed instructions */
366 cpu->icount_decr.u16.low += num_insns - i;
367 }
368 restore_state_to_opc(env, tb, data);
369
370 #ifdef CONFIG_PROFILER
371 atomic_set(&prof->restore_time,
372 prof->restore_time + profile_getclock() - ti);
373 atomic_set(&prof->restore_count, prof->restore_count + 1);
374 #endif
375 return 0;
376 }
377
378 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
379 {
380 TranslationBlock *tb;
381 bool r = false;
382 uintptr_t check_offset;
383
384 /* The host_pc has to be in the region of current code buffer. If
385 * it is not we will not be able to resolve it here. The two cases
386 * where host_pc will not be correct are:
387 *
388 * - fault during translation (instruction fetch)
389 * - fault from helper (not using GETPC() macro)
390 *
391 * Either way we need return early as we can't resolve it here.
392 *
393 * We are using unsigned arithmetic so if host_pc <
394 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
395 * above the code_gen_buffer_size
396 */
397 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
398
399 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
400 tb = tcg_tb_lookup(host_pc);
401 if (tb) {
402 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
403 if (tb_cflags(tb) & CF_NOCACHE) {
404 /* one-shot translation, invalidate it immediately */
405 tb_phys_invalidate(tb, -1);
406 tcg_tb_remove(tb);
407 }
408 r = true;
409 }
410 }
411
412 return r;
413 }
414
415 static void page_init(void)
416 {
417 page_size_init();
418 page_table_config_init();
419
420 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
421 {
422 #ifdef HAVE_KINFO_GETVMMAP
423 struct kinfo_vmentry *freep;
424 int i, cnt;
425
426 freep = kinfo_getvmmap(getpid(), &cnt);
427 if (freep) {
428 mmap_lock();
429 for (i = 0; i < cnt; i++) {
430 unsigned long startaddr, endaddr;
431
432 startaddr = freep[i].kve_start;
433 endaddr = freep[i].kve_end;
434 if (h2g_valid(startaddr)) {
435 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
436
437 if (h2g_valid(endaddr)) {
438 endaddr = h2g(endaddr);
439 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
440 } else {
441 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
442 endaddr = ~0ul;
443 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 #endif
445 }
446 }
447 }
448 free(freep);
449 mmap_unlock();
450 }
451 #else
452 FILE *f;
453
454 last_brk = (unsigned long)sbrk(0);
455
456 f = fopen("/compat/linux/proc/self/maps", "r");
457 if (f) {
458 mmap_lock();
459
460 do {
461 unsigned long startaddr, endaddr;
462 int n;
463
464 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
465
466 if (n == 2 && h2g_valid(startaddr)) {
467 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
468
469 if (h2g_valid(endaddr)) {
470 endaddr = h2g(endaddr);
471 } else {
472 endaddr = ~0ul;
473 }
474 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
475 }
476 } while (!feof(f));
477
478 fclose(f);
479 mmap_unlock();
480 }
481 #endif
482 }
483 #endif
484 }
485
486 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
487 {
488 PageDesc *pd;
489 void **lp;
490 int i;
491
492 /* Level 1. Always allocated. */
493 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
494
495 /* Level 2..N-1. */
496 for (i = v_l2_levels; i > 0; i--) {
497 void **p = atomic_rcu_read(lp);
498
499 if (p == NULL) {
500 void *existing;
501
502 if (!alloc) {
503 return NULL;
504 }
505 p = g_new0(void *, V_L2_SIZE);
506 existing = atomic_cmpxchg(lp, NULL, p);
507 if (unlikely(existing)) {
508 g_free(p);
509 p = existing;
510 }
511 }
512
513 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
514 }
515
516 pd = atomic_rcu_read(lp);
517 if (pd == NULL) {
518 void *existing;
519
520 if (!alloc) {
521 return NULL;
522 }
523 pd = g_new0(PageDesc, V_L2_SIZE);
524 #ifndef CONFIG_USER_ONLY
525 {
526 int i;
527
528 for (i = 0; i < V_L2_SIZE; i++) {
529 qemu_spin_init(&pd[i].lock);
530 }
531 }
532 #endif
533 existing = atomic_cmpxchg(lp, NULL, pd);
534 if (unlikely(existing)) {
535 g_free(pd);
536 pd = existing;
537 }
538 }
539
540 return pd + (index & (V_L2_SIZE - 1));
541 }
542
543 static inline PageDesc *page_find(tb_page_addr_t index)
544 {
545 return page_find_alloc(index, 0);
546 }
547
548 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
549 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
550
551 /* In user-mode page locks aren't used; mmap_lock is enough */
552 #ifdef CONFIG_USER_ONLY
553
554 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
555
556 static inline void page_lock(PageDesc *pd)
557 { }
558
559 static inline void page_unlock(PageDesc *pd)
560 { }
561
562 static inline void page_lock_tb(const TranslationBlock *tb)
563 { }
564
565 static inline void page_unlock_tb(const TranslationBlock *tb)
566 { }
567
568 struct page_collection *
569 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
570 {
571 return NULL;
572 }
573
574 void page_collection_unlock(struct page_collection *set)
575 { }
576 #else /* !CONFIG_USER_ONLY */
577
578 #ifdef CONFIG_DEBUG_TCG
579
580 static __thread GHashTable *ht_pages_locked_debug;
581
582 static void ht_pages_locked_debug_init(void)
583 {
584 if (ht_pages_locked_debug) {
585 return;
586 }
587 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
588 }
589
590 static bool page_is_locked(const PageDesc *pd)
591 {
592 PageDesc *found;
593
594 ht_pages_locked_debug_init();
595 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
596 return !!found;
597 }
598
599 static void page_lock__debug(PageDesc *pd)
600 {
601 ht_pages_locked_debug_init();
602 g_assert(!page_is_locked(pd));
603 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
604 }
605
606 static void page_unlock__debug(const PageDesc *pd)
607 {
608 bool removed;
609
610 ht_pages_locked_debug_init();
611 g_assert(page_is_locked(pd));
612 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
613 g_assert(removed);
614 }
615
616 static void
617 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
618 {
619 if (unlikely(!page_is_locked(pd))) {
620 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
621 pd, file, line);
622 abort();
623 }
624 }
625
626 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
627
628 void assert_no_pages_locked(void)
629 {
630 ht_pages_locked_debug_init();
631 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
632 }
633
634 #else /* !CONFIG_DEBUG_TCG */
635
636 #define assert_page_locked(pd)
637
638 static inline void page_lock__debug(const PageDesc *pd)
639 {
640 }
641
642 static inline void page_unlock__debug(const PageDesc *pd)
643 {
644 }
645
646 #endif /* CONFIG_DEBUG_TCG */
647
648 static inline void page_lock(PageDesc *pd)
649 {
650 page_lock__debug(pd);
651 qemu_spin_lock(&pd->lock);
652 }
653
654 static inline void page_unlock(PageDesc *pd)
655 {
656 qemu_spin_unlock(&pd->lock);
657 page_unlock__debug(pd);
658 }
659
660 /* lock the page(s) of a TB in the correct acquisition order */
661 static inline void page_lock_tb(const TranslationBlock *tb)
662 {
663 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
664 }
665
666 static inline void page_unlock_tb(const TranslationBlock *tb)
667 {
668 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
669
670 page_unlock(p1);
671 if (unlikely(tb->page_addr[1] != -1)) {
672 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
673
674 if (p2 != p1) {
675 page_unlock(p2);
676 }
677 }
678 }
679
680 static inline struct page_entry *
681 page_entry_new(PageDesc *pd, tb_page_addr_t index)
682 {
683 struct page_entry *pe = g_malloc(sizeof(*pe));
684
685 pe->index = index;
686 pe->pd = pd;
687 pe->locked = false;
688 return pe;
689 }
690
691 static void page_entry_destroy(gpointer p)
692 {
693 struct page_entry *pe = p;
694
695 g_assert(pe->locked);
696 page_unlock(pe->pd);
697 g_free(pe);
698 }
699
700 /* returns false on success */
701 static bool page_entry_trylock(struct page_entry *pe)
702 {
703 bool busy;
704
705 busy = qemu_spin_trylock(&pe->pd->lock);
706 if (!busy) {
707 g_assert(!pe->locked);
708 pe->locked = true;
709 page_lock__debug(pe->pd);
710 }
711 return busy;
712 }
713
714 static void do_page_entry_lock(struct page_entry *pe)
715 {
716 page_lock(pe->pd);
717 g_assert(!pe->locked);
718 pe->locked = true;
719 }
720
721 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
722 {
723 struct page_entry *pe = value;
724
725 do_page_entry_lock(pe);
726 return FALSE;
727 }
728
729 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
730 {
731 struct page_entry *pe = value;
732
733 if (pe->locked) {
734 pe->locked = false;
735 page_unlock(pe->pd);
736 }
737 return FALSE;
738 }
739
740 /*
741 * Trylock a page, and if successful, add the page to a collection.
