]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/user-exec.c
accel/tcg: Widen tcg-ldst.h addresses to uint64_t
[mirror_qemu.git] / accel / tcg / user-exec.c
1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "tcg/tcg-ldst.h"
32 #include "internal.h"
33
34 __thread uintptr_t helper_retaddr;
35
36 //#define DEBUG_SIGNAL
37
38 /*
39 * Adjust the pc to pass to cpu_restore_state; return the memop type.
40 */
41 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
42 {
43 switch (helper_retaddr) {
44 default:
45 /*
46 * Fault during host memory operation within a helper function.
47 * The helper's host return address, saved here, gives us a
48 * pointer into the generated code that will unwind to the
49 * correct guest pc.
50 */
51 *pc = helper_retaddr;
52 break;
53
54 case 0:
55 /*
56 * Fault during host memory operation within generated code.
57 * (Or, a unrelated bug within qemu, but we can't tell from here).
58 *
59 * We take the host pc from the signal frame. However, we cannot
60 * use that value directly. Within cpu_restore_state_from_tb, we
61 * assume PC comes from GETPC(), as used by the helper functions,
62 * so we adjust the address by -GETPC_ADJ to form an address that
63 * is within the call insn, so that the address does not accidentally
64 * match the beginning of the next guest insn. However, when the
65 * pc comes from the signal frame it points to the actual faulting
66 * host memory insn and not the return from a call insn.
67 *
68 * Therefore, adjust to compensate for what will be done later
69 * by cpu_restore_state_from_tb.
70 */
71 *pc += GETPC_ADJ;
72 break;
73
74 case 1:
75 /*
76 * Fault during host read for translation, or loosely, "execution".
77 *
78 * The guest pc is already pointing to the start of the TB for which
79 * code is being generated. If the guest translator manages the
80 * page crossings correctly, this is exactly the correct address
81 * (and if the translator doesn't handle page boundaries correctly
82 * there's little we can do about that here). Therefore, do not
83 * trigger the unwinder.
84 */
85 *pc = 0;
86 return MMU_INST_FETCH;
87 }
88
89 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
90 }
91
92 /**
93 * handle_sigsegv_accerr_write:
94 * @cpu: the cpu context
95 * @old_set: the sigset_t from the signal ucontext_t
96 * @host_pc: the host pc, adjusted for the signal
97 * @guest_addr: the guest address of the fault
98 *
99 * Return true if the write fault has been handled, and should be re-tried.
100 *
101 * Note that it is important that we don't call page_unprotect() unless
102 * this is really a "write to nonwritable page" fault, because
103 * page_unprotect() assumes that if it is called for an access to
104 * a page that's writable this means we had two threads racing and
105 * another thread got there first and already made the page writable;
106 * so we will retry the access. If we were to call page_unprotect()
107 * for some other kind of fault that should really be passed to the
108 * guest, we'd end up in an infinite loop of retrying the faulting access.
109 */
110 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
111 uintptr_t host_pc, abi_ptr guest_addr)
112 {
113 switch (page_unprotect(guest_addr, host_pc)) {
114 case 0:
115 /*
116 * Fault not caused by a page marked unwritable to protect
117 * cached translations, must be the guest binary's problem.
118 */
119 return false;
120 case 1:
121 /*
122 * Fault caused by protection of cached translation; TBs
123 * invalidated, so resume execution.
124 */
125 return true;
126 case 2:
127 /*
128 * Fault caused by protection of cached translation, and the
129 * currently executing TB was modified and must be exited immediately.
