]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/translate-all.c
Merge remote-tracking branch 'remotes/rth/tags/pull-tcg-20190925' into staging
[mirror_qemu.git] / accel / tcg / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22
23 #define NO_CPU_IO_DEFS
24 #include "cpu.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg.h"
29 #if defined(CONFIG_USER_ONLY)
30 #include "qemu.h"
31 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
32 #include <sys/param.h>
33 #if __FreeBSD_version >= 700104
34 #define HAVE_KINFO_GETVMMAP
35 #define sigqueue sigqueue_freebsd /* avoid redefinition */
36 #include <sys/proc.h>
37 #include <machine/profile.h>
38 #define _KERNEL
39 #include <sys/user.h>
40 #undef _KERNEL
41 #undef sigqueue
42 #include <libutil.h>
43 #endif
44 #endif
45 #else
46 #include "exec/ram_addr.h"
47 #endif
48
49 #include "exec/cputlb.h"
50 #include "exec/tb-hash.h"
51 #include "translate-all.h"
52 #include "qemu/bitmap.h"
53 #include "qemu/error-report.h"
54 #include "qemu/qemu-print.h"
55 #include "qemu/timer.h"
56 #include "qemu/main-loop.h"
57 #include "exec/log.h"
58 #include "sysemu/cpus.h"
59 #include "sysemu/tcg.h"
60
61 /* #define DEBUG_TB_INVALIDATE */
62 /* #define DEBUG_TB_FLUSH */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
65
66 #ifdef DEBUG_TB_INVALIDATE
67 #define DEBUG_TB_INVALIDATE_GATE 1
68 #else
69 #define DEBUG_TB_INVALIDATE_GATE 0
70 #endif
71
72 #ifdef DEBUG_TB_FLUSH
73 #define DEBUG_TB_FLUSH_GATE 1
74 #else
75 #define DEBUG_TB_FLUSH_GATE 0
76 #endif
77
78 #if !defined(CONFIG_USER_ONLY)
79 /* TB consistency checks only implemented for usermode emulation. */
80 #undef DEBUG_TB_CHECK
81 #endif
82
83 #ifdef DEBUG_TB_CHECK
84 #define DEBUG_TB_CHECK_GATE 1
85 #else
86 #define DEBUG_TB_CHECK_GATE 0
87 #endif
88
89 /* Access to the various translations structures need to be serialised via locks
90 * for consistency.
91 * In user-mode emulation access to the memory related structures are protected
92 * with mmap_lock.
93 * In !user-mode we use per-page locks.
94 */
95 #ifdef CONFIG_SOFTMMU
96 #define assert_memory_lock()
97 #else
98 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
99 #endif
100
101 #define SMC_BITMAP_USE_THRESHOLD 10
102
103 typedef struct PageDesc {
104 /* list of TBs intersecting this ram page */
105 uintptr_t first_tb;
106 #ifdef CONFIG_SOFTMMU
107 /* in order to optimize self modifying code, we count the number
108 of lookups we do to a given page to use a bitmap */
109 unsigned long *code_bitmap;
110 unsigned int code_write_count;
111 #else
112 unsigned long flags;
113 #endif
114 #ifndef CONFIG_USER_ONLY
115 QemuSpin lock;
116 #endif
117 } PageDesc;
118
119 /**
120 * struct page_entry - page descriptor entry
121 * @pd: pointer to the &struct PageDesc of the page this entry represents
122 * @index: page index of the page
123 * @locked: whether the page is locked
124 *
125 * This struct helps us keep track of the locked state of a page, without
126 * bloating &struct PageDesc.
127 *
128 * A page lock protects accesses to all fields of &struct PageDesc.
129 *
130 * See also: &struct page_collection.
131 */
132 struct page_entry {
133 PageDesc *pd;
134 tb_page_addr_t index;
135 bool locked;
136 };
137
138 /**
139 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
140 * @tree: Binary search tree (BST) of the pages, with key == page index
141 * @max: Pointer to the page in @tree with the highest page index
142 *
143 * To avoid deadlock we lock pages in ascending order of page index.
144 * When operating on a set of pages, we need to keep track of them so that
145 * we can lock them in order and also unlock them later. For this we collect
146 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
147 * @tree implementation we use does not provide an O(1) operation to obtain the
148 * highest-ranked element, we use @max to keep track of the inserted page
149 * with the highest index. This is valuable because if a page is not in
150 * the tree and its index is higher than @max's, then we can lock it
151 * without breaking the locking order rule.
152 *
153 * Note on naming: 'struct page_set' would be shorter, but we already have a few
154 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
155 *
156 * See also: page_collection_lock().
157 */
158 struct page_collection {
159 GTree *tree;
160 struct page_entry *max;
161 };
162
163 /* list iterators for lists of tagged pointers in TranslationBlock */
164 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
165 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
166 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
167 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
168
169 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
170 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
171
172 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
173 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
174
175 /* In system mode we want L1_MAP to be based on ram offsets,
176 while in user mode we want it to be based on virtual addresses. */
177 #if !defined(CONFIG_USER_ONLY)
178 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
179 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
180 #else
181 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
182 #endif
183 #else
184 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
185 #endif
186
187 /* Size of the L2 (and L3, etc) page tables. */
188 #define V_L2_BITS 10
189 #define V_L2_SIZE (1 << V_L2_BITS)
190
191 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
192 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
193 sizeof_field(TranslationBlock, trace_vcpu_dstate)
194 * BITS_PER_BYTE);
195
196 /*
197 * L1 Mapping properties
198 */
199 static int v_l1_size;
200 static int v_l1_shift;
201 static int v_l2_levels;
202
203 /* The bottom level has pointers to PageDesc, and is indexed by
204 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
205 */
206 #define V_L1_MIN_BITS 4
207 #define V_L1_MAX_BITS (V_L2_BITS + 3)
208 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
209
210 static void *l1_map[V_L1_MAX_SIZE];
211
212 /* code generation context */
213 TCGContext tcg_init_ctx;
214 __thread TCGContext *tcg_ctx;
215 TBContext tb_ctx;
216 bool parallel_cpus;
217
218 static void page_table_config_init(void)
219 {
220 uint32_t v_l1_bits;
221
222 assert(TARGET_PAGE_BITS);
223 /* The bits remaining after N lower levels of page tables. */
224 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
225 if (v_l1_bits < V_L1_MIN_BITS) {
226 v_l1_bits += V_L2_BITS;
227 }
228
229 v_l1_size = 1 << v_l1_bits;
230 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
231 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
232
233 assert(v_l1_bits <= V_L1_MAX_BITS);
234 assert(v_l1_shift % V_L2_BITS == 0);
235 assert(v_l2_levels >= 0);
236 }
237
238 void cpu_gen_init(void)
239 {
240 tcg_context_init(&tcg_init_ctx);
241 }
242
243 /* Encode VAL as a signed leb128 sequence at P.
244 Return P incremented past the encoded value. */
245 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
246 {
247 int more, byte;
248
249 do {
250 byte = val & 0x7f;
251 val >>= 7;
252 more = !((val == 0 && (byte & 0x40) == 0)
253 || (val == -1 && (byte & 0x40) != 0));
254 if (more) {
255 byte |= 0x80;
256 }
257 *p++ = byte;
258 } while (more);
259
260 return p;
261 }
262
263 /* Decode a signed leb128 sequence at *PP; increment *PP past the
264 decoded value. Return the decoded value. */
265 static target_long decode_sleb128(uint8_t **pp)
266 {
267 uint8_t *p = *pp;
268 target_long val = 0;
269 int byte, shift = 0;
270
271 do {
272 byte = *p++;
273 val |= (target_ulong)(byte & 0x7f) << shift;
274 shift += 7;
275 } while (byte & 0x80);
276 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
277 val |= -(target_ulong)1 << shift;
278 }
279
280 *pp = p;
281 return val;
282 }
283
284 /* Encode the data collected about the instructions while compiling TB.
285 Place the data at BLOCK, and return the number of bytes consumed.
286
287 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
288 which come from the target's insn_start data, followed by a uintptr_t
289 which comes from the host pc of the end of the code implementing the insn.
290
291 Each line of the table is encoded as sleb128 deltas from the previous
292 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
293 That is, the first column is seeded with the guest pc, the last column
294 with the host pc, and the middle columns with zeros. */
295
296 static int encode_search(TranslationBlock *tb, uint8_t *block)
297 {
298 uint8_t *highwater = tcg_ctx->code_gen_highwater;
299 uint8_t *p = block;
300 int i, j, n;
301
302 for (i = 0, n = tb->icount; i < n; ++i) {
303 target_ulong prev;
304
305 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
306 if (i == 0) {
307 prev = (j == 0 ? tb->pc : 0);
308 } else {
309 prev = tcg_ctx->gen_insn_data[i - 1][j];
310 }
311 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
312 }
313 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
314 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
315
316 /* Test for (pending) buffer overflow. The assumption is that any
317 one row beginning below the high water mark cannot overrun
318 the buffer completely. Thus we can test for overflow after
319 encoding a row without having to check during encoding. */
320 if (unlikely(p > highwater)) {
321 return -1;
322 }
323 }
324
325 return p - block;
326 }
327
328 /* The cpu state corresponding to 'searched_pc' is restored.
329 * When reset_icount is true, current TB will be interrupted and
330 * icount should be recalculated.