742 * Returns true ("busy") if the page could not be locked; false otherwise.
743 */
744 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
745 {
746 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
747 struct page_entry *pe;
748 PageDesc *pd;
749
750 pe = g_tree_lookup(set->tree, &index);
751 if (pe) {
752 return false;
753 }
754
755 pd = page_find(index);
756 if (pd == NULL) {
757 return false;
758 }
759
760 pe = page_entry_new(pd, index);
761 g_tree_insert(set->tree, &pe->index, pe);
762
763 /*
764 * If this is either (1) the first insertion or (2) a page whose index
765 * is higher than any other so far, just lock the page and move on.
766 */
767 if (set->max == NULL || pe->index > set->max->index) {
768 set->max = pe;
769 do_page_entry_lock(pe);
770 return false;
771 }
772 /*
773 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
774 * locks in order.
775 */
776 return page_entry_trylock(pe);
777 }
778
779 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
780 {
781 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
782 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
783
784 if (a == b) {
785 return 0;
786 } else if (a < b) {
787 return -1;
788 }
789 return 1;
790 }
791
792 /*
793 * Lock a range of pages ([@start,@end[) as well as the pages of all
794 * intersecting TBs.
795 * Locking order: acquire locks in ascending order of page index.
796 */
797 struct page_collection *
798 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
799 {
800 struct page_collection *set = g_malloc(sizeof(*set));
801 tb_page_addr_t index;
802 PageDesc *pd;
803
804 start >>= TARGET_PAGE_BITS;
805 end >>= TARGET_PAGE_BITS;
806 g_assert(start <= end);
807
808 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
809 page_entry_destroy);
810 set->max = NULL;
811 assert_no_pages_locked();
812
813 retry:
814 g_tree_foreach(set->tree, page_entry_lock, NULL);
815
816 for (index = start; index <= end; index++) {
817 TranslationBlock *tb;
818 int n;
819
820 pd = page_find(index);
821 if (pd == NULL) {
822 continue;
823 }
824 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
825 g_tree_foreach(set->tree, page_entry_unlock, NULL);
826 goto retry;
827 }
828 assert_page_locked(pd);
829 PAGE_FOR_EACH_TB(pd, tb, n) {
830 if (page_trylock_add(set, tb->page_addr[0]) ||
831 (tb->page_addr[1] != -1 &&
832 page_trylock_add(set, tb->page_addr[1]))) {
833 /* drop all locks, and reacquire in order */
834 g_tree_foreach(set->tree, page_entry_unlock, NULL);
835 goto retry;
836 }
837 }
838 }
839 return set;
840 }
841
842 void page_collection_unlock(struct page_collection *set)
843 {
844 /* entries are unlocked and freed via page_entry_destroy */
845 g_tree_destroy(set->tree);
846 g_free(set);
847 }
848
849 #endif /* !CONFIG_USER_ONLY */
850
851 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
852 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
853 {
854 PageDesc *p1, *p2;
855 tb_page_addr_t page1;
856 tb_page_addr_t page2;
857
858 assert_memory_lock();
859 g_assert(phys1 != -1);
860
861 page1 = phys1 >> TARGET_PAGE_BITS;
862 page2 = phys2 >> TARGET_PAGE_BITS;
863
864 p1 = page_find_alloc(page1, alloc);
865 if (ret_p1) {
866 *ret_p1 = p1;
867 }
868 if (likely(phys2 == -1)) {
869 page_lock(p1);
870 return;
871 } else if (page1 == page2) {
872 page_lock(p1);
873 if (ret_p2) {
874 *ret_p2 = p1;
875 }
876 return;
877 }
878 p2 = page_find_alloc(page2, alloc);
879 if (ret_p2) {
880 *ret_p2 = p2;
881 }
882 if (page1 < page2) {
883 page_lock(p1);
884 page_lock(p2);
885 } else {
886 page_lock(p2);
887 page_lock(p1);
888 }
889 }
890
891 #if defined(CONFIG_USER_ONLY)
892 /* Currently it is not recommended to allocate big chunks of data in
893 user mode. It will change when a dedicated libc will be used. */
894 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
895 region in which the guest needs to run. Revisit this. */
896 #define USE_STATIC_CODE_GEN_BUFFER
897 #endif
898
899 /* Minimum size of the code gen buffer. This number is randomly chosen,
900 but not so small that we can't have a fair number of TB's live. */
901 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
902
903 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
904 indicated, this is constrained by the range of direct branches on the
905 host cpu, as used by the TCG implementation of goto_tb. */
906 #if defined(__x86_64__)
907 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
908 #elif defined(__sparc__)
909 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
910 #elif defined(__powerpc64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
912 #elif defined(__powerpc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
914 #elif defined(__aarch64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
916 #elif defined(__s390x__)
917 /* We have a +- 4GB range on the branches; leave some slop. */
918 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
919 #elif defined(__mips__)
920 /* We have a 256MB branch region, but leave room to make sure the
921 main executable is also within that region. */
922 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
923 #else
924 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
925 #endif
926
927 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
928
929 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
930 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
931 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
932
933 static inline size_t size_code_gen_buffer(size_t tb_size)
934 {
935 /* Size the buffer. */
936 if (tb_size == 0) {
937 #ifdef USE_STATIC_CODE_GEN_BUFFER
938 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
939 #else
940 /* ??? Needs adjustments. */
941 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
942 static buffer, we could size this on RESERVED_VA, on the text
943 segment size of the executable, or continue to use the default. */
944 tb_size = (unsigned long)(ram_size / 4);
945 #endif
946 }
947 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
948 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
949 }
950 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
951 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
952 }
953 return tb_size;
954 }
955
956 #ifdef __mips__
957 /* In order to use J and JAL within the code_gen_buffer, we require
958 that the buffer not cross a 256MB boundary. */
959 static inline bool cross_256mb(void *addr, size_t size)
960 {
961 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
962 }
963
964 /* We weren't able to allocate a buffer without crossing that boundary,
965 so make do with the larger portion of the buffer that doesn't cross.
966 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
967 static inline void *split_cross_256mb(void *buf1, size_t size1)
968 {
969 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
970 size_t size2 = buf1 + size1 - buf2;
971
972 size1 = buf2 - buf1;
973 if (size1 < size2) {
974 size1 = size2;
975 buf1 = buf2;
976 }
977
978 tcg_ctx->code_gen_buffer_size = size1;
979 return buf1;
980 }
981 #endif
982
983 #ifdef USE_STATIC_CODE_GEN_BUFFER
984 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
985 __attribute__((aligned(CODE_GEN_ALIGN)));
986
987 static inline void *alloc_code_gen_buffer(void)
988 {
989 void *buf = static_code_gen_buffer;
990 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
991 size_t size;
992
993 /* page-align the beginning and end of the buffer */
994 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
995 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
996
997 size = end - buf;
998
999 /* Honor a command-line option limiting the size of the buffer. */
1000 if (size > tcg_ctx->code_gen_buffer_size) {
1001 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1002 qemu_real_host_page_size);
1003 }
1004 tcg_ctx->code_gen_buffer_size = size;
1005
1006 #ifdef __mips__
1007 if (cross_256mb(buf, size)) {
1008 buf = split_cross_256mb(buf, size);
1009 size = tcg_ctx->code_gen_buffer_size;
1010 }
1011 #endif
1012
1013 if (qemu_mprotect_rwx(buf, size)) {
1014 abort();
1015 }
1016 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1017
1018 return buf;
1019 }
1020 #elif defined(_WIN32)
1021 static inline void *alloc_code_gen_buffer(void)
1022 {
1023 size_t size = tcg_ctx->code_gen_buffer_size;
1024 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1025 PAGE_EXECUTE_READWRITE);
1026 }
1027 #else
1028 static inline void *alloc_code_gen_buffer(void)
1029 {
1030 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1031 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1032 uintptr_t start = 0;
1033 size_t size = tcg_ctx->code_gen_buffer_size;
1034 void *buf;
1035
1036 /* Constrain the position of the buffer based on the host cpu.
