]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/user-exec.c
configure: Let --without-default-features disable vhost-kernel and vhost-vdpa
[mirror_qemu.git] / accel / tcg / user-exec.c
1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "trace/mem.h"
31
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44
45 __thread uintptr_t helper_retaddr;
46
47 //#define DEBUG_SIGNAL
48
49 /* exit the current TB from a signal handler. The host registers are
50 restored in a state compatible with the CPU emulator
51 */
52 static void QEMU_NORETURN cpu_exit_tb_from_sighandler(CPUState *cpu,
53 sigset_t *old_set)
54 {
55 /* XXX: use siglongjmp ? */
56 sigprocmask(SIG_SETMASK, old_set, NULL);
57 cpu_loop_exit_noexc(cpu);
58 }
59
60 /* 'pc' is the host PC at which the exception was raised. 'address' is
61 the effective address of the memory exception. 'is_write' is 1 if a
62 write caused the exception and otherwise 0'. 'old_set' is the
63 signal set which should be restored */
64 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
65 int is_write, sigset_t *old_set)
66 {
67 CPUState *cpu = current_cpu;
68 CPUClass *cc;
69 unsigned long address = (unsigned long)info->si_addr;
70 MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
71
72 switch (helper_retaddr) {
73 default:
74 /*
75 * Fault during host memory operation within a helper function.
76 * The helper's host return address, saved here, gives us a
77 * pointer into the generated code that will unwind to the
78 * correct guest pc.
79 */
80 pc = helper_retaddr;
81 break;
82
83 case 0:
84 /*
85 * Fault during host memory operation within generated code.
86 * (Or, a unrelated bug within qemu, but we can't tell from here).
87 *
88 * We take the host pc from the signal frame. However, we cannot
89 * use that value directly. Within cpu_restore_state_from_tb, we
90 * assume PC comes from GETPC(), as used by the helper functions,
91 * so we adjust the address by -GETPC_ADJ to form an address that
92 * is within the call insn, so that the address does not accidentally
93 * match the beginning of the next guest insn. However, when the
94 * pc comes from the signal frame it points to the actual faulting
95 * host memory insn and not the return from a call insn.
96 *
97 * Therefore, adjust to compensate for what will be done later
98 * by cpu_restore_state_from_tb.
99 */
100 pc += GETPC_ADJ;
101 break;
102
103 case 1:
104 /*
105 * Fault during host read for translation, or loosely, "execution".
106 *
107 * The guest pc is already pointing to the start of the TB for which
108 * code is being generated. If the guest translator manages the
109 * page crossings correctly, this is exactly the correct address
110 * (and if the translator doesn't handle page boundaries correctly
111 * there's little we can do about that here). Therefore, do not
112 * trigger the unwinder.
113 *
114 * Like tb_gen_code, release the memory lock before cpu_loop_exit.
115 */
116 pc = 0;
117 access_type = MMU_INST_FETCH;
118 mmap_unlock();
119 break;
120 }
121
122 /* For synchronous signals we expect to be coming from the vCPU
123 * thread (so current_cpu should be valid) and either from running
124 * code or during translation which can fault as we cross pages.
125 *
126 * If neither is true then something has gone wrong and we should
127 * abort rather than try and restart the vCPU execution.
128 */
129 if (!cpu || !cpu->running) {
130 printf("qemu:%s received signal outside vCPU context @ pc=0x%"
131 PRIxPTR "\n", __func__, pc);
132 abort();
133 }
134
135 #if defined(DEBUG_SIGNAL)
136 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
137 pc, address, is_write, *(unsigned long *)old_set);
138 #endif
139 /* XXX: locking issue */
140 /* Note that it is important that we don't call page_unprotect() unless
141 * this is really a "write to nonwriteable page" fault, because
142 * page_unprotect() assumes that if it is called for an access to
143 * a page that's writeable this means we had two threads racing and
144 * another thread got there first and already made the page writeable;
145 * so we will retry the access. If we were to call page_unprotect()
146 * for some other kind of fault that should really be passed to the
147 * guest, we'd end up in an infinite loop of retrying the faulting
148 * access.
149 */
150 if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
151 h2g_valid(address)) {
152 switch (page_unprotect(h2g(address), pc)) {
153 case 0:
154 /* Fault not caused by a page marked unwritable to protect
155 * cached translations, must be the guest binary's problem.
156 */
157 break;
158 case 1:
159 /* Fault caused by protection of cached translation; TBs
160 * invalidated, so resume execution. Retain helper_retaddr
161 * for a possible second fault.