331 */
332 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
333 uintptr_t searched_pc, bool reset_icount)
334 {
335 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
336 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
337 CPUArchState *env = cpu->env_ptr;
338 uint8_t *p = tb->tc.ptr + tb->tc.size;
339 int i, j, num_insns = tb->icount;
340 #ifdef CONFIG_PROFILER
341 TCGProfile *prof = &tcg_ctx->prof;
342 int64_t ti = profile_getclock();
343 #endif
344
345 searched_pc -= GETPC_ADJ;
346
347 if (searched_pc < host_pc) {
348 return -1;
349 }
350
351 /* Reconstruct the stored insn data while looking for the point at
352 which the end of the insn exceeds the searched_pc. */
353 for (i = 0; i < num_insns; ++i) {
354 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
355 data[j] += decode_sleb128(&p);
356 }
357 host_pc += decode_sleb128(&p);
358 if (host_pc > searched_pc) {
359 goto found;
360 }
361 }
362 return -1;
363
364 found:
365 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
366 assert(use_icount);
367 /* Reset the cycle counter to the start of the block
368 and shift if to the number of actually executed instructions */
369 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
370 }
371 restore_state_to_opc(env, tb, data);
372
373 #ifdef CONFIG_PROFILER
374 atomic_set(&prof->restore_time,
375 prof->restore_time + profile_getclock() - ti);
376 atomic_set(&prof->restore_count, prof->restore_count + 1);
377 #endif
378 return 0;
379 }
380
381 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
382 {
383 TranslationBlock *tb;
384 bool r = false;
385 uintptr_t check_offset;
386
387 /* The host_pc has to be in the region of current code buffer. If
388 * it is not we will not be able to resolve it here. The two cases
389 * where host_pc will not be correct are:
390 *
391 * - fault during translation (instruction fetch)
392 * - fault from helper (not using GETPC() macro)
393 *
394 * Either way we need return early as we can't resolve it here.
395 *
396 * We are using unsigned arithmetic so if host_pc <
397 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
398 * above the code_gen_buffer_size
399 */
400 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
401
402 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
403 tb = tcg_tb_lookup(host_pc);
404 if (tb) {
405 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
406 if (tb_cflags(tb) & CF_NOCACHE) {
407 /* one-shot translation, invalidate it immediately */
408 tb_phys_invalidate(tb, -1);
409 tcg_tb_remove(tb);
410 }
411 r = true;
412 }
413 }
414
415 return r;
416 }
417
418 static void page_init(void)
419 {
420 page_size_init();
421 page_table_config_init();
422
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424 {
425 #ifdef HAVE_KINFO_GETVMMAP
426 struct kinfo_vmentry *freep;
427 int i, cnt;
428
429 freep = kinfo_getvmmap(getpid(), &cnt);
430 if (freep) {
431 mmap_lock();
432 for (i = 0; i < cnt; i++) {
433 unsigned long startaddr, endaddr;
434
435 startaddr = freep[i].kve_start;
436 endaddr = freep[i].kve_end;
437 if (h2g_valid(startaddr)) {
438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439
440 if (h2g_valid(endaddr)) {
441 endaddr = h2g(endaddr);
442 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443 } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445 endaddr = ~0ul;
446 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448 }
449 }
450 }
451 free(freep);
452 mmap_unlock();
453 }
454 #else
455 FILE *f;
456
457 last_brk = (unsigned long)sbrk(0);
458
459 f = fopen("/compat/linux/proc/self/maps", "r");
460 if (f) {
461 mmap_lock();
462
463 do {
464 unsigned long startaddr, endaddr;
465 int n;
466
467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468
469 if (n == 2 && h2g_valid(startaddr)) {
470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471
472 if (h2g_valid(endaddr)) {
473 endaddr = h2g(endaddr);
474 } else {
475 endaddr = ~0ul;
476 }
477 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478 }
479 } while (!feof(f));
480
481 fclose(f);
482 mmap_unlock();
483 }
484 #endif
485 }
486 #endif
487 }
488
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491 PageDesc *pd;
492 void **lp;
493 int i;
494
495 /* Level 1. Always allocated. */
496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497
498 /* Level 2..N-1. */
499 for (i = v_l2_levels; i > 0; i--) {
500 void **p = atomic_rcu_read(lp);
501
502 if (p == NULL) {
503 void *existing;
504
505 if (!alloc) {
506 return NULL;
507 }
508 p = g_new0(void *, V_L2_SIZE);
509 existing = atomic_cmpxchg(lp, NULL, p);
510 if (unlikely(existing)) {
511 g_free(p);
512 p = existing;
513 }
514 }
515
516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517 }
518
519 pd = atomic_rcu_read(lp);
520 if (pd == NULL) {
521 void *existing;
522
523 if (!alloc) {
524 return NULL;
525 }
526 pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528 {
529 int i;
530
531 for (i = 0; i < V_L2_SIZE; i++) {
532 qemu_spin_init(&pd[i].lock);
533 }
534 }
535 #endif
536 existing = atomic_cmpxchg(lp, NULL, pd);
537 if (unlikely(existing)) {
538 g_free(pd);
539 pd = existing;
540 }
541 }
542
543 return pd + (index & (V_L2_SIZE - 1));
544 }
545
546 static inline PageDesc *page_find(tb_page_addr_t index)
547 {
548 return page_find_alloc(index, 0);
549 }
550
551 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
552 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
553
554 /* In user-mode page locks aren't used; mmap_lock is enough */
555 #ifdef CONFIG_USER_ONLY
556
557 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
558
559 static inline void page_lock(PageDesc *pd)
560 { }
561
562 static inline void page_unlock(PageDesc *pd)
563 { }
564
565 static inline void page_lock_tb(const TranslationBlock *tb)
566 { }
567
568 static inline void page_unlock_tb(const TranslationBlock *tb)
569 { }
570
571 struct page_collection *
572 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
573 {
574 return NULL;
575 }
576
577 void page_collection_unlock(struct page_collection *set)
578 { }
579 #else /* !CONFIG_USER_ONLY */
580
581 #ifdef CONFIG_DEBUG_TCG
582
583 static __thread GHashTable *ht_pages_locked_debug;
584
585 static void ht_pages_locked_debug_init(void)
586 {
587 if (ht_pages_locked_debug) {
588 return;
589 }
590 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
591 }
592
593 static bool page_is_locked(const PageDesc *pd)
594 {
595 PageDesc *found;
596
597 ht_pages_locked_debug_init();
598 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
599 return !!found;
600 }
601
602 static void page_lock__debug(PageDesc *pd)
603 {
604 ht_pages_locked_debug_init();
605 g_assert(!page_is_locked(pd));
606 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
607 }
608
609 static void page_unlock__debug(const PageDesc *pd)
610 {
611 bool removed;
612
613 ht_pages_locked_debug_init();
614 g_assert(page_is_locked(pd));
615 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
616 g_assert(removed);
617 }
618
619 static void
620 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
621 {
622 if (unlikely(!page_is_locked(pd))) {
623 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
624 pd, file, line);
625 abort();
626 }
627 }
628
629 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
630
631 void assert_no_pages_locked(void)
632 {
633 ht_pages_locked_debug_init();
634 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
635 }
636
637 #else /* !CONFIG_DEBUG_TCG */
638
639 #define assert_page_locked(pd)
640
641 static inline void page_lock__debug(const PageDesc *pd)
642 {
643 }
644
645 static inline void page_unlock__debug(const PageDesc *pd)
646 {
647 }
648
649 #endif /* CONFIG_DEBUG_TCG */
650
651 static inline void page_lock(PageDesc *pd)
652 {
653 page_lock__debug(pd);
654 qemu_spin_lock(&pd->lock);
655 }
656
657 static inline void page_unlock(PageDesc *pd)
658 {
659 qemu_spin_unlock(&pd->lock);
660 page_unlock__debug(pd);
661 }
662
663 /* lock the page(s) of a TB in the correct acquisition order */
664 static inline void page_lock_tb(const TranslationBlock *tb)
665 {
666 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
667 }
668
669 static inline void page_unlock_tb(const TranslationBlock *tb)
670 {
671 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
672
673 page_unlock(p1);
674 if (unlikely(tb->page_addr[1] != -1)) {
675 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
676
677 if (p2 != p1) {
678 page_unlock(p2);
679 }
680 }
681 }
682
683 static inline struct page_entry *
684 page_entry_new(PageDesc *pd, tb_page_addr_t index)
685 {
686 struct page_entry *pe = g_malloc(sizeof(*pe));
687
688 pe->index = index;
689 pe->pd = pd;
690 pe->locked = false;
691 return pe;
692 }
693
694 static void page_entry_destroy(gpointer p)
695 {
696 struct page_entry *pe = p;
697
698 g_assert(pe->locked);
699 page_unlock(pe->pd);
700 g_free(pe);
701 }
702
703 /* returns false on success */
704 static bool page_entry_trylock(struct page_entry *pe)
705 {
706 bool busy;
707
708 busy = qemu_spin_trylock(&pe->pd->lock);
709 if (!busy) {
710 g_assert(!pe->locked);
711 pe->locked = true;
712 page_lock__debug(pe->pd);
713 }
714 return busy;
715 }
716
717 static void do_page_entry_lock(struct page_entry *pe)
718 {
719 page_lock(pe->pd);
720 g_assert(!pe->locked);
721 pe->locked = true;
722 }
723
724 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
725 {
726 struct page_entry *pe = value;
727
728 do_page_entry_lock(pe);
729 return FALSE;
730 }
731
732 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
733 {
734 struct page_entry *pe = value;
735
736 if (pe->locked) {
737 pe->locked = false;
738 page_unlock(pe->pd);
739 }
740 return FALSE;
741 }
742
743 /*
744 * Trylock a page, and if successful, add the page to a collection.
745 * Returns true ("busy") if the page could not be locked; false otherwise.