1037 Note that these addresses are chosen in concert with the
1038 addresses assigned in the relevant linker script file. */
1039 # if defined(__PIE__) || defined(__PIC__)
1040 /* Don't bother setting a preferred location if we're building
1041 a position-independent executable. We're more likely to get
1042 an address near the main executable if we let the kernel
1043 choose the address. */
1044 # elif defined(__x86_64__) && defined(MAP_32BIT)
1045 /* Force the memory down into low memory with the executable.
1046 Leave the choice of exact location with the kernel. */
1047 flags |= MAP_32BIT;
1048 /* Cannot expect to map more than 800MB in low memory. */
1049 if (size > 800u * 1024 * 1024) {
1050 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1051 }
1052 # elif defined(__sparc__)
1053 start = 0x40000000ul;
1054 # elif defined(__s390x__)
1055 start = 0x90000000ul;
1056 # elif defined(__mips__)
1057 # if _MIPS_SIM == _ABI64
1058 start = 0x128000000ul;
1059 # else
1060 start = 0x08000000ul;
1061 # endif
1062 # endif
1063
1064 buf = mmap((void *)start, size, prot, flags, -1, 0);
1065 if (buf == MAP_FAILED) {
1066 return NULL;
1067 }
1068
1069 #ifdef __mips__
1070 if (cross_256mb(buf, size)) {
1071 /* Try again, with the original still mapped, to avoid re-acquiring
1072 that 256mb crossing. This time don't specify an address. */
1073 size_t size2;
1074 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1075 switch ((int)(buf2 != MAP_FAILED)) {
1076 case 1:
1077 if (!cross_256mb(buf2, size)) {
1078 /* Success! Use the new buffer. */
1079 munmap(buf, size);
1080 break;
1081 }
1082 /* Failure. Work with what we had. */
1083 munmap(buf2, size);
1084 /* fallthru */
1085 default:
1086 /* Split the original buffer. Free the smaller half. */
1087 buf2 = split_cross_256mb(buf, size);
1088 size2 = tcg_ctx->code_gen_buffer_size;
1089 if (buf == buf2) {
1090 munmap(buf + size2, size - size2);
1091 } else {
1092 munmap(buf, size - size2);
1093 }
1094 size = size2;
1095 break;
1096 }
1097 buf = buf2;
1098 }
1099 #endif
1100
1101 /* Request large pages for the buffer. */
1102 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1103
1104 return buf;
1105 }
1106 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1107
1108 static inline void code_gen_alloc(size_t tb_size)
1109 {
1110 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1111 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1112 if (tcg_ctx->code_gen_buffer == NULL) {
1113 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1114 exit(1);
1115 }
1116 }
1117
1118 static bool tb_cmp(const void *ap, const void *bp)
1119 {
1120 const TranslationBlock *a = ap;
1121 const TranslationBlock *b = bp;
1122
1123 return a->pc == b->pc &&
1124 a->cs_base == b->cs_base &&
1125 a->flags == b->flags &&
1126 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1127 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1128 a->page_addr[0] == b->page_addr[0] &&
1129 a->page_addr[1] == b->page_addr[1];
1130 }
1131
1132 static void tb_htable_init(void)
1133 {
1134 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1135
1136 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1137 }
1138
1139 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1140 (in bytes) allocated to the translation buffer. Zero means default
1141 size. */
1142 void tcg_exec_init(unsigned long tb_size)
1143 {
1144 tcg_allowed = true;
1145 cpu_gen_init();
1146 page_init();
1147 tb_htable_init();
1148 code_gen_alloc(tb_size);
1149 #if defined(CONFIG_SOFTMMU)
1150 /* There's no guest base to take into account, so go ahead and
1151 initialize the prologue now. */
1152 tcg_prologue_init(tcg_ctx);
1153 #endif
1154 }
1155
1156 /*
1157 * Allocate a new translation block. Flush the translation buffer if
1158 * too many translation blocks or too much generated code.
1159 */
1160 static TranslationBlock *tb_alloc(target_ulong pc)
1161 {
1162 TranslationBlock *tb;
1163
1164 assert_memory_lock();
1165
1166 tb = tcg_tb_alloc(tcg_ctx);
1167 if (unlikely(tb == NULL)) {
1168 return NULL;
1169 }
1170 return tb;
1171 }
1172
1173 /* call with @p->lock held */
1174 static inline void invalidate_page_bitmap(PageDesc *p)
1175 {
1176 assert_page_locked(p);
1177 #ifdef CONFIG_SOFTMMU
1178 g_free(p->code_bitmap);
1179 p->code_bitmap = NULL;
1180 p->code_write_count = 0;
1181 #endif
1182 }
1183
1184 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1185 static void page_flush_tb_1(int level, void **lp)
1186 {
1187 int i;
1188
1189 if (*lp == NULL) {
1190 return;
1191 }
1192 if (level == 0) {
1193 PageDesc *pd = *lp;
1194
1195 for (i = 0; i < V_L2_SIZE; ++i) {
1196 page_lock(&pd[i]);
1197 pd[i].first_tb = (uintptr_t)NULL;
1198 invalidate_page_bitmap(pd + i);
1199 page_unlock(&pd[i]);
1200 }
1201 } else {
1202 void **pp = *lp;
1203
1204 for (i = 0; i < V_L2_SIZE; ++i) {
1205 page_flush_tb_1(level - 1, pp + i);
1206 }
1207 }
1208 }
1209
1210 static void page_flush_tb(void)
1211 {
1212 int i, l1_sz = v_l1_size;
1213
1214 for (i = 0; i < l1_sz; i++) {
1215 page_flush_tb_1(v_l2_levels, l1_map + i);
1216 }
1217 }
1218
1219 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1220 {
1221 const TranslationBlock *tb = value;
1222 size_t *size = data;
1223
1224 *size += tb->tc.size;
1225 return false;
1226 }
1227
1228 /* flush all the translation blocks */
1229 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1230 {
1231 mmap_lock();
1232 /* If it is already been done on request of another CPU,
1233 * just retry.
1234 */
1235 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1236 goto done;
1237 }
1238
1239 if (DEBUG_TB_FLUSH_GATE) {
1240 size_t nb_tbs = tcg_nb_tbs();
1241 size_t host_size = 0;
1242
1243 tcg_tb_foreach(tb_host_size_iter, &host_size);
1244 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1245 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1246 }
1247
1248 CPU_FOREACH(cpu) {
1249 cpu_tb_jmp_cache_clear(cpu);
1250 }
1251
1252 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1253 page_flush_tb();
1254
1255 tcg_region_reset_all();
1256 /* XXX: flush processor icache at this point if cache flush is
1257 expensive */
1258 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1259
1260 done:
1261 mmap_unlock();
1262 }
1263
1264 void tb_flush(CPUState *cpu)
1265 {
1266 if (tcg_enabled()) {
1267 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1268 async_safe_run_on_cpu(cpu, do_tb_flush,
1269 RUN_ON_CPU_HOST_INT(tb_flush_count));
1270 }
1271 }
1272
1273 /*
1274 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1275 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1276 * and let the optimizer get rid of them by wrapping their user-only callers
1277 * with if (DEBUG_TB_CHECK_GATE).
1278 */
1279 #ifdef CONFIG_USER_ONLY
1280
1281 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1282 {
1283 TranslationBlock *tb = p;
1284 target_ulong addr = *(target_ulong *)userp;
1285
1286 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1287 printf("ERROR invalidate: address=" TARGET_FMT_lx
1288 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1289 }
1290 }
1291
1292 /* verify that all the pages have correct rights for code
1293 *
1294 * Called with mmap_lock held.