162 */
163 return 1;
164 case 2:
165 /* Fault caused by protection of cached translation, and the
166 * currently executing TB was modified and must be exited
167 * immediately. Clear helper_retaddr for next execution.
168 */
169 clear_helper_retaddr();
170 cpu_exit_tb_from_sighandler(cpu, old_set);
171 /* NORETURN */
172
173 default:
174 g_assert_not_reached();
175 }
176 }
177
178 /* Convert forcefully to guest address space, invalid addresses
179 are still valid segv ones */
180 address = h2g_nocheck(address);
181
182 /*
183 * There is no way the target can handle this other than raising
184 * an exception. Undo signal and retaddr state prior to longjmp.
185 */
186 sigprocmask(SIG_SETMASK, old_set, NULL);
187 clear_helper_retaddr();
188
189 cc = CPU_GET_CLASS(cpu);
190 cc->tcg_ops->tlb_fill(cpu, address, 0, access_type,
191 MMU_USER_IDX, false, pc);
192 g_assert_not_reached();
193 }
194
195 static int probe_access_internal(CPUArchState *env, target_ulong addr,
196 int fault_size, MMUAccessType access_type,
197 bool nonfault, uintptr_t ra)
198 {
199 int flags;
200
201 switch (access_type) {
202 case MMU_DATA_STORE:
203 flags = PAGE_WRITE;
204 break;
205 case MMU_DATA_LOAD:
206 flags = PAGE_READ;
207 break;
208 case MMU_INST_FETCH:
209 flags = PAGE_EXEC;
210 break;
211 default:
212 g_assert_not_reached();
213 }
214
215 if (!guest_addr_valid_untagged(addr) ||
216 page_check_range(addr, 1, flags) < 0) {
217 if (nonfault) {
218 return TLB_INVALID_MASK;
219 } else {
220 CPUState *cpu = env_cpu(env);
221 CPUClass *cc = CPU_GET_CLASS(cpu);
222 cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type,
223 MMU_USER_IDX, false, ra);
224 g_assert_not_reached();
225 }
226 }
227 return 0;
228 }
229
230 int probe_access_flags(CPUArchState *env, target_ulong addr,
231 MMUAccessType access_type, int mmu_idx,
232 bool nonfault, void **phost, uintptr_t ra)
233 {
234 int flags;
235
236 flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
237 *phost = flags ? NULL : g2h(env_cpu(env), addr);
238 return flags;
239 }
240
241 void *probe_access(CPUArchState *env, target_ulong addr, int size,
242 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
243 {
244 int flags;
245
246 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
247 flags = probe_access_internal(env, addr, size, access_type, false, ra);
248 g_assert(flags == 0);
249
250 return size ? g2h(env_cpu(env), addr) : NULL;
251 }
252
253 #if defined(__i386__)
254
255 #if defined(__NetBSD__)
256 #include <ucontext.h>
257 #include <machine/trap.h>
258
259 #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
260 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
261 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
262 #define MASK_sig(context) ((context)->uc_sigmask)
263 #define PAGE_FAULT_TRAP T_PAGEFLT
264 #elif defined(__FreeBSD__) || defined(__DragonFly__)
265 #include <ucontext.h>
266 #include <machine/trap.h>
267
268 #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
269 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
270 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
271 #define MASK_sig(context) ((context)->uc_sigmask)
272 #define PAGE_FAULT_TRAP T_PAGEFLT
273 #elif defined(__OpenBSD__)
274 #include <machine/trap.h>
275 #define EIP_sig(context) ((context)->sc_eip)
276 #define TRAP_sig(context) ((context)->sc_trapno)
277 #define ERROR_sig(context) ((context)->sc_err)
278 #define MASK_sig(context) ((context)->sc_mask)
279 #define PAGE_FAULT_TRAP T_PAGEFLT
280 #else
281 #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
282 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
283 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
284 #define MASK_sig(context) ((context)->uc_sigmask)
285 #define PAGE_FAULT_TRAP 0xe
286 #endif
287
288 int cpu_signal_handler(int host_signum, void *pinfo,
289 void *puc)
290 {
291 siginfo_t *info = pinfo;
292 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
293 ucontext_t *uc = puc;
294 #elif defined(__OpenBSD__)
295 struct sigcontext *uc = puc;
296 #else
297 ucontext_t *uc = puc;
298 #endif
299 unsigned long pc;
300 int trapno;
301
302 #ifndef REG_EIP
303 /* for glibc 2.1 */
304 #define REG_EIP EIP
305 #define REG_ERR ERR
306 #define REG_TRAPNO TRAPNO
307 #endif
308 pc = EIP_sig(uc);
309 trapno = TRAP_sig(uc);
310 return handle_cpu_signal(pc, info,
311 trapno == PAGE_FAULT_TRAP ?