130 */
131 sigprocmask(SIG_SETMASK, old_set, NULL);
132 cpu_loop_exit_noexc(cpu);
133 /* NORETURN */
134 default:
135 g_assert_not_reached();
136 }
137 }
138
139 typedef struct PageFlagsNode {
140 struct rcu_head rcu;
141 IntervalTreeNode itree;
142 int flags;
143 } PageFlagsNode;
144
145 static IntervalTreeRoot pageflags_root;
146
147 static PageFlagsNode *pageflags_find(target_ulong start, target_long last)
148 {
149 IntervalTreeNode *n;
150
151 n = interval_tree_iter_first(&pageflags_root, start, last);
152 return n ? container_of(n, PageFlagsNode, itree) : NULL;
153 }
154
155 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
156 target_long last)
157 {
158 IntervalTreeNode *n;
159
160 n = interval_tree_iter_next(&p->itree, start, last);
161 return n ? container_of(n, PageFlagsNode, itree) : NULL;
162 }
163
164 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
165 {
166 IntervalTreeNode *n;
167 int rc = 0;
168
169 mmap_lock();
170 for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
171 n != NULL;
172 n = interval_tree_iter_next(n, 0, -1)) {
173 PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
174
175 rc = fn(priv, n->start, n->last + 1, p->flags);
176 if (rc != 0) {
177 break;
178 }
179 }
180 mmap_unlock();
181
182 return rc;
183 }
184
185 static int dump_region(void *priv, target_ulong start,
186 target_ulong end, unsigned long prot)
187 {
188 FILE *f = (FILE *)priv;
189
190 fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
191 start, end, end - start,
192 ((prot & PAGE_READ) ? 'r' : '-'),
193 ((prot & PAGE_WRITE) ? 'w' : '-'),
194 ((prot & PAGE_EXEC) ? 'x' : '-'));
195 return 0;
196 }
197
198 /* dump memory mappings */
199 void page_dump(FILE *f)
200 {
201 const int length = sizeof(target_ulong) * 2;
202
203 fprintf(f, "%-*s %-*s %-*s %s\n",
204 length, "start", length, "end", length, "size", "prot");
205 walk_memory_regions(f, dump_region);
206 }
207
208 int page_get_flags(target_ulong address)
209 {
210 PageFlagsNode *p = pageflags_find(address, address);
211
212 /*
213 * See util/interval-tree.c re lockless lookups: no false positives but
214 * there are false negatives. If we find nothing, retry with the mmap
215 * lock acquired.
216 */
217 if (p) {
218 return p->flags;
219 }
220 if (have_mmap_lock()) {
221 return 0;
222 }
223
224 mmap_lock();
225 p = pageflags_find(address, address);
226 mmap_unlock();
227 return p ? p->flags : 0;
228 }
229
230 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
231 static void pageflags_create(target_ulong start, target_ulong last, int flags)
232 {
233 PageFlagsNode *p = g_new(PageFlagsNode, 1);
234
235 p->itree.start = start;
236 p->itree.last = last;
237 p->flags = flags;
238 interval_tree_insert(&p->itree, &pageflags_root);
239 }
240
241 /* A subroutine of page_set_flags: remove everything in [start,last]. */
242 static bool pageflags_unset(target_ulong start, target_ulong last)
243 {
244 bool inval_tb = false;
245
246 while (true) {
247 PageFlagsNode *p = pageflags_find(start, last);
248 target_ulong p_last;
249
250 if (!p) {
251 break;
252 }
253
254 if (p->flags & PAGE_EXEC) {
255 inval_tb = true;
256 }
257
258 interval_tree_remove(&p->itree, &pageflags_root);
259 p_last = p->itree.last;
260
261 if (p->itree.start < start) {
262 /* Truncate the node from the end, or split out the middle. */
263 p->itree.last = start - 1;
264 interval_tree_insert(&p->itree, &pageflags_root);
265 if (last < p_last) {
266 pageflags_create(last + 1, p_last, p->flags);
267 break;
268 }
269 } else if (p_last <= last) {
270 /* Range completely covers node -- remove it. */
271 g_free_rcu(p, rcu);
272 } else {
273 /* Truncate the node from the start. */
274 p->itree.start = last + 1;
275 interval_tree_insert(&p->itree, &pageflags_root);
276 break;
277 }
278 }
279
280 return inval_tb;
281 }
282
283 /*
284 * A subroutine of page_set_flags: nothing overlaps [start,last],
285 * but check adjacent mappings and maybe merge into a single range.
286 */
287 static void pageflags_create_merge(target_ulong start, target_ulong last,
288 int flags)
289 {
290 PageFlagsNode *next = NULL, *prev = NULL;
291
292 if (start > 0) {
293 prev = pageflags_find(start - 1, start - 1);
294 if (prev) {
295 if (prev->flags == flags) {
296 interval_tree_remove(&prev->itree, &pageflags_root);
297 } else {
298 prev = NULL;
299 }
300 }
301 }
302 if (last + 1 != 0) {
303 next = pageflags_find(last + 1, last + 1);
304 if (next) {
305 if (next->flags == flags) {
306 interval_tree_remove(&next->itree, &pageflags_root);
307 } else {
308 next = NULL;
309 }
310 }
311 }
312
313 if (prev) {
314 if (next) {
315 prev->itree.last = next->itree.last;
316 g_free_rcu(next, rcu);
317 } else {
318 prev->itree.last = last;
319 }
320 interval_tree_insert(&prev->itree, &pageflags_root);
321 } else if (next) {
322 next->itree.start = start;
323 interval_tree_insert(&next->itree, &pageflags_root);
324 } else {
325 pageflags_create(start, last, flags);
326 }
327 }
328
329 /*
330 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
331 * By default, they are not kept.