1295 */
1296 static void tb_invalidate_check(target_ulong address)
1297 {
1298 address &= TARGET_PAGE_MASK;
1299 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1300 }
1301
1302 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1303 {
1304 TranslationBlock *tb = p;
1305 int flags1, flags2;
1306
1307 flags1 = page_get_flags(tb->pc);
1308 flags2 = page_get_flags(tb->pc + tb->size - 1);
1309 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1310 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1311 (long)tb->pc, tb->size, flags1, flags2);
1312 }
1313 }
1314
1315 /* verify that all the pages have correct rights for code */
1316 static void tb_page_check(void)
1317 {
1318 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1319 }
1320
1321 #endif /* CONFIG_USER_ONLY */
1322
1323 /*
1324 * user-mode: call with mmap_lock held
1325 * !user-mode: call with @pd->lock held
1326 */
1327 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1328 {
1329 TranslationBlock *tb1;
1330 uintptr_t *pprev;
1331 unsigned int n1;
1332
1333 assert_page_locked(pd);
1334 pprev = &pd->first_tb;
1335 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1336 if (tb1 == tb) {
1337 *pprev = tb1->page_next[n1];
1338 return;
1339 }
1340 pprev = &tb1->page_next[n1];
1341 }
1342 g_assert_not_reached();
1343 }
1344
1345 /* remove @orig from its @n_orig-th jump list */
1346 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1347 {
1348 uintptr_t ptr, ptr_locked;
1349 TranslationBlock *dest;
1350 TranslationBlock *tb;
1351 uintptr_t *pprev;
1352 int n;
1353
1354 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1355 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1356 dest = (TranslationBlock *)(ptr & ~1);
1357 if (dest == NULL) {
1358 return;
1359 }
1360
1361 qemu_spin_lock(&dest->jmp_lock);
1362 /*
1363 * While acquiring the lock, the jump might have been removed if the
1364 * destination TB was invalidated; check again.
1365 */
1366 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1367 if (ptr_locked != ptr) {
1368 qemu_spin_unlock(&dest->jmp_lock);
1369 /*
1370 * The only possibility is that the jump was unlinked via
1371 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1372 * because we set the LSB above.
1373 */
1374 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1375 return;
1376 }
1377 /*
1378 * We first acquired the lock, and since the destination pointer matches,
1379 * we know for sure that @orig is in the jmp list.
1380 */
1381 pprev = &dest->jmp_list_head;
1382 TB_FOR_EACH_JMP(dest, tb, n) {
1383 if (tb == orig && n == n_orig) {
1384 *pprev = tb->jmp_list_next[n];
1385 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1386 qemu_spin_unlock(&dest->jmp_lock);
1387 return;
1388 }
1389 pprev = &tb->jmp_list_next[n];
1390 }
1391 g_assert_not_reached();
1392 }
1393
1394 /* reset the jump entry 'n' of a TB so that it is not chained to
1395 another TB */
1396 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1397 {
1398 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1399 tb_set_jmp_target(tb, n, addr);
1400 }
1401
1402 /* remove any jumps to the TB */
1403 static inline void tb_jmp_unlink(TranslationBlock *dest)
1404 {
1405 TranslationBlock *tb;
1406 int n;
1407
1408 qemu_spin_lock(&dest->jmp_lock);
1409
1410 TB_FOR_EACH_JMP(dest, tb, n) {
1411 tb_reset_jump(tb, n);
1412 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1413 /* No need to clear the list entry; setting the dest ptr is enough */
1414 }
1415 dest->jmp_list_head = (uintptr_t)NULL;
1416
1417 qemu_spin_unlock(&dest->jmp_lock);
1418 }
1419
1420 /*
1421 * In user-mode, call with mmap_lock held.
1422 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1423 * locks held.
1424 */
1425 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1426 {
1427 CPUState *cpu;
1428 PageDesc *p;
1429 uint32_t h;
1430 tb_page_addr_t phys_pc;
1431
1432 assert_memory_lock();
1433
1434 /* make sure no further incoming jumps will be chained to this TB */
1435 qemu_spin_lock(&tb->jmp_lock);
1436 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1437 qemu_spin_unlock(&tb->jmp_lock);
1438
1439 /* remove the TB from the hash list */
1440 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1441 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1442 tb->trace_vcpu_dstate);
1443 if (!(tb->cflags & CF_NOCACHE) &&
1444 !qht_remove(&tb_ctx.htable, tb, h)) {
1445 return;
1446 }
1447
1448 /* remove the TB from the page list */
1449 if (rm_from_page_list) {
1450 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1451 tb_page_remove(p, tb);
1452 invalidate_page_bitmap(p);
1453 if (tb->page_addr[1] != -1) {
1454 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1455 tb_page_remove(p, tb);
1456 invalidate_page_bitmap(p);
1457 }
1458 }
1459
1460 /* remove the TB from the hash list */
1461 h = tb_jmp_cache_hash_func(tb->pc);
1462 CPU_FOREACH(cpu) {
1463 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1464 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1465 }
1466 }
1467
1468 /* suppress this TB from the two jump lists */
1469 tb_remove_from_jmp_list(tb, 0);
1470 tb_remove_from_jmp_list(tb, 1);
1471
1472 /* suppress any remaining jumps to this TB */
1473 tb_jmp_unlink(tb);
1474
1475 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1476 tcg_ctx->tb_phys_invalidate_count + 1);
1477 }
1478
1479 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1480 {
1481 do_tb_phys_invalidate(tb, true);
1482 }
1483
1484 /* invalidate one TB
1485 *
1486 * Called with mmap_lock held in user-mode.
1487 */
1488 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1489 {
1490 if (page_addr == -1 && tb->page_addr[0] != -1) {
1491 page_lock_tb(tb);
1492 do_tb_phys_invalidate(tb, true);
1493 page_unlock_tb(tb);
1494 } else {
1495 do_tb_phys_invalidate(tb, false);
1496 }
1497 }
1498
1499 #ifdef CONFIG_SOFTMMU
1500 /* call with @p->lock held */
1501 static void build_page_bitmap(PageDesc *p)
1502 {
1503 int n, tb_start, tb_end;
1504 TranslationBlock *tb;
1505
1506 assert_page_locked(p);
1507 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1508
1509 PAGE_FOR_EACH_TB(p, tb, n) {
1510 /* NOTE: this is subtle as a TB may span two physical pages */
1511 if (n == 0) {
1512 /* NOTE: tb_end may be after the end of the page, but
1513 it is not a problem */
1514 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1515 tb_end = tb_start + tb->size;
1516 if (tb_end > TARGET_PAGE_SIZE) {
1517 tb_end = TARGET_PAGE_SIZE;
1518 }
1519 } else {
1520 tb_start = 0;
1521 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1522 }
1523 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1524 }
1525 }
1526 #endif
1527
1528 /* add the tb in the target page and protect it if necessary
1529 *
1530 * Called with mmap_lock held for user-mode emulation.
1531 * Called with @p->lock held in !user-mode.
1532 */
1533 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1534 unsigned int n, tb_page_addr_t page_addr)
1535 {
1536 #ifndef CONFIG_USER_ONLY
1537 bool page_already_protected;
1538 #endif
1539
1540 assert_page_locked(p);
1541
1542 tb->page_addr[n] = page_addr;
1543 tb->page_next[n] = p->first_tb;
1544 #ifndef CONFIG_USER_ONLY
1545 page_already_protected = p->first_tb != (uintptr_t)NULL;
1546 #endif
1547 p->first_tb = (uintptr_t)tb | n;
1548 invalidate_page_bitmap(p);
1549
1550 #if defined(CONFIG_USER_ONLY)
1551 if (p->flags & PAGE_WRITE) {
1552 target_ulong addr;
1553 PageDesc *p2;
1554 int prot;
1555
1556 /* force the host page as non writable (writes will have a
1557 page fault + mprotect overhead) */
1558 page_addr &= qemu_host_page_mask;
1559 prot = 0;
1560 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1561 addr += TARGET_PAGE_SIZE) {
1562
1563 p2 = page_find(addr >> TARGET_PAGE_BITS);
1564 if (!p2) {
1565 continue;
1566 }
1567 prot |= p2->flags;
1568 p2->flags &= ~PAGE_WRITE;
1569 }
1570 mprotect(g2h(page_addr), qemu_host_page_size,
1571 (prot & PAGE_BITS) & ~PAGE_WRITE);
1572 if (DEBUG_TB_INVALIDATE_GATE) {
1573 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1574 }
1575 }
1576 #else
1577 /* if some code is already present, then the pages are already
1578 protected. So we handle the case where only the first TB is
1579 allocated in a physical page */
1580 if (!page_already_protected) {
1581 tlb_protect_code(page_addr);
1582 }
1583 #endif
1584 }
1585
1586 /* add a new TB and link it to the physical page tables. phys_page2 is
1587 * (-1) to indicate that only one page contains the TB.