312 (ERROR_sig(uc) >> 1) & 1 : 0,
313 &MASK_sig(uc));
314 }
315
316 #elif defined(__x86_64__)
317
318 #ifdef __NetBSD__
319 #include <machine/trap.h>
320 #define PC_sig(context) _UC_MACHINE_PC(context)
321 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
322 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
323 #define MASK_sig(context) ((context)->uc_sigmask)
324 #define PAGE_FAULT_TRAP T_PAGEFLT
325 #elif defined(__OpenBSD__)
326 #include <machine/trap.h>
327 #define PC_sig(context) ((context)->sc_rip)
328 #define TRAP_sig(context) ((context)->sc_trapno)
329 #define ERROR_sig(context) ((context)->sc_err)
330 #define MASK_sig(context) ((context)->sc_mask)
331 #define PAGE_FAULT_TRAP T_PAGEFLT
332 #elif defined(__FreeBSD__) || defined(__DragonFly__)
333 #include <ucontext.h>
334 #include <machine/trap.h>
335
336 #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
337 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
338 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
339 #define MASK_sig(context) ((context)->uc_sigmask)
340 #define PAGE_FAULT_TRAP T_PAGEFLT
341 #else
342 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
343 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
344 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
345 #define MASK_sig(context) ((context)->uc_sigmask)
346 #define PAGE_FAULT_TRAP 0xe
347 #endif
348
349 int cpu_signal_handler(int host_signum, void *pinfo,
350 void *puc)
351 {
352 siginfo_t *info = pinfo;
353 unsigned long pc;
354 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
355 ucontext_t *uc = puc;
356 #elif defined(__OpenBSD__)
357 struct sigcontext *uc = puc;
358 #else
359 ucontext_t *uc = puc;
360 #endif
361
362 pc = PC_sig(uc);
363 return handle_cpu_signal(pc, info,
364 TRAP_sig(uc) == PAGE_FAULT_TRAP ?
365 (ERROR_sig(uc) >> 1) & 1 : 0,
366 &MASK_sig(uc));
367 }
368
369 #elif defined(_ARCH_PPC)
370
371 /***********************************************************************
372 * signal context platform-specific definitions
373 * From Wine
374 */
375 #ifdef linux
376 /* All Registers access - only for local access */
377 #define REG_sig(reg_name, context) \
378 ((context)->uc_mcontext.regs->reg_name)
379 /* Gpr Registers access */
380 #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
381 /* Program counter */
382 #define IAR_sig(context) REG_sig(nip, context)
383 /* Machine State Register (Supervisor) */
384 #define MSR_sig(context) REG_sig(msr, context)
385 /* Count register */
386 #define CTR_sig(context) REG_sig(ctr, context)
387 /* User's integer exception register */
388 #define XER_sig(context) REG_sig(xer, context)
389 /* Link register */
390 #define LR_sig(context) REG_sig(link, context)
391 /* Condition register */
392 #define CR_sig(context) REG_sig(ccr, context)
393
394 /* Float Registers access */
395 #define FLOAT_sig(reg_num, context) \
396 (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
397 #define FPSCR_sig(context) \
398 (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
399 /* Exception Registers access */
400 #define DAR_sig(context) REG_sig(dar, context)
401 #define DSISR_sig(context) REG_sig(dsisr, context)
402 #define TRAP_sig(context) REG_sig(trap, context)
403 #endif /* linux */
404
405 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
406 #include <ucontext.h>
407 #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
408 #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
409 #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
410 #define XER_sig(context) ((context)->uc_mcontext.mc_xer)
411 #define LR_sig(context) ((context)->uc_mcontext.mc_lr)
412 #define CR_sig(context) ((context)->uc_mcontext.mc_cr)
413 /* Exception Registers access */
414 #define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
415 #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
416 #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