746 */
747 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
748 {
749 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
750 struct page_entry *pe;
751 PageDesc *pd;
752
753 pe = g_tree_lookup(set->tree, &index);
754 if (pe) {
755 return false;
756 }
757
758 pd = page_find(index);
759 if (pd == NULL) {
760 return false;
761 }
762
763 pe = page_entry_new(pd, index);
764 g_tree_insert(set->tree, &pe->index, pe);
765
766 /*
767 * If this is either (1) the first insertion or (2) a page whose index
768 * is higher than any other so far, just lock the page and move on.
769 */
770 if (set->max == NULL || pe->index > set->max->index) {
771 set->max = pe;
772 do_page_entry_lock(pe);
773 return false;
774 }
775 /*
776 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
777 * locks in order.
778 */
779 return page_entry_trylock(pe);
780 }
781
782 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
783 {
784 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
785 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
786
787 if (a == b) {
788 return 0;
789 } else if (a < b) {
790 return -1;
791 }
792 return 1;
793 }
794
795 /*
796 * Lock a range of pages ([@start,@end[) as well as the pages of all
797 * intersecting TBs.
798 * Locking order: acquire locks in ascending order of page index.
799 */
800 struct page_collection *
801 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
802 {
803 struct page_collection *set = g_malloc(sizeof(*set));
804 tb_page_addr_t index;
805 PageDesc *pd;
806
807 start >>= TARGET_PAGE_BITS;
808 end >>= TARGET_PAGE_BITS;
809 g_assert(start <= end);
810
811 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
812 page_entry_destroy);
813 set->max = NULL;
814 assert_no_pages_locked();
815
816 retry:
817 g_tree_foreach(set->tree, page_entry_lock, NULL);
818
819 for (index = start; index <= end; index++) {
820 TranslationBlock *tb;
821 int n;
822
823 pd = page_find(index);
824 if (pd == NULL) {
825 continue;
826 }
827 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
828 g_tree_foreach(set->tree, page_entry_unlock, NULL);
829 goto retry;
830 }
831 assert_page_locked(pd);
832 PAGE_FOR_EACH_TB(pd, tb, n) {
833 if (page_trylock_add(set, tb->page_addr[0]) ||
834 (tb->page_addr[1] != -1 &&
835 page_trylock_add(set, tb->page_addr[1]))) {
836 /* drop all locks, and reacquire in order */
837 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838 goto retry;
839 }
840 }
841 }
842 return set;
843 }
844
845 void page_collection_unlock(struct page_collection *set)
846 {
847 /* entries are unlocked and freed via page_entry_destroy */
848 g_tree_destroy(set->tree);
849 g_free(set);
850 }
851
852 #endif /* !CONFIG_USER_ONLY */
853
854 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
855 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
856 {
857 PageDesc *p1, *p2;
858 tb_page_addr_t page1;
859 tb_page_addr_t page2;
860
861 assert_memory_lock();
862 g_assert(phys1 != -1);
863
864 page1 = phys1 >> TARGET_PAGE_BITS;
865 page2 = phys2 >> TARGET_PAGE_BITS;
866
867 p1 = page_find_alloc(page1, alloc);
868 if (ret_p1) {
869 *ret_p1 = p1;
870 }
871 if (likely(phys2 == -1)) {
872 page_lock(p1);
873 return;
874 } else if (page1 == page2) {
875 page_lock(p1);
876 if (ret_p2) {
877 *ret_p2 = p1;
878 }
879 return;
880 }
881 p2 = page_find_alloc(page2, alloc);
882 if (ret_p2) {
883 *ret_p2 = p2;
884 }
885 if (page1 < page2) {
886 page_lock(p1);
887 page_lock(p2);
888 } else {
889 page_lock(p2);
890 page_lock(p1);
891 }
892 }
893
894 #if defined(CONFIG_USER_ONLY)
895 /* Currently it is not recommended to allocate big chunks of data in
896 user mode. It will change when a dedicated libc will be used. */
897 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
898 region in which the guest needs to run. Revisit this. */
899 #define USE_STATIC_CODE_GEN_BUFFER
900 #endif
901
902 /* Minimum size of the code gen buffer. This number is randomly chosen,
903 but not so small that we can't have a fair number of TB's live. */
904 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
905
906 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
907 indicated, this is constrained by the range of direct branches on the
908 host cpu, as used by the TCG implementation of goto_tb. */
909 #if defined(__x86_64__)
910 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
911 #elif defined(__sparc__)
912 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
913 #elif defined(__powerpc64__)
914 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
915 #elif defined(__powerpc__)
916 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
917 #elif defined(__aarch64__)
918 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
919 #elif defined(__s390x__)
920 /* We have a +- 4GB range on the branches; leave some slop. */
921 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
922 #elif defined(__mips__)
923 /* We have a 256MB branch region, but leave room to make sure the
924 main executable is also within that region. */
925 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
926 #else
927 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
928 #endif
929
930 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
931
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
933 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
934 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
935
936 static inline size_t size_code_gen_buffer(size_t tb_size)
937 {
938 /* Size the buffer. */
939 if (tb_size == 0) {
940 #ifdef USE_STATIC_CODE_GEN_BUFFER
941 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
942 #else
943 /* ??? Needs adjustments. */
944 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
945 static buffer, we could size this on RESERVED_VA, on the text
946 segment size of the executable, or continue to use the default. */
947 tb_size = (unsigned long)(ram_size / 4);
948 #endif
949 }
950 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
951 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
952 }
953 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
954 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
955 }
956 return tb_size;
957 }
958
959 #ifdef __mips__
960 /* In order to use J and JAL within the code_gen_buffer, we require
961 that the buffer not cross a 256MB boundary. */
962 static inline bool cross_256mb(void *addr, size_t size)
963 {
964 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
965 }
966
967 /* We weren't able to allocate a buffer without crossing that boundary,
968 so make do with the larger portion of the buffer that doesn't cross.
969 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
970 static inline void *split_cross_256mb(void *buf1, size_t size1)
971 {
972 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
973 size_t size2 = buf1 + size1 - buf2;
974
975 size1 = buf2 - buf1;
976 if (size1 < size2) {
977 size1 = size2;
978 buf1 = buf2;
979 }
980
981 tcg_ctx->code_gen_buffer_size = size1;
982 return buf1;
983 }
984 #endif
985
986 #ifdef USE_STATIC_CODE_GEN_BUFFER
987 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
988 __attribute__((aligned(CODE_GEN_ALIGN)));
989
990 static inline void *alloc_code_gen_buffer(void)
991 {
992 void *buf = static_code_gen_buffer;
993 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
994 size_t size;
995
996 /* page-align the beginning and end of the buffer */
997 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
998 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
999
1000 size = end - buf;
1001
1002 /* Honor a command-line option limiting the size of the buffer. */
1003 if (size > tcg_ctx->code_gen_buffer_size) {
1004 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1005 qemu_real_host_page_size);
1006 }
1007 tcg_ctx->code_gen_buffer_size = size;
1008
1009 #ifdef __mips__
1010 if (cross_256mb(buf, size)) {
1011 buf = split_cross_256mb(buf, size);
1012 size = tcg_ctx->code_gen_buffer_size;
1013 }
1014 #endif
1015
1016 if (qemu_mprotect_rwx(buf, size)) {
1017 abort();
1018 }
1019 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1020
1021 return buf;
1022 }
1023 #elif defined(_WIN32)
1024 static inline void *alloc_code_gen_buffer(void)
1025 {
1026 size_t size = tcg_ctx->code_gen_buffer_size;
1027 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1028 PAGE_EXECUTE_READWRITE);
1029 }
1030 #else
1031 static inline void *alloc_code_gen_buffer(void)
1032 {
1033 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1034 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1035 uintptr_t start = 0;
1036 size_t size = tcg_ctx->code_gen_buffer_size;
1037 void *buf;
1038
1039 /* Constrain the position of the buffer based on the host cpu.
1040 Note that these addresses are chosen in concert with the
1041 addresses assigned in the relevant linker script file. */
1042 # if defined(__PIE__) || defined(__PIC__)
1043 /* Don't bother setting a preferred location if we're building
1044 a position-independent executable. We're more likely to get
1045 an address near the main executable if we let the kernel
1046 choose the address. */
1047 # elif defined(__x86_64__) && defined(MAP_32BIT)
1048 /* Force the memory down into low memory with the executable.