1588 *
1589 * Called with mmap_lock held for user-mode emulation.
1590 *
1591 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1592 * Note that in !user-mode, another thread might have already added a TB
1593 * for the same block of guest code that @tb corresponds to. In that case,
1594 * the caller should discard the original @tb, and use instead the returned TB.
1595 */
1596 static TranslationBlock *
1597 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1598 tb_page_addr_t phys_page2)
1599 {
1600 PageDesc *p;
1601 PageDesc *p2 = NULL;
1602
1603 assert_memory_lock();
1604
1605 if (phys_pc == -1) {
1606 /*
1607 * If the TB is not associated with a physical RAM page then
1608 * it must be a temporary one-insn TB, and we have nothing to do
1609 * except fill in the page_addr[] fields.
1610 */
1611 assert(tb->cflags & CF_NOCACHE);
1612 tb->page_addr[0] = tb->page_addr[1] = -1;
1613 return tb;
1614 }
1615
1616 /*
1617 * Add the TB to the page list, acquiring first the pages's locks.
1618 * We keep the locks held until after inserting the TB in the hash table,
1619 * so that if the insertion fails we know for sure that the TBs are still
1620 * in the page descriptors.
1621 * Note that inserting into the hash table first isn't an option, since
1622 * we can only insert TBs that are fully initialized.
1623 */
1624 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1625 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1626 if (p2) {
1627 tb_page_add(p2, tb, 1, phys_page2);
1628 } else {
1629 tb->page_addr[1] = -1;
1630 }
1631
1632 if (!(tb->cflags & CF_NOCACHE)) {
1633 void *existing_tb = NULL;
1634 uint32_t h;
1635
1636 /* add in the hash table */
1637 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1638 tb->trace_vcpu_dstate);
1639 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1640
1641 /* remove TB from the page(s) if we couldn't insert it */
1642 if (unlikely(existing_tb)) {
1643 tb_page_remove(p, tb);
1644 invalidate_page_bitmap(p);
1645 if (p2) {
1646 tb_page_remove(p2, tb);
1647 invalidate_page_bitmap(p2);
1648 }
1649 tb = existing_tb;
1650 }
1651 }
1652
1653 if (p2 && p2 != p) {
1654 page_unlock(p2);
1655 }
1656 page_unlock(p);
1657
1658 #ifdef CONFIG_USER_ONLY
1659 if (DEBUG_TB_CHECK_GATE) {
1660 tb_page_check();
1661 }
1662 #endif
1663 return tb;
1664 }
1665
1666 /* Called with mmap_lock held for user mode emulation. */
1667 TranslationBlock *tb_gen_code(CPUState *cpu,
1668 target_ulong pc, target_ulong cs_base,
1669 uint32_t flags, int cflags)
1670 {
1671 CPUArchState *env = cpu->env_ptr;
1672 TranslationBlock *tb, *existing_tb;
1673 tb_page_addr_t phys_pc, phys_page2;
1674 target_ulong virt_page2;
1675 tcg_insn_unit *gen_code_buf;
1676 int gen_code_size, search_size;
1677 #ifdef CONFIG_PROFILER
1678 TCGProfile *prof = &tcg_ctx->prof;
1679 int64_t ti;
1680 #endif
1681 assert_memory_lock();
1682
1683 phys_pc = get_page_addr_code(env, pc);
1684
1685 if (phys_pc == -1) {
1686 /* Generate a temporary TB with 1 insn in it */
1687 cflags &= ~CF_COUNT_MASK;
1688 cflags |= CF_NOCACHE | 1;
1689 }
1690
1691 cflags &= ~CF_CLUSTER_MASK;
1692 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1693
1694 buffer_overflow:
1695 tb = tb_alloc(pc);
1696 if (unlikely(!tb)) {
1697 /* flush must be done */
1698 tb_flush(cpu);
1699 mmap_unlock();
1700 /* Make the execution loop process the flush as soon as possible. */
1701 cpu->exception_index = EXCP_INTERRUPT;
1702 cpu_loop_exit(cpu);
1703 }
1704
1705 gen_code_buf = tcg_ctx->code_gen_ptr;
1706 tb->tc.ptr = gen_code_buf;
1707 tb->pc = pc;
1708 tb->cs_base = cs_base;
1709 tb->flags = flags;
1710 tb->cflags = cflags;
1711 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1712 tcg_ctx->tb_cflags = cflags;
1713
1714 #ifdef CONFIG_PROFILER
1715 /* includes aborted translations because of exceptions */
1716 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1717 ti = profile_getclock();
1718 #endif
1719
1720 tcg_func_start(tcg_ctx);
1721
1722 tcg_ctx->cpu = ENV_GET_CPU(env);
1723 gen_intermediate_code(cpu, tb);
1724 tcg_ctx->cpu = NULL;
1725
1726 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1727
1728 /* generate machine code */
1729 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1730 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1731 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1732 if (TCG_TARGET_HAS_direct_jump) {
1733 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1734 tcg_ctx->tb_jmp_target_addr = NULL;
1735 } else {
1736 tcg_ctx->tb_jmp_insn_offset = NULL;
1737 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1738 }
1739
1740 #ifdef CONFIG_PROFILER
1741 atomic_set(&prof->tb_count, prof->tb_count + 1);
1742 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1743 ti = profile_getclock();
1744 #endif
1745
1746 /* ??? Overflow could be handled better here. In particular, we
1747 don't need to re-do gen_intermediate_code, nor should we re-do
1748 the tcg optimization currently hidden inside tcg_gen_code. All
1749 that should be required is to flush the TBs, allocate a new TB,
1750 re-initialize it per above, and re-do the actual code generation. */
1751 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1752 if (unlikely(gen_code_size < 0)) {
1753 goto buffer_overflow;
1754 }
1755 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1756 if (unlikely(search_size < 0)) {
1757 goto buffer_overflow;
1758 }
1759 tb->tc.size = gen_code_size;
1760
1761 #ifdef CONFIG_PROFILER
1762 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1763 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1764 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1765 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1766 #endif
1767
1768 #ifdef DEBUG_DISAS
1769 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1770 qemu_log_in_addr_range(tb->pc)) {
1771 qemu_log_lock();
1772 qemu_log("OUT: [size=%d]\n", gen_code_size);
1773 if (tcg_ctx->data_gen_ptr) {
1774 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1775 size_t data_size = gen_code_size - code_size;
1776 size_t i;
1777
1778 log_disas(tb->tc.ptr, code_size);
1779
1780 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1781 if (sizeof(tcg_target_ulong) == 8) {
1782 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1783 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1784 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1785 } else {
1786 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1787 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1788 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1789 }
1790 }
1791 } else {
1792 log_disas(tb->tc.ptr, gen_code_size);
1793 }
1794 qemu_log("\n");
1795 qemu_log_flush();
1796 qemu_log_unlock();
1797 }
1798 #endif
1799
1800 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1801 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1802 CODE_GEN_ALIGN));
1803
1804 /* init jump list */
1805 qemu_spin_init(&tb->jmp_lock);
1806 tb->jmp_list_head = (uintptr_t)NULL;
1807 tb->jmp_list_next[0] = (uintptr_t)NULL;
1808 tb->jmp_list_next[1] = (uintptr_t)NULL;
1809 tb->jmp_dest[0] = (uintptr_t)NULL;
1810 tb->jmp_dest[1] = (uintptr_t)NULL;
1811
1812 /* init original jump addresses which have been set during tcg_gen_code() */
1813 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1814 tb_reset_jump(tb, 0);
1815 }
1816 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1817 tb_reset_jump(tb, 1);
1818 }
1819
1820 /* check next page if needed */
1821 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1822 phys_page2 = -1;
1823 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1824 phys_page2 = get_page_addr_code(env, virt_page2);
1825 }
1826 /*
1827 * No explicit memory barrier is required -- tb_link_page() makes the
1828 * TB visible in a consistent state.
1829 */
1830 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1831 /* if the TB already exists, discard what we just translated */
1832 if (unlikely(existing_tb != tb)) {
1833 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1834
1835 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1836 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1837 return existing_tb;
1838 }
1839 tcg_tb_insert(tb);
1840 return tb;
1841 }
1842
1843 /*
1844 * @p must be non-NULL.
1845 * user-mode: call with mmap_lock held.