417 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
418
419 int cpu_signal_handler(int host_signum, void *pinfo,
420 void *puc)
421 {
422 siginfo_t *info = pinfo;
423 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
424 ucontext_t *uc = puc;
425 #else
426 ucontext_t *uc = puc;
427 #endif
428 unsigned long pc;
429 int is_write;
430
431 pc = IAR_sig(uc);
432 is_write = 0;
433 #if 0
434 /* ppc 4xx case */
435 if (DSISR_sig(uc) & 0x00800000) {
436 is_write = 1;
437 }
438 #else
439 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
440 is_write = 1;
441 }
442 #endif
443 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
444 }
445
446 #elif defined(__alpha__)
447
448 int cpu_signal_handler(int host_signum, void *pinfo,
449 void *puc)
450 {
451 siginfo_t *info = pinfo;
452 ucontext_t *uc = puc;
453 uint32_t *pc = uc->uc_mcontext.sc_pc;
454 uint32_t insn = *pc;
455 int is_write = 0;
456
457 /* XXX: need kernel patch to get write flag faster */
458 switch (insn >> 26) {
459 case 0x0d: /* stw */
460 case 0x0e: /* stb */
461 case 0x0f: /* stq_u */
462 case 0x24: /* stf */
463 case 0x25: /* stg */
464 case 0x26: /* sts */
465 case 0x27: /* stt */
466 case 0x2c: /* stl */
467 case 0x2d: /* stq */
468 case 0x2e: /* stl_c */
469 case 0x2f: /* stq_c */
470 is_write = 1;
471 }
472
473 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
474 }
475 #elif defined(__sparc__)
476
477 int cpu_signal_handler(int host_signum, void *pinfo,
478 void *puc)
479 {
480 siginfo_t *info = pinfo;
481 int is_write;
482 uint32_t insn;
483 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
484 uint32_t *regs = (uint32_t *)(info + 1);
485 void *sigmask = (regs + 20);
486 /* XXX: is there a standard glibc define ? */
487 unsigned long pc = regs[1];
488 #else
489 #ifdef __linux__
490 struct sigcontext *sc = puc;
491 unsigned long pc = sc->sigc_regs.tpc;
492 void *sigmask = (void *)sc->sigc_mask;
493 #elif defined(__OpenBSD__)
494 struct sigcontext *uc = puc;
495 unsigned long pc = uc->sc_pc;
496 void *sigmask = (void *)(long)uc->sc_mask;
497 #elif defined(__NetBSD__)
498 ucontext_t *uc = puc;
499 unsigned long pc = _UC_MACHINE_PC(uc);
500 void *sigmask = (void *)&uc->uc_sigmask;
501 #endif
502 #endif
503
504 /* XXX: need kernel patch to get write flag faster */
505 is_write = 0;
506 insn = *(uint32_t *)pc;
507 if ((insn >> 30) == 3) {
508 switch ((insn >> 19) & 0x3f) {
509 case 0x05: /* stb */
510 case 0x15: /* stba */
511 case 0x06: /* sth */
512 case 0x16: /* stha */
513 case 0x04: /* st */
514 case 0x14: /* sta */
515 case 0x07: /* std */
516 case 0x17: /* stda */
517 case 0x0e: /* stx */
518 case 0x1e: /* stxa */
519 case 0x24: /* stf */
520 case 0x34: /* stfa */
521 case 0x27: /* stdf */
522 case 0x37: /* stdfa */
523 case 0x26: /* stqf */
524 case 0x36: /* stqfa */
525 case 0x25: /* stfsr */
526 case 0x3c: /* casa */
527 case 0x3e: /* casxa */
528 is_write = 1;
529 break;
530 }
531 }
532 return handle_cpu_signal(pc, info, is_write, sigmask);
533 }
534
535 #elif defined(__arm__)
536
537 #if defined(__NetBSD__)
538 #include <ucontext.h>
539 #include <sys/siginfo.h>
540 #endif
541
542 int cpu_signal_handler(int host_signum, void *pinfo,
543 void *puc)
544 {
545 siginfo_t *info = pinfo;
546 #if defined(__NetBSD__)
547 ucontext_t *uc = puc;
548 siginfo_t *si = pinfo;
549 #else
550 ucontext_t *uc = puc;
551 #endif
552 unsigned long pc;
553 uint32_t fsr;
554 int is_write;
555
556 #if defined(__NetBSD__)
557 pc = uc->uc_mcontext.__gregs[_REG_R15];
558 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
559 pc = uc->uc_mcontext.gregs[R15];
560 #else
561 pc = uc->uc_mcontext.arm_pc;
562 #endif
563
564 #ifdef __NetBSD__
565 fsr = si->si_trap;
566 #else
567 fsr = uc->uc_mcontext.error_code;
568 #endif
569 /*
570 * In the FSR, bit 11 is WnR, assuming a v6 or
571 * later processor. On v5 we will always report
572 * this as a read, which will fail later.