1049 Leave the choice of exact location with the kernel. */
1050 flags |= MAP_32BIT;
1051 /* Cannot expect to map more than 800MB in low memory. */
1052 if (size > 800u * 1024 * 1024) {
1053 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1054 }
1055 # elif defined(__sparc__)
1056 start = 0x40000000ul;
1057 # elif defined(__s390x__)
1058 start = 0x90000000ul;
1059 # elif defined(__mips__)
1060 # if _MIPS_SIM == _ABI64
1061 start = 0x128000000ul;
1062 # else
1063 start = 0x08000000ul;
1064 # endif
1065 # endif
1066
1067 buf = mmap((void *)start, size, prot, flags, -1, 0);
1068 if (buf == MAP_FAILED) {
1069 return NULL;
1070 }
1071
1072 #ifdef __mips__
1073 if (cross_256mb(buf, size)) {
1074 /* Try again, with the original still mapped, to avoid re-acquiring
1075 that 256mb crossing. This time don't specify an address. */
1076 size_t size2;
1077 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1078 switch ((int)(buf2 != MAP_FAILED)) {
1079 case 1:
1080 if (!cross_256mb(buf2, size)) {
1081 /* Success! Use the new buffer. */
1082 munmap(buf, size);
1083 break;
1084 }
1085 /* Failure. Work with what we had. */
1086 munmap(buf2, size);
1087 /* fallthru */
1088 default:
1089 /* Split the original buffer. Free the smaller half. */
1090 buf2 = split_cross_256mb(buf, size);
1091 size2 = tcg_ctx->code_gen_buffer_size;
1092 if (buf == buf2) {
1093 munmap(buf + size2, size - size2);
1094 } else {
1095 munmap(buf, size - size2);
1096 }
1097 size = size2;
1098 break;
1099 }
1100 buf = buf2;
1101 }
1102 #endif
1103
1104 /* Request large pages for the buffer. */
1105 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1106
1107 return buf;
1108 }
1109 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1110
1111 static inline void code_gen_alloc(size_t tb_size)
1112 {
1113 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1114 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1115 if (tcg_ctx->code_gen_buffer == NULL) {
1116 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1117 exit(1);
1118 }
1119 }
1120
1121 static bool tb_cmp(const void *ap, const void *bp)
1122 {
1123 const TranslationBlock *a = ap;
1124 const TranslationBlock *b = bp;
1125
1126 return a->pc == b->pc &&
1127 a->cs_base == b->cs_base &&
1128 a->flags == b->flags &&
1129 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1130 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1131 a->page_addr[0] == b->page_addr[0] &&
1132 a->page_addr[1] == b->page_addr[1];
1133 }
1134
1135 static void tb_htable_init(void)
1136 {
1137 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1138
1139 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1140 }
1141
1142 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1143 (in bytes) allocated to the translation buffer. Zero means default
1144 size. */
1145 void tcg_exec_init(unsigned long tb_size)
1146 {
1147 tcg_allowed = true;
1148 cpu_gen_init();
1149 page_init();
1150 tb_htable_init();
1151 code_gen_alloc(tb_size);
1152 #if defined(CONFIG_SOFTMMU)
1153 /* There's no guest base to take into account, so go ahead and
1154 initialize the prologue now. */
1155 tcg_prologue_init(tcg_ctx);
1156 #endif
1157 }
1158
1159 /*
1160 * Allocate a new translation block. Flush the translation buffer if
1161 * too many translation blocks or too much generated code.
1162 */
1163 static TranslationBlock *tb_alloc(target_ulong pc)
1164 {
1165 TranslationBlock *tb;
1166
1167 assert_memory_lock();
1168
1169 tb = tcg_tb_alloc(tcg_ctx);
1170 if (unlikely(tb == NULL)) {
1171 return NULL;
1172 }
1173 return tb;
1174 }
1175
1176 /* call with @p->lock held */
1177 static inline void invalidate_page_bitmap(PageDesc *p)
1178 {
1179 assert_page_locked(p);
1180 #ifdef CONFIG_SOFTMMU
1181 g_free(p->code_bitmap);
1182 p->code_bitmap = NULL;
1183 p->code_write_count = 0;
1184 #endif
1185 }
1186
1187 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1188 static void page_flush_tb_1(int level, void **lp)
1189 {
1190 int i;
1191
1192 if (*lp == NULL) {
1193 return;
1194 }
1195 if (level == 0) {
1196 PageDesc *pd = *lp;
1197
1198 for (i = 0; i < V_L2_SIZE; ++i) {
1199 page_lock(&pd[i]);
1200 pd[i].first_tb = (uintptr_t)NULL;
1201 invalidate_page_bitmap(pd + i);
1202 page_unlock(&pd[i]);
1203 }
1204 } else {
1205 void **pp = *lp;
1206
1207 for (i = 0; i < V_L2_SIZE; ++i) {
1208 page_flush_tb_1(level - 1, pp + i);
1209 }
1210 }
1211 }
1212
1213 static void page_flush_tb(void)
1214 {
1215 int i, l1_sz = v_l1_size;
1216
1217 for (i = 0; i < l1_sz; i++) {
1218 page_flush_tb_1(v_l2_levels, l1_map + i);
1219 }
1220 }
1221
1222 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1223 {
1224 const TranslationBlock *tb = value;
1225 size_t *size = data;
1226
1227 *size += tb->tc.size;
1228 return false;
1229 }
1230
1231 /* flush all the translation blocks */
1232 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1233 {
1234 mmap_lock();
1235 /* If it is already been done on request of another CPU,
1236 * just retry.
1237 */
1238 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1239 goto done;
1240 }
1241
1242 if (DEBUG_TB_FLUSH_GATE) {
1243 size_t nb_tbs = tcg_nb_tbs();
1244 size_t host_size = 0;
1245
1246 tcg_tb_foreach(tb_host_size_iter, &host_size);
1247 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1248 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1249 }
1250
1251 CPU_FOREACH(cpu) {
1252 cpu_tb_jmp_cache_clear(cpu);
1253 }
1254
1255 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1256 page_flush_tb();
1257
1258 tcg_region_reset_all();
1259 /* XXX: flush processor icache at this point if cache flush is
1260 expensive */
1261 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1262
1263 done:
1264 mmap_unlock();
1265 }
1266
1267 void tb_flush(CPUState *cpu)
1268 {
1269 if (tcg_enabled()) {
1270 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1271 async_safe_run_on_cpu(cpu, do_tb_flush,
1272 RUN_ON_CPU_HOST_INT(tb_flush_count));
1273 }
1274 }
1275
1276 /*
1277 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1278 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1279 * and let the optimizer get rid of them by wrapping their user-only callers
1280 * with if (DEBUG_TB_CHECK_GATE).
1281 */
1282 #ifdef CONFIG_USER_ONLY
1283
1284 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1285 {
1286 TranslationBlock *tb = p;
1287 target_ulong addr = *(target_ulong *)userp;
1288
1289 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1290 printf("ERROR invalidate: address=" TARGET_FMT_lx
1291 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1292 }
1293 }
1294
1295 /* verify that all the pages have correct rights for code
1296 *
1297 * Called with mmap_lock held.
1298 */
1299 static void tb_invalidate_check(target_ulong address)
1300 {
1301 address &= TARGET_PAGE_MASK;
1302 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1303 }
1304
1305 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1306 {
1307 TranslationBlock *tb = p;
1308 int flags1, flags2;
1309
1310 flags1 = page_get_flags(tb->pc);
1311 flags2 = page_get_flags(tb->pc + tb->size - 1);
1312 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1313 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1314 (long)tb->pc, tb->size, flags1, flags2);
1315 }
1316 }
1317
1318 /* verify that all the pages have correct rights for code */
1319 static void tb_page_check(void)
1320 {
1321 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1322 }
1323
1324 #endif /* CONFIG_USER_ONLY */
1325
1326 /*
1327 * user-mode: call with mmap_lock held
1328 * !user-mode: call with @pd->lock held
1329 */
1330 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1331 {
1332 TranslationBlock *tb1;
1333 uintptr_t *pprev;
1334 unsigned int n1;
1335
1336 assert_page_locked(pd);
1337 pprev = &pd->first_tb;
1338 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1339 if (tb1 == tb) {
1340 *pprev = tb1->page_next[n1];
1341 return;
1342 }
1343 pprev = &tb1->page_next[n1];
1344 }
1345 g_assert_not_reached();
1346 }
1347
1348 /* remove @orig from its @n_orig-th jump list */
1349 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1350 {
1351 uintptr_t ptr, ptr_locked;
1352 TranslationBlock *dest;
1353 TranslationBlock *tb;
1354 uintptr_t *pprev;
1355 int n;
1356
1357 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1358 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1359 dest = (TranslationBlock *)(ptr & ~1);
1360 if (dest == NULL) {
1361 return;
1362 }
1363
1364 qemu_spin_lock(&dest->jmp_lock);
1365 /*
1366 * While acquiring the lock, the jump might have been removed if the
1367 * destination TB was invalidated; check again.
1368 */
1369 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1370 if (ptr_locked != ptr) {
1371 qemu_spin_unlock(&dest->jmp_lock);
1372 /*
1373 * The only possibility is that the jump was unlinked via
1374 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1375 * because we set the LSB above.
1376 */
1377 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1378 return;
1379 }
1380 /*
1381 * We first acquired the lock, and since the destination pointer matches,
1382 * we know for sure that @orig is in the jmp list.
1383 */
1384 pprev = &dest->jmp_list_head;
1385 TB_FOR_EACH_JMP(dest, tb, n) {
1386 if (tb == orig && n == n_orig) {
1387 *pprev = tb->jmp_list_next[n];
1388 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1389 qemu_spin_unlock(&dest->jmp_lock);
1390 return;
1391 }
1392 pprev = &tb->jmp_list_next[n];
1393 }
1394 g_assert_not_reached();
1395 }
1396
1397 /* reset the jump entry 'n' of a TB so that it is not chained to
1398 another TB */
1399 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1400 {
1401 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1402 tb_set_jmp_target(tb, n, addr);
1403 }
1404
1405 /* remove any jumps to the TB */
1406 static inline void tb_jmp_unlink(TranslationBlock *dest)
1407 {
1408 TranslationBlock *tb;
1409 int n;
1410
1411 qemu_spin_lock(&dest->jmp_lock);
1412
1413 TB_FOR_EACH_JMP(dest, tb, n) {
1414 tb_reset_jump(tb, n);
1415 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1416 /* No need to clear the list entry; setting the dest ptr is enough */
1417 }
1418 dest->jmp_list_head = (uintptr_t)NULL;
1419
1420 qemu_spin_unlock(&dest->jmp_lock);
1421 }
1422
1423 /*
1424 * In user-mode, call with mmap_lock held.
1425 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1426 * locks held.