1846 * !user-mode: call with all @pages locked.
1847 */
1848 static void
1849 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1850 PageDesc *p, tb_page_addr_t start,
1851 tb_page_addr_t end,
1852 int is_cpu_write_access)
1853 {
1854 TranslationBlock *tb;
1855 tb_page_addr_t tb_start, tb_end;
1856 int n;
1857 #ifdef TARGET_HAS_PRECISE_SMC
1858 CPUState *cpu = current_cpu;
1859 CPUArchState *env = NULL;
1860 int current_tb_not_found = is_cpu_write_access;
1861 TranslationBlock *current_tb = NULL;
1862 int current_tb_modified = 0;
1863 target_ulong current_pc = 0;
1864 target_ulong current_cs_base = 0;
1865 uint32_t current_flags = 0;
1866 #endif /* TARGET_HAS_PRECISE_SMC */
1867
1868 assert_page_locked(p);
1869
1870 #if defined(TARGET_HAS_PRECISE_SMC)
1871 if (cpu != NULL) {
1872 env = cpu->env_ptr;
1873 }
1874 #endif
1875
1876 /* we remove all the TBs in the range [start, end[ */
1877 /* XXX: see if in some cases it could be faster to invalidate all
1878 the code */
1879 PAGE_FOR_EACH_TB(p, tb, n) {
1880 assert_page_locked(p);
1881 /* NOTE: this is subtle as a TB may span two physical pages */
1882 if (n == 0) {
1883 /* NOTE: tb_end may be after the end of the page, but
1884 it is not a problem */
1885 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1886 tb_end = tb_start + tb->size;
1887 } else {
1888 tb_start = tb->page_addr[1];
1889 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1890 }
1891 if (!(tb_end <= start || tb_start >= end)) {
1892 #ifdef TARGET_HAS_PRECISE_SMC
1893 if (current_tb_not_found) {
1894 current_tb_not_found = 0;
1895 current_tb = NULL;
1896 if (cpu->mem_io_pc) {
1897 /* now we have a real cpu fault */
1898 current_tb = tcg_tb_lookup(cpu->mem_io_pc);
1899 }
1900 }
1901 if (current_tb == tb &&
1902 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1903 /* If we are modifying the current TB, we must stop
1904 its execution. We could be more precise by checking
1905 that the modification is after the current PC, but it
1906 would require a specialized function to partially
1907 restore the CPU state */
1908
1909 current_tb_modified = 1;
1910 cpu_restore_state_from_tb(cpu, current_tb,
1911 cpu->mem_io_pc, true);
1912 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1913 &current_flags);
1914 }
1915 #endif /* TARGET_HAS_PRECISE_SMC */
1916 tb_phys_invalidate__locked(tb);
1917 }
1918 }
1919 #if !defined(CONFIG_USER_ONLY)
1920 /* if no code remaining, no need to continue to use slow writes */
1921 if (!p->first_tb) {
1922 invalidate_page_bitmap(p);
1923 tlb_unprotect_code(start);
1924 }
1925 #endif
1926 #ifdef TARGET_HAS_PRECISE_SMC
1927 if (current_tb_modified) {
1928 page_collection_unlock(pages);
1929 /* Force execution of one insn next time. */
1930 cpu->cflags_next_tb = 1 | curr_cflags();
1931 mmap_unlock();
1932 cpu_loop_exit_noexc(cpu);
1933 }
1934 #endif
1935 }
1936
1937 /*
1938 * Invalidate all TBs which intersect with the target physical address range
1939 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1940 * 'is_cpu_write_access' should be true if called from a real cpu write
1941 * access: the virtual CPU will exit the current TB if code is modified inside
1942 * this TB.
1943 *
1944 * Called with mmap_lock held for user-mode emulation
1945 */
1946 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1947 int is_cpu_write_access)
1948 {
1949 struct page_collection *pages;
1950 PageDesc *p;
1951
1952 assert_memory_lock();
1953
1954 p = page_find(start >> TARGET_PAGE_BITS);
1955 if (p == NULL) {
1956 return;
1957 }
1958 pages = page_collection_lock(start, end);
1959 tb_invalidate_phys_page_range__locked(pages, p, start, end,
1960 is_cpu_write_access);
1961 page_collection_unlock(pages);
1962 }
1963
1964 /*
1965 * Invalidate all TBs which intersect with the target physical address range
1966 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1967 * 'is_cpu_write_access' should be true if called from a real cpu write
1968 * access: the virtual CPU will exit the current TB if code is modified inside
1969 * this TB.
1970 *
1971 * Called with mmap_lock held for user-mode emulation.
1972 */
1973 #ifdef CONFIG_SOFTMMU
1974 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
1975 #else
1976 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
1977 #endif
1978 {
1979 struct page_collection *pages;
1980 tb_page_addr_t next;
1981
1982 assert_memory_lock();
1983
1984 pages = page_collection_lock(start, end);
1985 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
1986 start < end;
1987 start = next, next += TARGET_PAGE_SIZE) {
1988 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
1989 tb_page_addr_t bound = MIN(next, end);
1990
1991 if (pd == NULL) {
1992 continue;
1993 }
1994 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
1995 }
1996 page_collection_unlock(pages);
1997 }
1998
1999 #ifdef CONFIG_SOFTMMU
2000 /* len must be <= 8 and start must be a multiple of len.
2001 * Called via softmmu_template.h when code areas are written to with
2002 * iothread mutex not held.
2003 *
2004 * Call with all @pages in the range [@start, @start + len[ locked.
2005 */
2006 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2007 tb_page_addr_t start, int len)
2008 {
2009 PageDesc *p;
2010
2011 assert_memory_lock();
2012
2013 p = page_find(start >> TARGET_PAGE_BITS);
2014 if (!p) {
2015 return;
2016 }
2017
2018 assert_page_locked(p);
2019 if (!p->code_bitmap &&
2020 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2021 build_page_bitmap(p);
2022 }
2023 if (p->code_bitmap) {
2024 unsigned int nr;
2025 unsigned long b;
2026
2027 nr = start & ~TARGET_PAGE_MASK;
2028 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2029 if (b & ((1 << len) - 1)) {
2030 goto do_invalidate;
2031 }
2032 } else {
2033 do_invalidate:
2034 tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
2035 }
2036 }
2037 #else
2038 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2039 * host PC of the faulting store instruction that caused this invalidate.
2040 * Returns true if the caller needs to abort execution of the current
2041 * TB (because it was modified by this store and the guest CPU has
2042 * precise-SMC semantics).
2043 */
2044 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2045 {
2046 TranslationBlock *tb;
2047 PageDesc *p;
2048 int n;
2049 #ifdef TARGET_HAS_PRECISE_SMC
2050 TranslationBlock *current_tb = NULL;
2051 CPUState *cpu = current_cpu;
2052 CPUArchState *env = NULL;
2053 int current_tb_modified = 0;
2054 target_ulong current_pc = 0;
2055 target_ulong current_cs_base = 0;
2056 uint32_t current_flags = 0;
2057 #endif
2058
2059 assert_memory_lock();
2060
2061 addr &= TARGET_PAGE_MASK;
2062 p = page_find(addr >> TARGET_PAGE_BITS);
2063 if (!p) {
2064 return false;
2065 }
2066
2067 #ifdef TARGET_HAS_PRECISE_SMC
2068 if (p->first_tb && pc != 0) {
2069 current_tb = tcg_tb_lookup(pc);
2070 }
2071 if (cpu != NULL) {
2072 env = cpu->env_ptr;
2073 }
2074 #endif
2075 assert_page_locked(p);
2076 PAGE_FOR_EACH_TB(p, tb, n) {
2077 #ifdef TARGET_HAS_PRECISE_SMC
2078 if (current_tb == tb &&
2079 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2080 /* If we are modifying the current TB, we must stop
2081 its execution. We could be more precise by checking
2082 that the modification is after the current PC, but it
2083 would require a specialized function to partially
2084 restore the CPU state */
2085
2086 current_tb_modified = 1;
2087 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2088 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2089 &current_flags);
2090 }
2091 #endif /* TARGET_HAS_PRECISE_SMC */
2092 tb_phys_invalidate(tb, addr);
2093 }
2094 p->first_tb = (uintptr_t)NULL;
2095 #ifdef TARGET_HAS_PRECISE_SMC
2096 if (current_tb_modified) {
2097 /* Force execution of one insn next time. */
2098 cpu->cflags_next_tb = 1 | curr_cflags();
2099 return true;
2100 }
2101 #endif
2102
2103 return false;
2104 }
2105 #endif
2106
2107 /* user-mode: call with mmap_lock held */
2108 void tb_check_watchpoint(CPUState *cpu)
2109 {
2110 TranslationBlock *tb;
2111
2112 assert_memory_lock();
2113
2114 tb = tcg_tb_lookup(cpu->mem_io_pc);
2115 if (tb) {
2116 /* We can use retranslation to find the PC. */
2117 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
2118 tb_phys_invalidate(tb, -1);
2119 } else {
2120 /* The exception probably happened in a helper. The CPU state should
2121 have been saved before calling it. Fetch the PC from there. */
2122 CPUArchState *env = cpu->env_ptr;
2123 target_ulong pc, cs_base;
2124 tb_page_addr_t addr;
2125 uint32_t flags;
2126
2127 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2128 addr = get_page_addr_code(env, pc);
2129 if (addr != -1) {
2130 tb_invalidate_phys_range(addr, addr + 1);
2131 }
2132 }
2133 }
2134
2135 #ifndef CONFIG_USER_ONLY
2136 /* in deterministic execution mode, instructions doing device I/Os
2137 * must be at the end of the TB.