332 */
333 #ifndef PAGE_TARGET_STICKY
334 #define PAGE_TARGET_STICKY 0
335 #endif
336 #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
337
338 /* A subroutine of page_set_flags: add flags to [start,last]. */
339 static bool pageflags_set_clear(target_ulong start, target_ulong last,
340 int set_flags, int clear_flags)
341 {
342 PageFlagsNode *p;
343 target_ulong p_start, p_last;
344 int p_flags, merge_flags;
345 bool inval_tb = false;
346
347 restart:
348 p = pageflags_find(start, last);
349 if (!p) {
350 if (set_flags) {
351 pageflags_create_merge(start, last, set_flags);
352 }
353 goto done;
354 }
355
356 p_start = p->itree.start;
357 p_last = p->itree.last;
358 p_flags = p->flags;
359 /* Using mprotect on a page does not change sticky bits. */
360 merge_flags = (p_flags & ~clear_flags) | set_flags;
361
362 /*
363 * Need to flush if an overlapping executable region
364 * removes exec, or adds write.
365 */
366 if ((p_flags & PAGE_EXEC)
367 && (!(merge_flags & PAGE_EXEC)
368 || (merge_flags & ~p_flags & PAGE_WRITE))) {
369 inval_tb = true;
370 }
371
372 /*
373 * If there is an exact range match, update and return without
374 * attempting to merge with adjacent regions.
375 */
376 if (start == p_start && last == p_last) {
377 if (merge_flags) {
378 p->flags = merge_flags;
379 } else {
380 interval_tree_remove(&p->itree, &pageflags_root);
381 g_free_rcu(p, rcu);
382 }
383 goto done;
384 }
385
386 /*
387 * If sticky bits affect the original mapping, then we must be more
388 * careful about the existing intervals and the separate flags.
389 */
390 if (set_flags != merge_flags) {
391 if (p_start < start) {
392 interval_tree_remove(&p->itree, &pageflags_root);
393 p->itree.last = start - 1;
394 interval_tree_insert(&p->itree, &pageflags_root);
395
396 if (last < p_last) {
397 if (merge_flags) {
398 pageflags_create(start, last, merge_flags);
399 }
400 pageflags_create(last + 1, p_last, p_flags);
401 } else {
402 if (merge_flags) {
403 pageflags_create(start, p_last, merge_flags);
404 }
405 if (p_last < last) {
406 start = p_last + 1;
407 goto restart;
408 }
409 }
410 } else {
411 if (start < p_start && set_flags) {
412 pageflags_create(start, p_start - 1, set_flags);
413 }
414 if (last < p_last) {
415 interval_tree_remove(&p->itree, &pageflags_root);
416 p->itree.start = last + 1;
417 interval_tree_insert(&p->itree, &pageflags_root);
418 if (merge_flags) {
419 pageflags_create(start, last, merge_flags);
420 }
421 } else {
422 if (merge_flags) {
423 p->flags = merge_flags;
424 } else {
425 interval_tree_remove(&p->itree, &pageflags_root);
426 g_free_rcu(p, rcu);
427 }
428 if (p_last < last) {
429 start = p_last + 1;
430 goto restart;
431 }
432 }
433 }
434 goto done;
435 }
436
437 /* If flags are not changing for this range, incorporate it. */
438 if (set_flags == p_flags) {
439 if (start < p_start) {
440 interval_tree_remove(&p->itree, &pageflags_root);
441 p->itree.start = start;
442 interval_tree_insert(&p->itree, &pageflags_root);
443 }
444 if (p_last < last) {
445 start = p_last + 1;
446 goto restart;
447 }
448 goto done;
449 }
450
451 /* Maybe split out head and/or tail ranges with the original flags. */
452 interval_tree_remove(&p->itree, &pageflags_root);
453 if (p_start < start) {
454 p->itree.last = start - 1;
455 interval_tree_insert(&p->itree, &pageflags_root);
456
457 if (p_last < last) {
458 goto restart;
459 }
460 if (last < p_last) {
461 pageflags_create(last + 1, p_last, p_flags);
462 }
463 } else if (last < p_last) {
464 p->itree.start = last + 1;
465 interval_tree_insert(&p->itree, &pageflags_root);
466 } else {
467 g_free_rcu(p, rcu);
468 goto restart;
469 }
470 if (set_flags) {
471 pageflags_create(start, last, set_flags);
472 }
473
474 done:
475 return inval_tb;
476 }
477
478 /*
479 * Modify the flags of a page and invalidate the code if necessary.