573 */
574 is_write = extract32(fsr, 11, 1);
575 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
576 }
577
578 #elif defined(__aarch64__)
579
580 #if defined(__NetBSD__)
581
582 #include <ucontext.h>
583 #include <sys/siginfo.h>
584
585 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
586 {
587 ucontext_t *uc = puc;
588 siginfo_t *si = pinfo;
589 unsigned long pc;
590 int is_write;
591 uint32_t esr;
592
593 pc = uc->uc_mcontext.__gregs[_REG_PC];
594 esr = si->si_trap;
595
596 /*
597 * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC
598 * is 0b10010x: then bit 6 is the WnR bit
599 */
600 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
601 return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask);
602 }
603
604 #else
605
606 #ifndef ESR_MAGIC
607 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
608 #define ESR_MAGIC 0x45535201
609 struct esr_context {
610 struct _aarch64_ctx head;
611 uint64_t esr;
612 };
613 #endif
614
615 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
616 {
617 return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
618 }
619
620 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
621 {
622 return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
623 }
624
625 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
626 {
627 siginfo_t *info = pinfo;
628 ucontext_t *uc = puc;
629 uintptr_t pc = uc->uc_mcontext.pc;
630 bool is_write;
631 struct _aarch64_ctx *hdr;
632 struct esr_context const *esrctx = NULL;
633
634 /* Find the esr_context, which has the WnR bit in it */
635 for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
636 if (hdr->magic == ESR_MAGIC) {
637 esrctx = (struct esr_context const *)hdr;
638 break;
639 }
640 }
641
642 if (esrctx) {
643 /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
644 uint64_t esr = esrctx->esr;
645 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
646 } else {
647 /*
648 * Fall back to parsing instructions; will only be needed
649 * for really ancient (pre-3.16) kernels.
650 */
651 uint32_t insn = *(uint32_t *)pc;
652
653 is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */
654 || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */
655 || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */
656 || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */
657 || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */
658 || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */
659 || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */
660 /* Ignore bits 10, 11 & 21, controlling indexing. */
661 || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */
662 || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */
663 /* Ignore bits 23 & 24, controlling indexing. */
664 || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
665 }
666 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
667 }
668 #endif
669
670 #elif defined(__s390__)
671
672 int cpu_signal_handler(int host_signum, void *pinfo,
673 void *puc)
674 {
675 siginfo_t *info = pinfo;
676 ucontext_t *uc = puc;
677 unsigned long pc;
678 uint16_t *pinsn;
679 int is_write = 0;
680
681 pc = uc->uc_mcontext.psw.addr;
682
683 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
684 of the normal 2 arguments. The 3rd argument contains the "int_code"
685 from the hardware which does in fact contain the is_write value.
686 The rt signal handler, as far as I can tell, does not give this value
687 at all. Not that we could get to it from here even if it were. */
688 /* ??? This is not even close to complete, since it ignores all
689 of the read-modify-write instructions. */
690 pinsn = (uint16_t *)pc;
691 switch (pinsn[0] >> 8) {
692 case 0x50: /* ST */
693 case 0x42: /* STC */
694 case 0x40: /* STH */
695 is_write = 1;
696 break;
697 case 0xc4: /* RIL format insns */
698 switch (pinsn[0] & 0xf) {
699 case 0xf: /* STRL */
700 case 0xb: /* STGRL */
701 case 0x7: /* STHRL */
702 is_write = 1;
703 }
704 break;
705 case 0xe3: /* RXY format insns */
706 switch (pinsn[2] & 0xff) {
707 case 0x50: /* STY */
708 case 0x24: /* STG */
709 case 0x72: /* STCY */
710 case 0x70: /* STHY */
711 case 0x8e: /* STPQ */
712 case 0x3f: /* STRVH */
713 case 0x3e: /* STRV */
714 case 0x2f: /* STRVG */
715 is_write = 1;
716 }
717 break;
718 }
719 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
720 }
721
722 #elif defined(__mips__)
723
724 #if defined(__misp16) || defined(__mips_micromips)
725 #error "Unsupported encoding"
726 #endif
727
728 int cpu_signal_handler(int host_signum, void *pinfo,
729 void *puc)
730 {
731 siginfo_t *info = pinfo;
732 ucontext_t *uc = puc;
733 uintptr_t pc = uc->uc_mcontext.pc;
734 uint32_t insn = *(uint32_t *)pc;
735 int is_write = 0;
736
737 /* Detect all store instructions at program counter. */