2138 *
2139 * Called by softmmu_template.h, with iothread mutex not held.
2140 */
2141 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2142 {
2143 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2144 CPUArchState *env = cpu->env_ptr;
2145 #endif
2146 TranslationBlock *tb;
2147 uint32_t n;
2148
2149 tb = tcg_tb_lookup(retaddr);
2150 if (!tb) {
2151 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2152 (void *)retaddr);
2153 }
2154 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2155
2156 /* On MIPS and SH, delay slot instructions can only be restarted if
2157 they were already the first instruction in the TB. If this is not
2158 the first instruction in a TB then re-execute the preceding
2159 branch. */
2160 n = 1;
2161 #if defined(TARGET_MIPS)
2162 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2163 && env->active_tc.PC != tb->pc) {
2164 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2165 cpu->icount_decr.u16.low++;
2166 env->hflags &= ~MIPS_HFLAG_BMASK;
2167 n = 2;
2168 }
2169 #elif defined(TARGET_SH4)
2170 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2171 && env->pc != tb->pc) {
2172 env->pc -= 2;
2173 cpu->icount_decr.u16.low++;
2174 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2175 n = 2;
2176 }
2177 #endif
2178
2179 /* Generate a new TB executing the I/O insn. */
2180 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2181
2182 if (tb_cflags(tb) & CF_NOCACHE) {
2183 if (tb->orig_tb) {
2184 /* Invalidate original TB if this TB was generated in
2185 * cpu_exec_nocache() */
2186 tb_phys_invalidate(tb->orig_tb, -1);
2187 }
2188 tcg_tb_remove(tb);
2189 }
2190
2191 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2192 * the first in the TB) then we end up generating a whole new TB and
2193 * repeating the fault, which is horribly inefficient.
2194 * Better would be to execute just this insn uncached, or generate a
2195 * second new TB.
2196 */
2197 cpu_loop_exit_noexc(cpu);
2198 }
2199
2200 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2201 {
2202 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2203
2204 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2205 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2206 }
2207 }
2208
2209 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2210 {
2211 /* Discard jump cache entries for any tb which might potentially
2212 overlap the flushed page. */
2213 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2214 tb_jmp_cache_clear_page(cpu, addr);
2215 }
2216
2217 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
2218 struct qht_stats hst)
2219 {
2220 uint32_t hgram_opts;
2221 size_t hgram_bins;
2222 char *hgram;
2223
2224 if (!hst.head_buckets) {
2225 return;
2226 }
2227 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2228 hst.used_head_buckets, hst.head_buckets,
2229 (double)hst.used_head_buckets / hst.head_buckets * 100);
2230
2231 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2232 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2233 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2234 hgram_opts |= QDIST_PR_NODECIMAL;
2235 }
2236 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2237 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2238 qdist_avg(&hst.occupancy) * 100, hgram);
2239 g_free(hgram);
2240
2241 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2242 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2243 if (hgram_bins > 10) {
2244 hgram_bins = 10;
2245 } else {
2246 hgram_bins = 0;
2247 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2248 }
2249 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2250 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
2251 qdist_avg(&hst.chain), hgram);
2252 g_free(hgram);
2253 }
2254
2255 struct tb_tree_stats {
2256 size_t nb_tbs;
2257 size_t host_size;
2258 size_t target_size;
2259 size_t max_target_size;
2260 size_t direct_jmp_count;
2261 size_t direct_jmp2_count;
2262 size_t cross_page;
2263 };
2264
2265 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2266 {
2267 const TranslationBlock *tb = value;
2268 struct tb_tree_stats *tst = data;
2269
2270 tst->nb_tbs++;
2271 tst->host_size += tb->tc.size;
2272 tst->target_size += tb->size;
2273 if (tb->size > tst->max_target_size) {
2274 tst->max_target_size = tb->size;
2275 }
2276 if (tb->page_addr[1] != -1) {
2277 tst->cross_page++;
2278 }
2279 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2280 tst->direct_jmp_count++;
2281 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2282 tst->direct_jmp2_count++;
2283 }
2284 }
2285 return false;
2286 }
2287
2288 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
2289 {
2290 struct tb_tree_stats tst = {};
2291 struct qht_stats hst;
2292 size_t nb_tbs, flush_full, flush_part, flush_elide;
2293
2294 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2295 nb_tbs = tst.nb_tbs;
2296 /* XXX: avoid using doubles ? */
2297 cpu_fprintf(f, "Translation buffer state:\n");
2298 /*
2299 * Report total code size including the padding and TB structs;
2300 * otherwise users might think "-tb-size" is not honoured.
2301 * For avg host size we use the precise numbers from tb_tree_stats though.
2302 */
2303 cpu_fprintf(f, "gen code size %zu/%zu\n",
2304 tcg_code_size(), tcg_code_capacity());
2305 cpu_fprintf(f, "TB count %zu\n", nb_tbs);
2306 cpu_fprintf(f, "TB avg target size %zu max=%zu bytes\n",
2307 nb_tbs ? tst.target_size / nb_tbs : 0,
2308 tst.max_target_size);
2309 cpu_fprintf(f, "TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2310 nb_tbs ? tst.host_size / nb_tbs : 0,
2311 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2312 cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
2313 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2314 cpu_fprintf(f, "direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2315 tst.direct_jmp_count,
2316 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2317 tst.direct_jmp2_count,
2318 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2319
2320 qht_statistics_init(&tb_ctx.htable, &hst);
2321 print_qht_statistics(f, cpu_fprintf, hst);
2322 qht_statistics_destroy(&hst);
2323
2324 cpu_fprintf(f, "\nStatistics:\n");
2325 cpu_fprintf(f, "TB flush count %u\n",
2326 atomic_read(&tb_ctx.tb_flush_count));
2327 cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
2328
2329 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2330 cpu_fprintf(f, "TLB full flushes %zu\n", flush_full);
2331 cpu_fprintf(f, "TLB partial flushes %zu\n", flush_part);
2332 cpu_fprintf(f, "TLB elided flushes %zu\n", flush_elide);
2333 tcg_dump_info(f, cpu_fprintf);
2334 }
2335
2336 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
2337 {
2338 tcg_dump_op_count(f, cpu_fprintf);
2339 }
2340
2341 #else /* CONFIG_USER_ONLY */
2342
2343 void cpu_interrupt(CPUState *cpu, int mask)
2344 {
2345 g_assert(qemu_mutex_iothread_locked());
2346 cpu->interrupt_request |= mask;
2347 atomic_set(&cpu->icount_decr.u16.high, -1);
2348 }
2349
2350 /*
2351 * Walks guest process memory "regions" one by one
2352 * and calls callback function 'fn' for each region.