480 * The flag PAGE_WRITE_ORG is positioned automatically depending
481 * on PAGE_WRITE. The mmap_lock should already be held.
482 */
483 void page_set_flags(target_ulong start, target_ulong last, int flags)
484 {
485 bool reset = false;
486 bool inval_tb = false;
487
488 /* This function should never be called with addresses outside the
489 guest address space. If this assert fires, it probably indicates
490 a missing call to h2g_valid. */
491 assert(start <= last);
492 assert(last <= GUEST_ADDR_MAX);
493 /* Only set PAGE_ANON with new mappings. */
494 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
495 assert_memory_lock();
496
497 start &= TARGET_PAGE_MASK;
498 last |= ~TARGET_PAGE_MASK;
499
500 if (!(flags & PAGE_VALID)) {
501 flags = 0;
502 } else {
503 reset = flags & PAGE_RESET;
504 flags &= ~PAGE_RESET;
505 if (flags & PAGE_WRITE) {
506 flags |= PAGE_WRITE_ORG;
507 }
508 }
509
510 if (!flags || reset) {
511 page_reset_target_data(start, last);
512 inval_tb |= pageflags_unset(start, last);
513 }
514 if (flags) {
515 inval_tb |= pageflags_set_clear(start, last, flags,
516 ~(reset ? 0 : PAGE_STICKY));
517 }
518 if (inval_tb) {
519 tb_invalidate_phys_range(start, last);
520 }
521 }
522
523 int page_check_range(target_ulong start, target_ulong len, int flags)
524 {
525 target_ulong last;
526 int locked; /* tri-state: =0: unlocked, +1: global, -1: local */
527 int ret;
528
529 if (len == 0) {
530 return 0; /* trivial length */
531 }
532
533 last = start + len - 1;
534 if (last < start) {
535 return -1; /* wrap around */
536 }
537
538 locked = have_mmap_lock();
539 while (true) {
540 PageFlagsNode *p = pageflags_find(start, last);
541 int missing;
542
543 if (!p) {
544 if (!locked) {
545 /*
546 * Lockless lookups have false negatives.
547 * Retry with the lock held.
548 */
549 mmap_lock();
550 locked = -1;
551 p = pageflags_find(start, last);
552 }
553 if (!p) {
554 ret = -1; /* entire region invalid */
555 break;
556 }
557 }
558 if (start < p->itree.start) {
559 ret = -1; /* initial bytes invalid */
560 break;
561 }
562
563 missing = flags & ~p->flags;
564 if (missing & PAGE_READ) {
565 ret = -1; /* page not readable */
566 break;
567 }
568 if (missing & PAGE_WRITE) {
569 if (!(p->flags & PAGE_WRITE_ORG)) {
570 ret = -1; /* page not writable */
571 break;
572 }
573 /* Asking about writable, but has been protected: undo. */
574 if (!page_unprotect(start, 0)) {
575 ret = -1;
576 break;
577 }
578 /* TODO: page_unprotect should take a range, not a single page. */
579 if (last - start < TARGET_PAGE_SIZE) {
580 ret = 0; /* ok */
581 break;
582 }
583 start += TARGET_PAGE_SIZE;
584 continue;
585 }
586
587 if (last <= p->itree.last) {
588 ret = 0; /* ok */
589 break;
590 }
591 start = p->itree.last + 1;
592 }
593
594 /* Release the lock if acquired locally. */
595 if (locked < 0) {
596 mmap_unlock();
597 }
598 return ret;
599 }
600
601 void page_protect(tb_page_addr_t address)
602 {
603 PageFlagsNode *p;
604 target_ulong start, last;
605 int prot;
606
607 assert_memory_lock();
608
609 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
610 start = address & TARGET_PAGE_MASK;
611 last = start + TARGET_PAGE_SIZE - 1;
612 } else {
613 start = address & qemu_host_page_mask;
614 last = start + qemu_host_page_size - 1;
615 }
616
617 p = pageflags_find(start, last);
618 if (!p) {
619 return;
620 }
621 prot = p->flags;
622
623 if (unlikely(p->itree.last < last)) {
624 /* More than one protection region covers the one host page. */
625 assert(TARGET_PAGE_SIZE < qemu_host_page_size);
626 while ((p = pageflags_next(p, start, last)) != NULL) {
627 prot |= p->flags;
628 }
629 }
630
631 if (prot & PAGE_WRITE) {
632 pageflags_set_clear(start, last, 0, PAGE_WRITE);
633 mprotect(g2h_untagged(start), qemu_host_page_size,
634 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
635 }
636 }
637
638 /*
639 * Called from signal handler: invalidate the code and unprotect the
640 * page. Return 0 if the fault was not handled, 1 if it was handled,
641 * and 2 if it was handled but the caller must cause the TB to be
642 * immediately exited. (We can only return 2 if the 'pc' argument is
643 * non-zero.)