738 switch((insn >> 26) & 077) {
739 case 050: /* SB */
740 case 051: /* SH */
741 case 052: /* SWL */
742 case 053: /* SW */
743 case 054: /* SDL */
744 case 055: /* SDR */
745 case 056: /* SWR */
746 case 070: /* SC */
747 case 071: /* SWC1 */
748 case 074: /* SCD */
749 case 075: /* SDC1 */
750 case 077: /* SD */
751 #if !defined(__mips_isa_rev) || __mips_isa_rev < 6
752 case 072: /* SWC2 */
753 case 076: /* SDC2 */
754 #endif
755 is_write = 1;
756 break;
757 case 023: /* COP1X */
758 /* Required in all versions of MIPS64 since
759 MIPS64r1 and subsequent versions of MIPS32r2. */
760 switch (insn & 077) {
761 case 010: /* SWXC1 */
762 case 011: /* SDXC1 */
763 case 015: /* SUXC1 */
764 is_write = 1;
765 }
766 break;
767 }
768
769 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
770 }
771
772 #elif defined(__riscv)
773
774 int cpu_signal_handler(int host_signum, void *pinfo,
775 void *puc)
776 {
777 siginfo_t *info = pinfo;
778 ucontext_t *uc = puc;
779 greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
780 uint32_t insn = *(uint32_t *)pc;
781 int is_write = 0;
782
783 /* Detect store by reading the instruction at the program
784 counter. Note: we currently only generate 32-bit
785 instructions so we thus only detect 32-bit stores */
786 switch (((insn >> 0) & 0b11)) {
787 case 3:
788 switch (((insn >> 2) & 0b11111)) {
789 case 8:
790 switch (((insn >> 12) & 0b111)) {
791 case 0: /* sb */
792 case 1: /* sh */
793 case 2: /* sw */
794 case 3: /* sd */
795 case 4: /* sq */
796 is_write = 1;
797 break;
798 default:
799 break;
800 }
801 break;
802 case 9:
803 switch (((insn >> 12) & 0b111)) {
804 case 2: /* fsw */
805 case 3: /* fsd */
806 case 4: /* fsq */
807 is_write = 1;
808 break;
809 default:
810 break;
811 }
812 break;
813 default:
814 break;
815 }
816 }
817
818 /* Check for compressed instructions */
819 switch (((insn >> 13) & 0b111)) {
820 case 7:
821 switch (insn & 0b11) {
822 case 0: /*c.sd */
823 case 2: /* c.sdsp */
824 is_write = 1;
825 break;
826 default:
827 break;
828 }
829 break;
830 case 6:
831 switch (insn & 0b11) {
832 case 0: /* c.sw */
833 case 3: /* c.swsp */
834 is_write = 1;
835 break;
836 default:
837 break;
838 }
839 break;
840 default:
841 break;
842 }
843
844 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
845 }
846
847 #else
848
849 #error host CPU specific signal handler needed
850
851 #endif
852
853 /* The softmmu versions of these helpers are in cputlb.c. */
854
855 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
856 {
857 uint32_t ret;
858 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
859
860 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
861 ret = ldub_p(g2h(env_cpu(env), ptr));
862 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
863 return ret;
864 }
865
866 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
867 {
868 int ret;
869 uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
870
871 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
872 ret = ldsb_p(g2h(env_cpu(env), ptr));
873 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
874 return ret;
875 }
876
877 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
878 {
879 uint32_t ret;
880 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
881
882 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
883 ret = lduw_be_p(g2h(env_cpu(env), ptr));
884 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
885 return ret;
886 }
887
888 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
889 {
890 int ret;
891 uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
892
893 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
894 ret = ldsw_be_p(g2h(env_cpu(env), ptr));
895 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
896 return ret;
897 }
898
899 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
900 {
901 uint32_t ret;
902 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
903
904 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
905 ret = ldl_be_p(g2h(env_cpu(env), ptr));
906 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
907 return ret;
908 }
909
910 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
911 {
912 uint64_t ret;
913 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
914
915 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
916 ret = ldq_be_p(g2h(env_cpu(env), ptr));
917 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
918 return ret;
919 }
920
921 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
922 {
923 uint32_t ret;
924 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
925
926 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
927 ret = lduw_le_p(g2h(env_cpu(env), ptr));
928 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