1427 */
1428 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1429 {
1430 CPUState *cpu;
1431 PageDesc *p;
1432 uint32_t h;
1433 tb_page_addr_t phys_pc;
1434
1435 assert_memory_lock();
1436
1437 /* make sure no further incoming jumps will be chained to this TB */
1438 qemu_spin_lock(&tb->jmp_lock);
1439 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1440 qemu_spin_unlock(&tb->jmp_lock);
1441
1442 /* remove the TB from the hash list */
1443 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1444 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1445 tb->trace_vcpu_dstate);
1446 if (!(tb->cflags & CF_NOCACHE) &&
1447 !qht_remove(&tb_ctx.htable, tb, h)) {
1448 return;
1449 }
1450
1451 /* remove the TB from the page list */
1452 if (rm_from_page_list) {
1453 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1454 tb_page_remove(p, tb);
1455 invalidate_page_bitmap(p);
1456 if (tb->page_addr[1] != -1) {
1457 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1458 tb_page_remove(p, tb);
1459 invalidate_page_bitmap(p);
1460 }
1461 }
1462
1463 /* remove the TB from the hash list */
1464 h = tb_jmp_cache_hash_func(tb->pc);
1465 CPU_FOREACH(cpu) {
1466 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1467 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1468 }
1469 }
1470
1471 /* suppress this TB from the two jump lists */
1472 tb_remove_from_jmp_list(tb, 0);
1473 tb_remove_from_jmp_list(tb, 1);
1474
1475 /* suppress any remaining jumps to this TB */
1476 tb_jmp_unlink(tb);
1477
1478 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1479 tcg_ctx->tb_phys_invalidate_count + 1);
1480 }
1481
1482 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1483 {
1484 do_tb_phys_invalidate(tb, true);
1485 }
1486
1487 /* invalidate one TB
1488 *
1489 * Called with mmap_lock held in user-mode.
1490 */
1491 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1492 {
1493 if (page_addr == -1 && tb->page_addr[0] != -1) {
1494 page_lock_tb(tb);
1495 do_tb_phys_invalidate(tb, true);
1496 page_unlock_tb(tb);
1497 } else {
1498 do_tb_phys_invalidate(tb, false);
1499 }
1500 }
1501
1502 #ifdef CONFIG_SOFTMMU
1503 /* call with @p->lock held */
1504 static void build_page_bitmap(PageDesc *p)
1505 {
1506 int n, tb_start, tb_end;
1507 TranslationBlock *tb;
1508
1509 assert_page_locked(p);
1510 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1511
1512 PAGE_FOR_EACH_TB(p, tb, n) {
1513 /* NOTE: this is subtle as a TB may span two physical pages */
1514 if (n == 0) {
1515 /* NOTE: tb_end may be after the end of the page, but
1516 it is not a problem */
1517 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1518 tb_end = tb_start + tb->size;
1519 if (tb_end > TARGET_PAGE_SIZE) {
1520 tb_end = TARGET_PAGE_SIZE;
1521 }
1522 } else {
1523 tb_start = 0;
1524 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1525 }
1526 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1527 }
1528 }
1529 #endif
1530
1531 /* add the tb in the target page and protect it if necessary
1532 *
1533 * Called with mmap_lock held for user-mode emulation.
1534 * Called with @p->lock held in !user-mode.
1535 */
1536 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1537 unsigned int n, tb_page_addr_t page_addr)
1538 {
1539 #ifndef CONFIG_USER_ONLY
1540 bool page_already_protected;
1541 #endif
1542
1543 assert_page_locked(p);
1544
1545 tb->page_addr[n] = page_addr;
1546 tb->page_next[n] = p->first_tb;
1547 #ifndef CONFIG_USER_ONLY
1548 page_already_protected = p->first_tb != (uintptr_t)NULL;
1549 #endif
1550 p->first_tb = (uintptr_t)tb | n;
1551 invalidate_page_bitmap(p);
1552
1553 #if defined(CONFIG_USER_ONLY)
1554 if (p->flags & PAGE_WRITE) {
1555 target_ulong addr;
1556 PageDesc *p2;
1557 int prot;
1558
1559 /* force the host page as non writable (writes will have a
1560 page fault + mprotect overhead) */
1561 page_addr &= qemu_host_page_mask;
1562 prot = 0;
1563 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1564 addr += TARGET_PAGE_SIZE) {
1565
1566 p2 = page_find(addr >> TARGET_PAGE_BITS);
1567 if (!p2) {
1568 continue;
1569 }
1570 prot |= p2->flags;
1571 p2->flags &= ~PAGE_WRITE;
1572 }
1573 mprotect(g2h(page_addr), qemu_host_page_size,
1574 (prot & PAGE_BITS) & ~PAGE_WRITE);
1575 if (DEBUG_TB_INVALIDATE_GATE) {
1576 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1577 }
1578 }
1579 #else
1580 /* if some code is already present, then the pages are already
1581 protected. So we handle the case where only the first TB is
1582 allocated in a physical page */
1583 if (!page_already_protected) {
1584 tlb_protect_code(page_addr);
1585 }
1586 #endif
1587 }
1588
1589 /* add a new TB and link it to the physical page tables. phys_page2 is
1590 * (-1) to indicate that only one page contains the TB.
1591 *
1592 * Called with mmap_lock held for user-mode emulation.
1593 *
1594 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1595 * Note that in !user-mode, another thread might have already added a TB
1596 * for the same block of guest code that @tb corresponds to. In that case,
1597 * the caller should discard the original @tb, and use instead the returned TB.
1598 */
1599 static TranslationBlock *
1600 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1601 tb_page_addr_t phys_page2)
1602 {
1603 PageDesc *p;
1604 PageDesc *p2 = NULL;
1605
1606 assert_memory_lock();
1607
1608 if (phys_pc == -1) {
1609 /*
1610 * If the TB is not associated with a physical RAM page then
1611 * it must be a temporary one-insn TB, and we have nothing to do
1612 * except fill in the page_addr[] fields.
1613 */
1614 assert(tb->cflags & CF_NOCACHE);
1615 tb->page_addr[0] = tb->page_addr[1] = -1;
1616 return tb;
1617 }
1618
1619 /*
1620 * Add the TB to the page list, acquiring first the pages's locks.
1621 * We keep the locks held until after inserting the TB in the hash table,
1622 * so that if the insertion fails we know for sure that the TBs are still
1623 * in the page descriptors.
1624 * Note that inserting into the hash table first isn't an option, since
1625 * we can only insert TBs that are fully initialized.
1626 */
1627 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1628 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1629 if (p2) {
1630 tb_page_add(p2, tb, 1, phys_page2);
1631 } else {
1632 tb->page_addr[1] = -1;
1633 }
1634
1635 if (!(tb->cflags & CF_NOCACHE)) {
1636 void *existing_tb = NULL;
1637 uint32_t h;
1638
1639 /* add in the hash table */
1640 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1641 tb->trace_vcpu_dstate);
1642 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1643
1644 /* remove TB from the page(s) if we couldn't insert it */
1645 if (unlikely(existing_tb)) {
1646 tb_page_remove(p, tb);
1647 invalidate_page_bitmap(p);
1648 if (p2) {
1649 tb_page_remove(p2, tb);
1650 invalidate_page_bitmap(p2);
1651 }
1652 tb = existing_tb;
1653 }
1654 }
1655
1656 if (p2 && p2 != p) {
1657 page_unlock(p2);
1658 }
1659 page_unlock(p);
1660
1661 #ifdef CONFIG_USER_ONLY
1662 if (DEBUG_TB_CHECK_GATE) {
1663 tb_page_check();
1664 }
1665 #endif
1666 return tb;
1667 }
1668
1669 /* Called with mmap_lock held for user mode emulation. */
1670 TranslationBlock *tb_gen_code(CPUState *cpu,
1671 target_ulong pc, target_ulong cs_base,
1672 uint32_t flags, int cflags)
1673 {
1674 CPUArchState *env = cpu->env_ptr;
1675 TranslationBlock *tb, *existing_tb;
1676 tb_page_addr_t phys_pc, phys_page2;
1677 target_ulong virt_page2;
1678 tcg_insn_unit *gen_code_buf;
1679 int gen_code_size, search_size, max_insns;
1680 #ifdef CONFIG_PROFILER
1681 TCGProfile *prof = &tcg_ctx->prof;
1682 int64_t ti;
1683 #endif
1684 assert_memory_lock();
1685
1686 phys_pc = get_page_addr_code(env, pc);
1687
1688 if (phys_pc == -1) {
1689 /* Generate a temporary TB with 1 insn in it */
1690 cflags &= ~CF_COUNT_MASK;
1691 cflags |= CF_NOCACHE | 1;
1692 }
1693
1694 cflags &= ~CF_CLUSTER_MASK;
1695 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1696
1697 max_insns = cflags & CF_COUNT_MASK;
1698 if (max_insns == 0) {
1699 max_insns = CF_COUNT_MASK;
1700 }
1701 if (max_insns > TCG_MAX_INSNS) {
1702 max_insns = TCG_MAX_INSNS;
1703 }
1704 if (cpu->singlestep_enabled || singlestep) {
1705 max_insns = 1;
1706 }
1707
1708 buffer_overflow:
1709 tb = tb_alloc(pc);
1710 if (unlikely(!tb)) {
1711 /* flush must be done */
1712 tb_flush(cpu);
1713 mmap_unlock();
1714 /* Make the execution loop process the flush as soon as possible. */
1715 cpu->exception_index = EXCP_INTERRUPT;
1716 cpu_loop_exit(cpu);
1717 }
1718
1719 gen_code_buf = tcg_ctx->code_gen_ptr;
1720 tb->tc.ptr = gen_code_buf;
1721 tb->pc = pc;
1722 tb->cs_base = cs_base;
1723 tb->flags = flags;
1724 tb->cflags = cflags;
1725 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1726 tcg_ctx->tb_cflags = cflags;
1727 tb_overflow:
1728
1729 #ifdef CONFIG_PROFILER
1730 /* includes aborted translations because of exceptions */
1731 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1732 ti = profile_getclock();
1733 #endif
1734
1735 tcg_func_start(tcg_ctx);
1736
1737 tcg_ctx->cpu = env_cpu(env);
1738 gen_intermediate_code(cpu, tb, max_insns);
1739 tcg_ctx->cpu = NULL;
1740
1741 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1742
1743 /* generate machine code */
1744 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1745 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1746 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1747 if (TCG_TARGET_HAS_direct_jump) {
1748 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1749 tcg_ctx->tb_jmp_target_addr = NULL;
1750 } else {
1751 tcg_ctx->tb_jmp_insn_offset = NULL;
1752 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1753 }
1754
1755 #ifdef CONFIG_PROFILER
1756 atomic_set(&prof->tb_count, prof->tb_count + 1);
1757 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1758 ti = profile_getclock();
1759 #endif
1760
1761 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1762 if (unlikely(gen_code_size < 0)) {
1763 switch (gen_code_size) {
1764 case -1:
1765 /*
1766 * Overflow of code_gen_buffer, or the current slice of it.