2353 */
2354 struct walk_memory_regions_data {
2355 walk_memory_regions_fn fn;
2356 void *priv;
2357 target_ulong start;
2358 int prot;
2359 };
2360
2361 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2362 target_ulong end, int new_prot)
2363 {
2364 if (data->start != -1u) {
2365 int rc = data->fn(data->priv, data->start, end, data->prot);
2366 if (rc != 0) {
2367 return rc;
2368 }
2369 }
2370
2371 data->start = (new_prot ? end : -1u);
2372 data->prot = new_prot;
2373
2374 return 0;
2375 }
2376
2377 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2378 target_ulong base, int level, void **lp)
2379 {
2380 target_ulong pa;
2381 int i, rc;
2382
2383 if (*lp == NULL) {
2384 return walk_memory_regions_end(data, base, 0);
2385 }
2386
2387 if (level == 0) {
2388 PageDesc *pd = *lp;
2389
2390 for (i = 0; i < V_L2_SIZE; ++i) {
2391 int prot = pd[i].flags;
2392
2393 pa = base | (i << TARGET_PAGE_BITS);
2394 if (prot != data->prot) {
2395 rc = walk_memory_regions_end(data, pa, prot);
2396 if (rc != 0) {
2397 return rc;
2398 }
2399 }
2400 }
2401 } else {
2402 void **pp = *lp;
2403
2404 for (i = 0; i < V_L2_SIZE; ++i) {
2405 pa = base | ((target_ulong)i <<
2406 (TARGET_PAGE_BITS + V_L2_BITS * level));
2407 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2408 if (rc != 0) {
2409 return rc;
2410 }
2411 }
2412 }
2413
2414 return 0;
2415 }
2416
2417 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2418 {
2419 struct walk_memory_regions_data data;
2420 uintptr_t i, l1_sz = v_l1_size;
2421
2422 data.fn = fn;
2423 data.priv = priv;
2424 data.start = -1u;
2425 data.prot = 0;
2426
2427 for (i = 0; i < l1_sz; i++) {
2428 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2429 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2430 if (rc != 0) {
2431 return rc;
2432 }
2433 }
2434
2435 return walk_memory_regions_end(&data, 0, 0);
2436 }
2437
2438 static int dump_region(void *priv, target_ulong start,
2439 target_ulong end, unsigned long prot)
2440 {
2441 FILE *f = (FILE *)priv;
2442
2443 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2444 " "TARGET_FMT_lx" %c%c%c\n",
2445 start, end, end - start,
2446 ((prot & PAGE_READ) ? 'r' : '-'),
2447 ((prot & PAGE_WRITE) ? 'w' : '-'),
2448 ((prot & PAGE_EXEC) ? 'x' : '-'));
2449
2450 return 0;
2451 }
2452
2453 /* dump memory mappings */
2454 void page_dump(FILE *f)
2455 {
2456 const int length = sizeof(target_ulong) * 2;
2457 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2458 length, "start", length, "end", length, "size", "prot");
2459 walk_memory_regions(f, dump_region);
2460 }
2461
2462 int page_get_flags(target_ulong address)
2463 {
2464 PageDesc *p;
2465
2466 p = page_find(address >> TARGET_PAGE_BITS);
2467 if (!p) {
2468 return 0;
2469 }
2470 return p->flags;
2471 }
2472
2473 /* Modify the flags of a page and invalidate the code if necessary.
2474 The flag PAGE_WRITE_ORG is positioned automatically depending
2475 on PAGE_WRITE. The mmap_lock should already be held. */
2476 void page_set_flags(target_ulong start, target_ulong end, int flags)
2477 {
2478 target_ulong addr, len;
2479
2480 /* This function should never be called with addresses outside the
2481 guest address space. If this assert fires, it probably indicates
2482 a missing call to h2g_valid. */
2483 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2484 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2485 #endif
2486 assert(start < end);
2487 assert_memory_lock();
2488
2489 start = start & TARGET_PAGE_MASK;
2490 end = TARGET_PAGE_ALIGN(end);
2491
2492 if (flags & PAGE_WRITE) {
2493 flags |= PAGE_WRITE_ORG;
2494 }
2495
2496 for (addr = start, len = end - start;
2497 len != 0;
2498 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2499 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2500
2501 /* If the write protection bit is set, then we invalidate
2502 the code inside. */
2503 if (!(p->flags & PAGE_WRITE) &&
2504 (flags & PAGE_WRITE) &&
2505 p->first_tb) {
2506 tb_invalidate_phys_page(addr, 0);
2507 }
2508 p->flags = flags;
2509 }
2510 }
2511
2512 int page_check_range(target_ulong start, target_ulong len, int flags)
2513 {
2514 PageDesc *p;
2515 target_ulong end;
2516 target_ulong addr;
2517
2518 /* This function should never be called with addresses outside the
2519 guest address space. If this assert fires, it probably indicates
2520 a missing call to h2g_valid. */
2521 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2522 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2523 #endif
2524
2525 if (len == 0) {
2526 return 0;
2527 }
2528 if (start + len - 1 < start) {
2529 /* We've wrapped around. */
2530 return -1;
2531 }
2532
2533 /* must do before we loose bits in the next step */
2534 end = TARGET_PAGE_ALIGN(start + len);
2535 start = start & TARGET_PAGE_MASK;
2536
2537 for (addr = start, len = end - start;
2538 len != 0;
2539 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2540 p = page_find(addr >> TARGET_PAGE_BITS);
2541 if (!p) {
2542 return -1;
2543 }
2544 if (!(p->flags & PAGE_VALID)) {
2545 return -1;
2546 }
2547
2548 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2549 return -1;
2550 }
2551 if (flags & PAGE_WRITE) {
2552 if (!(p->flags & PAGE_WRITE_ORG)) {
2553 return -1;
2554 }
2555 /* unprotect the page if it was put read-only because it
2556 contains translated code */
2557 if (!(p->flags & PAGE_WRITE)) {
2558 if (!page_unprotect(addr, 0)) {
2559 return -1;
2560 }
2561 }
2562 }
2563 }
2564 return 0;
2565 }
2566
2567 /* called from signal handler: invalidate the code and unprotect the
2568 * page. Return 0 if the fault was not handled, 1 if it was handled,
2569 * and 2 if it was handled but the caller must cause the TB to be
2570 * immediately exited. (We can only return 2 if the 'pc' argument is
2571 * non-zero.)
2572 */
2573 int page_unprotect(target_ulong address, uintptr_t pc)
2574 {
2575 unsigned int prot;
2576 bool current_tb_invalidated;
2577 PageDesc *p;
2578 target_ulong host_start, host_end, addr;
2579
2580 /* Technically this isn't safe inside a signal handler. However we
2581 know this only ever happens in a synchronous SEGV handler, so in
2582 practice it seems to be ok. */
2583 mmap_lock();
2584
2585 p = page_find(address >> TARGET_PAGE_BITS);
2586 if (!p) {
2587 mmap_unlock();
2588 return 0;
2589 }
2590
2591 /* if the page was really writable, then we change its
2592 protection back to writable */
2593 if (p->flags & PAGE_WRITE_ORG) {
2594 current_tb_invalidated = false;
2595 if (p->flags & PAGE_WRITE) {
2596 /* If the page is actually marked WRITE then assume this is because
2597 * this thread raced with another one which got here first and
2598 * set the page to PAGE_WRITE and did the TB invalidate for us.
2599 */
2600 #ifdef TARGET_HAS_PRECISE_SMC
2601 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2602 if (current_tb) {
2603 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2604 }
2605 #endif
2606 } else {
2607 host_start = address & qemu_host_page_mask;
2608 host_end = host_start + qemu_host_page_size;
2609
2610 prot = 0;
2611 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2612 p = page_find(addr >> TARGET_PAGE_BITS);
2613 p->flags |= PAGE_WRITE;
2614 prot |= p->flags;
2615
2616 /* and since the content will be modified, we must invalidate
2617 the corresponding translated code. */
2618 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2619 #ifdef CONFIG_USER_ONLY
2620 if (DEBUG_TB_CHECK_GATE) {
2621 tb_invalidate_check(addr);
2622 }
2623 #endif
2624 }
2625 mprotect((void *)g2h(host_start), qemu_host_page_size,
2626 prot & PAGE_BITS);
2627 }
2628 mmap_unlock();
2629 /* If current TB was invalidated return to main loop */
2630 return current_tb_invalidated ? 2 : 1;
2631 }
2632 mmap_unlock();
2633 return 0;
2634 }
2635 #endif /* CONFIG_USER_ONLY */
2636
2637 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2638 void tcg_flush_softmmu_tlb(CPUState *cs)
2639 {
2640 #ifdef CONFIG_SOFTMMU
2641 tlb_flush(cs);
2642 #endif
2643 }