929 return ret;
930 }
931
932 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
933 {
934 int ret;
935 uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
936
937 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
938 ret = ldsw_le_p(g2h(env_cpu(env), ptr));
939 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
940 return ret;
941 }
942
943 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
944 {
945 uint32_t ret;
946 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
947
948 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
949 ret = ldl_le_p(g2h(env_cpu(env), ptr));
950 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
951 return ret;
952 }
953
954 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
955 {
956 uint64_t ret;
957 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
958
959 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
960 ret = ldq_le_p(g2h(env_cpu(env), ptr));
961 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
962 return ret;
963 }
964
965 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
966 {
967 uint32_t ret;
968
969 set_helper_retaddr(retaddr);
970 ret = cpu_ldub_data(env, ptr);
971 clear_helper_retaddr();
972 return ret;
973 }
974
975 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
976 {
977 int ret;
978
979 set_helper_retaddr(retaddr);
980 ret = cpu_ldsb_data(env, ptr);
981 clear_helper_retaddr();
982 return ret;
983 }
984
985 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
986 {
987 uint32_t ret;
988
989 set_helper_retaddr(retaddr);
990 ret = cpu_lduw_be_data(env, ptr);
991 clear_helper_retaddr();
992 return ret;
993 }
994
995 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
996 {
997 int ret;
998
999 set_helper_retaddr(retaddr);
1000 ret = cpu_ldsw_be_data(env, ptr);
1001 clear_helper_retaddr();
1002 return ret;
1003 }
1004
1005 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1006 {
1007 uint32_t ret;
1008
1009 set_helper_retaddr(retaddr);
1010 ret = cpu_ldl_be_data(env, ptr);
1011 clear_helper_retaddr();
1012 return ret;
1013 }
1014
1015 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1016 {
1017 uint64_t ret;
1018
1019 set_helper_retaddr(retaddr);
1020 ret = cpu_ldq_be_data(env, ptr);
1021 clear_helper_retaddr();
1022 return ret;
1023 }
1024
1025 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1026 {
1027 uint32_t ret;
1028
1029 set_helper_retaddr(retaddr);
1030 ret = cpu_lduw_le_data(env, ptr);
1031 clear_helper_retaddr();
1032 return ret;
1033 }
1034
1035 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1036 {
1037 int ret;
1038
1039 set_helper_retaddr(retaddr);
1040 ret = cpu_ldsw_le_data(env, ptr);
1041 clear_helper_retaddr();
1042 return ret;
1043 }
1044
1045 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1046 {
1047 uint32_t ret;
1048
1049 set_helper_retaddr(retaddr);
1050 ret = cpu_ldl_le_data(env, ptr);
1051 clear_helper_retaddr();
1052 return ret;
1053 }
1054
1055 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1056 {
1057 uint64_t ret;
1058
1059 set_helper_retaddr(retaddr);
1060 ret = cpu_ldq_le_data(env, ptr);
1061 clear_helper_retaddr();
1062 return ret;
1063 }
1064
1065 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1066 {
1067 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
1068
1069 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1070 stb_p(g2h(env_cpu(env), ptr), val);
1071 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1072 }
1073
1074 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1075 {
1076 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
1077
1078 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1079 stw_be_p(g2h(env_cpu(env), ptr), val);
1080 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1081 }
1082
1083 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1084 {
1085 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1086
1087 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1088 stl_be_p(g2h(env_cpu(env), ptr), val);
1089 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1090 }
1091
1092 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1093 {
1094 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1095
1096 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1097 stq_be_p(g2h(env_cpu(env), ptr), val);
1098 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1099 }
1100
1101 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1102 {
1103 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1104
1105 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1106 stw_le_p(g2h(env_cpu(env), ptr), val);
1107 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1108 }
1109
1110 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1111 {