1767 *
1768 * TODO: We don't need to re-do gen_intermediate_code, nor
1769 * should we re-do the tcg optimization currently hidden
1770 * inside tcg_gen_code. All that should be required is to
1771 * flush the TBs, allocate a new TB, re-initialize it per
1772 * above, and re-do the actual code generation.
1773 */
1774 goto buffer_overflow;
1775
1776 case -2:
1777 /*
1778 * The code generated for the TranslationBlock is too large.
1779 * The maximum size allowed by the unwind info is 64k.
1780 * There may be stricter constraints from relocations
1781 * in the tcg backend.
1782 *
1783 * Try again with half as many insns as we attempted this time.
1784 * If a single insn overflows, there's a bug somewhere...
1785 */
1786 max_insns = tb->icount;
1787 assert(max_insns > 1);
1788 max_insns /= 2;
1789 goto tb_overflow;
1790
1791 default:
1792 g_assert_not_reached();
1793 }
1794 }
1795 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1796 if (unlikely(search_size < 0)) {
1797 goto buffer_overflow;
1798 }
1799 tb->tc.size = gen_code_size;
1800
1801 #ifdef CONFIG_PROFILER
1802 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1803 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1804 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1805 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1806 #endif
1807
1808 #ifdef DEBUG_DISAS
1809 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1810 qemu_log_in_addr_range(tb->pc)) {
1811 qemu_log_lock();
1812 qemu_log("OUT: [size=%d]\n", gen_code_size);
1813 if (tcg_ctx->data_gen_ptr) {
1814 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1815 size_t data_size = gen_code_size - code_size;
1816 size_t i;
1817
1818 log_disas(tb->tc.ptr, code_size);
1819
1820 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1821 if (sizeof(tcg_target_ulong) == 8) {
1822 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1823 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1824 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1825 } else {
1826 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1827 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1828 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1829 }
1830 }
1831 } else {
1832 log_disas(tb->tc.ptr, gen_code_size);
1833 }
1834 qemu_log("\n");
1835 qemu_log_flush();
1836 qemu_log_unlock();
1837 }
1838 #endif
1839
1840 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1841 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1842 CODE_GEN_ALIGN));
1843
1844 /* init jump list */
1845 qemu_spin_init(&tb->jmp_lock);
1846 tb->jmp_list_head = (uintptr_t)NULL;
1847 tb->jmp_list_next[0] = (uintptr_t)NULL;
1848 tb->jmp_list_next[1] = (uintptr_t)NULL;
1849 tb->jmp_dest[0] = (uintptr_t)NULL;
1850 tb->jmp_dest[1] = (uintptr_t)NULL;
1851
1852 /* init original jump addresses which have been set during tcg_gen_code() */
1853 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1854 tb_reset_jump(tb, 0);
1855 }
1856 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1857 tb_reset_jump(tb, 1);
1858 }
1859
1860 /* check next page if needed */
1861 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1862 phys_page2 = -1;
1863 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1864 phys_page2 = get_page_addr_code(env, virt_page2);
1865 }
1866 /*
1867 * No explicit memory barrier is required -- tb_link_page() makes the
1868 * TB visible in a consistent state.
1869 */
1870 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1871 /* if the TB already exists, discard what we just translated */
1872 if (unlikely(existing_tb != tb)) {
1873 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1874
1875 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1876 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1877 return existing_tb;
1878 }
1879 tcg_tb_insert(tb);
1880 return tb;
1881 }
1882
1883 /*
1884 * @p must be non-NULL.
1885 * user-mode: call with mmap_lock held.
1886 * !user-mode: call with all @pages locked.
1887 */
1888 static void
1889 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1890 PageDesc *p, tb_page_addr_t start,
1891 tb_page_addr_t end,
1892 uintptr_t retaddr)
1893 {
1894 TranslationBlock *tb;
1895 tb_page_addr_t tb_start, tb_end;
1896 int n;
1897 #ifdef TARGET_HAS_PRECISE_SMC
1898 CPUState *cpu = current_cpu;
1899 CPUArchState *env = NULL;
1900 bool current_tb_not_found = retaddr != 0;
1901 bool current_tb_modified = false;
1902 TranslationBlock *current_tb = NULL;
1903 target_ulong current_pc = 0;
1904 target_ulong current_cs_base = 0;
1905 uint32_t current_flags = 0;
1906 #endif /* TARGET_HAS_PRECISE_SMC */
1907
1908 assert_page_locked(p);
1909
1910 #if defined(TARGET_HAS_PRECISE_SMC)
1911 if (cpu != NULL) {
1912 env = cpu->env_ptr;
1913 }
1914 #endif
1915
1916 /* we remove all the TBs in the range [start, end[ */
1917 /* XXX: see if in some cases it could be faster to invalidate all
1918 the code */
1919 PAGE_FOR_EACH_TB(p, tb, n) {
1920 assert_page_locked(p);
1921 /* NOTE: this is subtle as a TB may span two physical pages */
1922 if (n == 0) {
1923 /* NOTE: tb_end may be after the end of the page, but
1924 it is not a problem */
1925 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1926 tb_end = tb_start + tb->size;
1927 } else {
1928 tb_start = tb->page_addr[1];
1929 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1930 }
1931 if (!(tb_end <= start || tb_start >= end)) {
1932 #ifdef TARGET_HAS_PRECISE_SMC
1933 if (current_tb_not_found) {
1934 current_tb_not_found = false;
1935 /* now we have a real cpu fault */
1936 current_tb = tcg_tb_lookup(retaddr);
1937 }
1938 if (current_tb == tb &&
1939 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1940 /*
1941 * If we are modifying the current TB, we must stop
1942 * its execution. We could be more precise by checking
1943 * that the modification is after the current PC, but it
1944 * would require a specialized function to partially
1945 * restore the CPU state.
1946 */
1947 current_tb_modified = true;
1948 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1949 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1950 &current_flags);
1951 }
1952 #endif /* TARGET_HAS_PRECISE_SMC */
1953 tb_phys_invalidate__locked(tb);
1954 }
1955 }
1956 #if !defined(CONFIG_USER_ONLY)
1957 /* if no code remaining, no need to continue to use slow writes */
1958 if (!p->first_tb) {
1959 invalidate_page_bitmap(p);
1960 tlb_unprotect_code(start);
1961 }
1962 #endif
1963 #ifdef TARGET_HAS_PRECISE_SMC
1964 if (current_tb_modified) {
1965 page_collection_unlock(pages);
1966 /* Force execution of one insn next time. */
1967 cpu->cflags_next_tb = 1 | curr_cflags();
1968 mmap_unlock();
1969 cpu_loop_exit_noexc(cpu);
1970 }
1971 #endif
1972 }
1973
1974 /*
1975 * Invalidate all TBs which intersect with the target physical address range
1976 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1977 * 'is_cpu_write_access' should be true if called from a real cpu write
1978 * access: the virtual CPU will exit the current TB if code is modified inside
1979 * this TB.
1980 *
1981 * Called with mmap_lock held for user-mode emulation
1982 */
1983 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
1984 {
1985 struct page_collection *pages;
1986 PageDesc *p;
1987
1988 assert_memory_lock();
1989
1990 p = page_find(start >> TARGET_PAGE_BITS);
1991 if (p == NULL) {
1992 return;
1993 }
1994 pages = page_collection_lock(start, end);
1995 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
1996 page_collection_unlock(pages);
1997 }
1998
1999 /*
2000 * Invalidate all TBs which intersect with the target physical address range
2001 * [start;end[. NOTE: start and end may refer to *different* physical pages.
2002 * 'is_cpu_write_access' should be true if called from a real cpu write
2003 * access: the virtual CPU will exit the current TB if code is modified inside
2004 * this TB.
2005 *
2006 * Called with mmap_lock held for user-mode emulation.
2007 */
2008 #ifdef CONFIG_SOFTMMU
2009 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2010 #else
2011 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2012 #endif
2013 {
2014 struct page_collection *pages;
2015 tb_page_addr_t next;
2016
2017 assert_memory_lock();
2018
2019 pages = page_collection_lock(start, end);
2020 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2021 start < end;
2022 start = next, next += TARGET_PAGE_SIZE) {
2023 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2024 tb_page_addr_t bound = MIN(next, end);
2025
2026 if (pd == NULL) {
2027 continue;
2028 }
2029 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2030 }
2031 page_collection_unlock(pages);
2032 }
2033
2034 #ifdef CONFIG_SOFTMMU
2035 /* len must be <= 8 and start must be a multiple of len.
2036 * Called via softmmu_template.h when code areas are written to with
2037 * iothread mutex not held.