1112 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1113
1114 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1115 stl_le_p(g2h(env_cpu(env), ptr), val);
1116 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1117 }
1118
1119 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1120 {
1121 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1122
1123 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1124 stq_le_p(g2h(env_cpu(env), ptr), val);
1125 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1126 }
1127
1128 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1129 uint32_t val, uintptr_t retaddr)
1130 {
1131 set_helper_retaddr(retaddr);
1132 cpu_stb_data(env, ptr, val);
1133 clear_helper_retaddr();
1134 }
1135
1136 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1137 uint32_t val, uintptr_t retaddr)
1138 {
1139 set_helper_retaddr(retaddr);
1140 cpu_stw_be_data(env, ptr, val);
1141 clear_helper_retaddr();
1142 }
1143
1144 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1145 uint32_t val, uintptr_t retaddr)
1146 {
1147 set_helper_retaddr(retaddr);
1148 cpu_stl_be_data(env, ptr, val);
1149 clear_helper_retaddr();
1150 }
1151
1152 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1153 uint64_t val, uintptr_t retaddr)
1154 {
1155 set_helper_retaddr(retaddr);
1156 cpu_stq_be_data(env, ptr, val);
1157 clear_helper_retaddr();
1158 }
1159
1160 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1161 uint32_t val, uintptr_t retaddr)
1162 {
1163 set_helper_retaddr(retaddr);
1164 cpu_stw_le_data(env, ptr, val);
1165 clear_helper_retaddr();
1166 }
1167
1168 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1169 uint32_t val, uintptr_t retaddr)
1170 {
1171 set_helper_retaddr(retaddr);
1172 cpu_stl_le_data(env, ptr, val);
1173 clear_helper_retaddr();
1174 }
1175
1176 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1177 uint64_t val, uintptr_t retaddr)
1178 {
1179 set_helper_retaddr(retaddr);
1180 cpu_stq_le_data(env, ptr, val);
1181 clear_helper_retaddr();
1182 }
1183
1184 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1185 {
1186 uint32_t ret;
1187
1188 set_helper_retaddr(1);
1189 ret = ldub_p(g2h_untagged(ptr));
1190 clear_helper_retaddr();
1191 return ret;
1192 }
1193
1194 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1195 {
1196 uint32_t ret;
1197
1198 set_helper_retaddr(1);
1199 ret = lduw_p(g2h_untagged(ptr));
1200 clear_helper_retaddr();
1201 return ret;
1202 }
1203
1204 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1205 {
1206 uint32_t ret;
1207
1208 set_helper_retaddr(1);
1209 ret = ldl_p(g2h_untagged(ptr));
1210 clear_helper_retaddr();
1211 return ret;
1212 }
1213
1214 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1215 {
1216 uint64_t ret;
1217
1218 set_helper_retaddr(1);
1219 ret = ldq_p(g2h_untagged(ptr));
1220 clear_helper_retaddr();
1221 return ret;
1222 }
1223
1224 /* Do not allow unaligned operations to proceed. Return the host address. */
1225 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1226 int size, uintptr_t retaddr)
1227 {
1228 /* Enforce qemu required alignment. */
1229 if (unlikely(addr & (size - 1))) {
1230 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1231 }
1232 void *ret = g2h(env_cpu(env), addr);
1233 set_helper_retaddr(retaddr);
1234 return ret;
1235 }
1236
1237 /* Macro to call the above, with local variables from the use context. */
1238 #define ATOMIC_MMU_DECLS do {} while (0)
1239 #define ATOMIC_MMU_LOOKUP_RW atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1240 #define ATOMIC_MMU_LOOKUP_R ATOMIC_MMU_LOOKUP_RW
1241 #define ATOMIC_MMU_LOOKUP_W ATOMIC_MMU_LOOKUP_RW
1242 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1243 #define ATOMIC_MMU_IDX MMU_USER_IDX
1244
1245 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1246 #define EXTRA_ARGS
1247
1248 #include "atomic_common.c.inc"
1249
1250 #define DATA_SIZE 1
1251 #include "atomic_template.h"
1252
1253 #define DATA_SIZE 2
1254 #include "atomic_template.h"
1255
1256 #define DATA_SIZE 4
1257 #include "atomic_template.h"
1258
1259 #ifdef CONFIG_ATOMIC64
1260 #define DATA_SIZE 8
1261 #include "atomic_template.h"
1262 #endif
1263
1264 /* The following is only callable from other helpers, and matches up
1265 with the softmmu version. */
1266
1267 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1268
1269 #undef EXTRA_ARGS
1270 #undef ATOMIC_NAME
1271 #undef ATOMIC_MMU_LOOKUP_RW
1272
1273 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1274 #define ATOMIC_NAME(X) \
1275 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1276 #define ATOMIC_MMU_LOOKUP_RW atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1277
1278 #define DATA_SIZE 16
1279 #include "atomic_template.h"
1280 #endif