2038 *
2039 * Call with all @pages in the range [@start, @start + len[ locked.
2040 */
2041 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2042 tb_page_addr_t start, int len,
2043 uintptr_t retaddr)
2044 {
2045 PageDesc *p;
2046
2047 assert_memory_lock();
2048
2049 p = page_find(start >> TARGET_PAGE_BITS);
2050 if (!p) {
2051 return;
2052 }
2053
2054 assert_page_locked(p);
2055 if (!p->code_bitmap &&
2056 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2057 build_page_bitmap(p);
2058 }
2059 if (p->code_bitmap) {
2060 unsigned int nr;
2061 unsigned long b;
2062
2063 nr = start & ~TARGET_PAGE_MASK;
2064 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2065 if (b & ((1 << len) - 1)) {
2066 goto do_invalidate;
2067 }
2068 } else {
2069 do_invalidate:
2070 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2071 retaddr);
2072 }
2073 }
2074 #else
2075 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2076 * host PC of the faulting store instruction that caused this invalidate.
2077 * Returns true if the caller needs to abort execution of the current
2078 * TB (because it was modified by this store and the guest CPU has
2079 * precise-SMC semantics).
2080 */
2081 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2082 {
2083 TranslationBlock *tb;
2084 PageDesc *p;
2085 int n;
2086 #ifdef TARGET_HAS_PRECISE_SMC
2087 TranslationBlock *current_tb = NULL;
2088 CPUState *cpu = current_cpu;
2089 CPUArchState *env = NULL;
2090 int current_tb_modified = 0;
2091 target_ulong current_pc = 0;
2092 target_ulong current_cs_base = 0;
2093 uint32_t current_flags = 0;
2094 #endif
2095
2096 assert_memory_lock();
2097
2098 addr &= TARGET_PAGE_MASK;
2099 p = page_find(addr >> TARGET_PAGE_BITS);
2100 if (!p) {
2101 return false;
2102 }
2103
2104 #ifdef TARGET_HAS_PRECISE_SMC
2105 if (p->first_tb && pc != 0) {
2106 current_tb = tcg_tb_lookup(pc);
2107 }
2108 if (cpu != NULL) {
2109 env = cpu->env_ptr;
2110 }
2111 #endif
2112 assert_page_locked(p);
2113 PAGE_FOR_EACH_TB(p, tb, n) {
2114 #ifdef TARGET_HAS_PRECISE_SMC
2115 if (current_tb == tb &&
2116 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2117 /* If we are modifying the current TB, we must stop
2118 its execution. We could be more precise by checking
2119 that the modification is after the current PC, but it
2120 would require a specialized function to partially
2121 restore the CPU state */
2122
2123 current_tb_modified = 1;
2124 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2125 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
2126 &current_flags);
2127 }
2128 #endif /* TARGET_HAS_PRECISE_SMC */
2129 tb_phys_invalidate(tb, addr);
2130 }
2131 p->first_tb = (uintptr_t)NULL;
2132 #ifdef TARGET_HAS_PRECISE_SMC
2133 if (current_tb_modified) {
2134 /* Force execution of one insn next time. */
2135 cpu->cflags_next_tb = 1 | curr_cflags();
2136 return true;
2137 }
2138 #endif
2139
2140 return false;
2141 }
2142 #endif
2143
2144 /* user-mode: call with mmap_lock held */
2145 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2146 {
2147 TranslationBlock *tb;
2148
2149 assert_memory_lock();
2150
2151 tb = tcg_tb_lookup(retaddr);
2152 if (tb) {
2153 /* We can use retranslation to find the PC. */
2154 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2155 tb_phys_invalidate(tb, -1);
2156 } else {
2157 /* The exception probably happened in a helper. The CPU state should
2158 have been saved before calling it. Fetch the PC from there. */
2159 CPUArchState *env = cpu->env_ptr;
2160 target_ulong pc, cs_base;
2161 tb_page_addr_t addr;
2162 uint32_t flags;
2163
2164 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2165 addr = get_page_addr_code(env, pc);
2166 if (addr != -1) {
2167 tb_invalidate_phys_range(addr, addr + 1);
2168 }
2169 }
2170 }
2171
2172 #ifndef CONFIG_USER_ONLY
2173 /* in deterministic execution mode, instructions doing device I/Os
2174 * must be at the end of the TB.
2175 *
2176 * Called by softmmu_template.h, with iothread mutex not held.
2177 */
2178 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2179 {
2180 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2181 CPUArchState *env = cpu->env_ptr;
2182 #endif
2183 TranslationBlock *tb;
2184 uint32_t n;
2185
2186 tb = tcg_tb_lookup(retaddr);
2187 if (!tb) {
2188 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2189 (void *)retaddr);
2190 }
2191 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2192
2193 /* On MIPS and SH, delay slot instructions can only be restarted if
2194 they were already the first instruction in the TB. If this is not
2195 the first instruction in a TB then re-execute the preceding
2196 branch. */
2197 n = 1;
2198 #if defined(TARGET_MIPS)
2199 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2200 && env->active_tc.PC != tb->pc) {
2201 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2202 cpu_neg(cpu)->icount_decr.u16.low++;
2203 env->hflags &= ~MIPS_HFLAG_BMASK;
2204 n = 2;
2205 }
2206 #elif defined(TARGET_SH4)
2207 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2208 && env->pc != tb->pc) {
2209 env->pc -= 2;
2210 cpu_neg(cpu)->icount_decr.u16.low++;
2211 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2212 n = 2;
2213 }
2214 #endif
2215
2216 /* Generate a new TB executing the I/O insn. */
2217 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2218
2219 if (tb_cflags(tb) & CF_NOCACHE) {
2220 if (tb->orig_tb) {
2221 /* Invalidate original TB if this TB was generated in
2222 * cpu_exec_nocache() */
2223 tb_phys_invalidate(tb->orig_tb, -1);
2224 }
2225 tcg_tb_remove(tb);
2226 }
2227
2228 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2229 * the first in the TB) then we end up generating a whole new TB and
2230 * repeating the fault, which is horribly inefficient.
2231 * Better would be to execute just this insn uncached, or generate a
2232 * second new TB.
2233 */
2234 cpu_loop_exit_noexc(cpu);
2235 }
2236
2237 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2238 {
2239 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2240
2241 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2242 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2243 }
2244 }
2245
2246 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2247 {
2248 /* Discard jump cache entries for any tb which might potentially
2249 overlap the flushed page. */
2250 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2251 tb_jmp_cache_clear_page(cpu, addr);
2252 }
2253
2254 static void print_qht_statistics(struct qht_stats hst)
2255 {
2256 uint32_t hgram_opts;
2257 size_t hgram_bins;
2258 char *hgram;
2259
2260 if (!hst.head_buckets) {
2261 return;
2262 }
2263 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2264 hst.used_head_buckets, hst.head_buckets,
2265 (double)hst.used_head_buckets / hst.head_buckets * 100);
2266
2267 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2268 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2269 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2270 hgram_opts |= QDIST_PR_NODECIMAL;
2271 }
2272 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2273 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2274 qdist_avg(&hst.occupancy) * 100, hgram);
2275 g_free(hgram);
2276
2277 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2278 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2279 if (hgram_bins > 10) {
2280 hgram_bins = 10;
2281 } else {
2282 hgram_bins = 0;
2283 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2284 }
2285 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2286 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2287 qdist_avg(&hst.chain), hgram);
2288 g_free(hgram);
2289 }
2290
2291 struct tb_tree_stats {
2292 size_t nb_tbs;
2293 size_t host_size;
2294 size_t target_size;
2295 size_t max_target_size;
2296 size_t direct_jmp_count;
2297 size_t direct_jmp2_count;
2298 size_t cross_page;
2299 };
2300
2301 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2302 {
2303 const TranslationBlock *tb = value;
2304 struct tb_tree_stats *tst = data;
2305
2306 tst->nb_tbs++;
2307 tst->host_size += tb->tc.size;
2308 tst->target_size += tb->size;
2309 if (tb->size > tst->max_target_size) {
2310 tst->max_target_size = tb->size;
2311 }
2312 if (tb->page_addr[1] != -1) {
2313 tst->cross_page++;
2314 }
2315 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2316 tst->direct_jmp_count++;
2317 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2318 tst->direct_jmp2_count++;
2319 }
2320 }
2321 return false;
2322 }
2323
2324 void dump_exec_info(void)
2325 {
2326 struct tb_tree_stats tst = {};
2327 struct qht_stats hst;
2328 size_t nb_tbs, flush_full, flush_part, flush_elide;
2329
2330 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2331 nb_tbs = tst.nb_tbs;
2332 /* XXX: avoid using doubles ? */
2333 qemu_printf("Translation buffer state:\n");
2334 /*
2335 * Report total code size including the padding and TB structs;
2336 * otherwise users might think "-tb-size" is not honoured.
2337 * For avg host size we use the precise numbers from tb_tree_stats though.
2338 */
2339 qemu_printf("gen code size %zu/%zu\n",
2340 tcg_code_size(), tcg_code_capacity());
2341 qemu_printf("TB count %zu\n", nb_tbs);
2342 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2343 nb_tbs ? tst.target_size / nb_tbs : 0,
2344 tst.max_target_size);
2345 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2346 nb_tbs ? tst.host_size / nb_tbs : 0,
2347 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2348 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2349 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2350 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2351 tst.direct_jmp_count,
2352 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2353 tst.direct_jmp2_count,
2354 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2355
2356 qht_statistics_init(&tb_ctx.htable, &hst);
2357 print_qht_statistics(hst);
2358 qht_statistics_destroy(&hst);
2359
2360 qemu_printf("\nStatistics:\n");
2361 qemu_printf("TB flush count %u\n",
2362 atomic_read(&tb_ctx.tb_flush_count));
2363 qemu_printf("TB invalidate count %zu\n",
2364 tcg_tb_phys_invalidate_count());
2365
2366 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2367 qemu_printf("TLB full flushes %zu\n", flush_full);
2368 qemu_printf("TLB partial flushes %zu\n", flush_part);
2369 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2370 tcg_dump_info();
2371 }
2372
2373 void dump_opcount_info(void)
2374 {
2375 tcg_dump_op_count();
2376 }
2377
2378 #else /* CONFIG_USER_ONLY */
2379
2380 void cpu_interrupt(CPUState *cpu, int mask)
2381 {
2382 g_assert(qemu_mutex_iothread_locked());
2383 cpu->interrupt_request |= mask;
2384 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2385 }
2386
2387 /*
2388 * Walks guest process memory "regions" one by one
2389 * and calls callback function 'fn' for each region.
2390 */
2391 struct walk_memory_regions_data {
2392 walk_memory_regions_fn fn;
2393 void *priv;
2394 target_ulong start;
2395 int prot;
2396 };
2397
2398 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2399 target_ulong end, int new_prot)
2400 {
2401 if (data->start != -1u) {
2402 int rc = data->fn(data->priv, data->start, end, data->prot);
2403 if (rc != 0) {
2404 return rc;
2405 }
2406 }
2407
2408 data->start = (new_prot ? end : -1u);
2409 data->prot = new_prot;
2410
2411 return 0;
2412 }
2413
2414 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2415 target_ulong base, int level, void **lp)
2416 {
2417 target_ulong pa;
2418 int i, rc;
2419
2420 if (*lp == NULL) {
2421 return walk_memory_regions_end(data, base, 0);
2422 }
2423
2424 if (level == 0) {
2425 PageDesc *pd = *lp;
2426
2427 for (i = 0; i < V_L2_SIZE; ++i) {
2428 int prot = pd[i].flags;
2429
2430 pa = base | (i << TARGET_PAGE_BITS);
2431 if (prot != data->prot) {
2432 rc = walk_memory_regions_end(data, pa, prot);
2433 if (rc != 0) {
2434 return rc;
2435 }
2436 }
2437 }
2438 } else {
2439 void **pp = *lp;
2440
2441 for (i = 0; i < V_L2_SIZE; ++i) {
2442 pa = base | ((target_ulong)i <<
2443 (TARGET_PAGE_BITS + V_L2_BITS * level));
2444 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2445 if (rc != 0) {
2446 return rc;
2447 }
2448 }
2449 }
2450
2451 return 0;
2452 }
2453
2454 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2455 {
2456 struct walk_memory_regions_data data;
2457 uintptr_t i, l1_sz = v_l1_size;
2458
2459 data.fn = fn;
2460 data.priv = priv;
2461 data.start = -1u;
2462 data.prot = 0;
2463
2464 for (i = 0; i < l1_sz; i++) {
2465 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2466 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2467 if (rc != 0) {
2468 return rc;
2469 }
2470 }
2471
2472 return walk_memory_regions_end(&data, 0, 0);
2473 }
2474
2475 static int dump_region(void *priv, target_ulong start,
2476 target_ulong end, unsigned long prot)
2477 {
2478 FILE *f = (FILE *)priv;
2479
2480 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2481 " "TARGET_FMT_lx" %c%c%c\n",
2482 start, end, end - start,
2483 ((prot & PAGE_READ) ? 'r' : '-'),
2484 ((prot & PAGE_WRITE) ? 'w' : '-'),
2485 ((prot & PAGE_EXEC) ? 'x' : '-'));
2486
2487 return 0;
2488 }
2489
2490 /* dump memory mappings */
2491 void page_dump(FILE *f)
2492 {
2493 const int length = sizeof(target_ulong) * 2;
2494 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2495 length, "start", length, "end", length, "size", "prot");
2496 walk_memory_regions(f, dump_region);
2497 }
2498
2499 int page_get_flags(target_ulong address)
2500 {
2501 PageDesc *p;
2502
2503 p = page_find(address >> TARGET_PAGE_BITS);
2504 if (!p) {
2505 return 0;
2506 }
2507 return p->flags;
2508 }
2509
2510 /* Modify the flags of a page and invalidate the code if necessary.
2511 The flag PAGE_WRITE_ORG is positioned automatically depending
2512 on PAGE_WRITE. The mmap_lock should already be held. */
2513 void page_set_flags(target_ulong start, target_ulong end, int flags)
2514 {
2515 target_ulong addr, len;
2516
2517 /* This function should never be called with addresses outside the
2518 guest address space. If this assert fires, it probably indicates
2519 a missing call to h2g_valid. */
2520 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2521 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2522 #endif
2523 assert(start < end);
2524 assert_memory_lock();
2525
2526 start = start & TARGET_PAGE_MASK;
2527 end = TARGET_PAGE_ALIGN(end);
2528
2529 if (flags & PAGE_WRITE) {
2530 flags |= PAGE_WRITE_ORG;
2531 }
2532
2533 for (addr = start, len = end - start;
2534 len != 0;
2535 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2536 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2537
2538 /* If the write protection bit is set, then we invalidate
2539 the code inside. */
2540 if (!(p->flags & PAGE_WRITE) &&
2541 (flags & PAGE_WRITE) &&
2542 p->first_tb) {
2543 tb_invalidate_phys_page(addr, 0);
2544 }
2545 p->flags = flags;
2546 }
2547 }
2548
2549 int page_check_range(target_ulong start, target_ulong len, int flags)
2550 {
2551 PageDesc *p;
2552 target_ulong end;
2553 target_ulong addr;
2554
2555 /* This function should never be called with addresses outside the
2556 guest address space. If this assert fires, it probably indicates
2557 a missing call to h2g_valid. */
2558 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2559 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2560 #endif
2561
2562 if (len == 0) {
2563 return 0;
2564 }
2565 if (start + len - 1 < start) {
2566 /* We've wrapped around. */
2567 return -1;
2568 }
2569
2570 /* must do before we loose bits in the next step */
2571 end = TARGET_PAGE_ALIGN(start + len);
2572 start = start & TARGET_PAGE_MASK;
2573
2574 for (addr = start, len = end - start;
2575 len != 0;
2576 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2577 p = page_find(addr >> TARGET_PAGE_BITS);
2578 if (!p) {
2579 return -1;
2580 }
2581 if (!(p->flags & PAGE_VALID)) {
2582 return -1;
2583 }
2584
2585 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2586 return -1;
2587 }
2588 if (flags & PAGE_WRITE) {
2589 if (!(p->flags & PAGE_WRITE_ORG)) {
2590 return -1;
2591 }
2592 /* unprotect the page if it was put read-only because it
2593 contains translated code */
2594 if (!(p->flags & PAGE_WRITE)) {
2595 if (!page_unprotect(addr, 0)) {
2596 return -1;
2597 }
2598 }
2599 }
2600 }
2601 return 0;
2602 }
2603
2604 /* called from signal handler: invalidate the code and unprotect the
2605 * page. Return 0 if the fault was not handled, 1 if it was handled,
2606 * and 2 if it was handled but the caller must cause the TB to be
2607 * immediately exited. (We can only return 2 if the 'pc' argument is
2608 * non-zero.)
2609 */
2610 int page_unprotect(target_ulong address, uintptr_t pc)
2611 {
2612 unsigned int prot;
2613 bool current_tb_invalidated;
2614 PageDesc *p;
2615 target_ulong host_start, host_end, addr;
2616
2617 /* Technically this isn't safe inside a signal handler. However we
2618 know this only ever happens in a synchronous SEGV handler, so in
2619 practice it seems to be ok. */
2620 mmap_lock();
2621
2622 p = page_find(address >> TARGET_PAGE_BITS);
2623 if (!p) {
2624 mmap_unlock();
2625 return 0;
2626 }
2627
2628 /* if the page was really writable, then we change its
2629 protection back to writable */
2630 if (p->flags & PAGE_WRITE_ORG) {
2631 current_tb_invalidated = false;
2632 if (p->flags & PAGE_WRITE) {
2633 /* If the page is actually marked WRITE then assume this is because
2634 * this thread raced with another one which got here first and
2635 * set the page to PAGE_WRITE and did the TB invalidate for us.
2636 */
2637 #ifdef TARGET_HAS_PRECISE_SMC
2638 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2639 if (current_tb) {
2640 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2641 }
2642 #endif
2643 } else {
2644 host_start = address & qemu_host_page_mask;
2645 host_end = host_start + qemu_host_page_size;
2646
2647 prot = 0;
2648 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2649 p = page_find(addr >> TARGET_PAGE_BITS);
2650 p->flags |= PAGE_WRITE;
2651 prot |= p->flags;
2652
2653 /* and since the content will be modified, we must invalidate
2654 the corresponding translated code. */
2655 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2656 #ifdef CONFIG_USER_ONLY
2657 if (DEBUG_TB_CHECK_GATE) {
2658 tb_invalidate_check(addr);
2659 }
2660 #endif
2661 }
2662 mprotect((void *)g2h(host_start), qemu_host_page_size,
2663 prot & PAGE_BITS);
2664 }
2665 mmap_unlock();
2666 /* If current TB was invalidated return to main loop */
2667 return current_tb_invalidated ? 2 : 1;
2668 }
2669 mmap_unlock();
2670 return 0;
2671 }
2672 #endif /* CONFIG_USER_ONLY */
2673
2674 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2675 void tcg_flush_softmmu_tlb(CPUState *cs)
2676 {
2677 #ifdef CONFIG_SOFTMMU
2678 tlb_flush(cs);
2679 #endif
2680 }