644 */
645 int page_unprotect(target_ulong address, uintptr_t pc)
646 {
647 PageFlagsNode *p;
648 bool current_tb_invalidated;
649
650 /*
651 * Technically this isn't safe inside a signal handler. However we
652 * know this only ever happens in a synchronous SEGV handler, so in
653 * practice it seems to be ok.
654 */
655 mmap_lock();
656
657 p = pageflags_find(address, address);
658
659 /* If this address was not really writable, nothing to do. */
660 if (!p || !(p->flags & PAGE_WRITE_ORG)) {
661 mmap_unlock();
662 return 0;
663 }
664
665 current_tb_invalidated = false;
666 if (p->flags & PAGE_WRITE) {
667 /*
668 * If the page is actually marked WRITE then assume this is because
669 * this thread raced with another one which got here first and
670 * set the page to PAGE_WRITE and did the TB invalidate for us.
671 */
672 #ifdef TARGET_HAS_PRECISE_SMC
673 TranslationBlock *current_tb = tcg_tb_lookup(pc);
674 if (current_tb) {
675 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
676 }
677 #endif
678 } else {
679 target_ulong start, len, i;
680 int prot;
681
682 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
683 start = address & TARGET_PAGE_MASK;
684 len = TARGET_PAGE_SIZE;
685 prot = p->flags | PAGE_WRITE;
686 pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
687 current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
688 } else {
689 start = address & qemu_host_page_mask;
690 len = qemu_host_page_size;
691 prot = 0;
692
693 for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
694 target_ulong addr = start + i;
695
696 p = pageflags_find(addr, addr);
697 if (p) {
698 prot |= p->flags;
699 if (p->flags & PAGE_WRITE_ORG) {
700 prot |= PAGE_WRITE;
701 pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
702 PAGE_WRITE, 0);
703 }
704 }
705 /*
706 * Since the content will be modified, we must invalidate
707 * the corresponding translated code.
708 */
709 current_tb_invalidated |=
710 tb_invalidate_phys_page_unwind(addr, pc);
711 }
712 }
713 if (prot & PAGE_EXEC) {
714 prot = (prot & ~PAGE_EXEC) | PAGE_READ;
715 }
716 mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
717 }
718 mmap_unlock();
719
720 /* If current TB was invalidated return to main loop */
721 return current_tb_invalidated ? 2 : 1;
722 }
723
724 static int probe_access_internal(CPUArchState *env, target_ulong addr,
725 int fault_size, MMUAccessType access_type,
726 bool nonfault, uintptr_t ra)
727 {
728 int acc_flag;
729 bool maperr;
730
731 switch (access_type) {
732 case MMU_DATA_STORE:
733 acc_flag = PAGE_WRITE_ORG;
734 break;
735 case MMU_DATA_LOAD:
736 acc_flag = PAGE_READ;
737 break;
738 case MMU_INST_FETCH:
739 acc_flag = PAGE_EXEC;
740 break;
741 default:
742 g_assert_not_reached();
743 }
744
745 if (guest_addr_valid_untagged(addr)) {
746 int page_flags = page_get_flags(addr);
747 if (page_flags & acc_flag) {
748 return 0; /* success */
749 }
750 maperr = !(page_flags & PAGE_VALID);
751 } else {
752 maperr = true;
753 }
754
755 if (nonfault) {
756 return TLB_INVALID_MASK;
757 }
758
759 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
760 }
761
762 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
763 MMUAccessType access_type, int mmu_idx,
764 bool nonfault, void **phost, uintptr_t ra)
765 {
766 int flags;
767
768 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
769 flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
770 *phost = flags ? NULL : g2h(env_cpu(env), addr);
771 return flags;
772 }
773
774 void *probe_access(CPUArchState *env, target_ulong addr, int size,
775 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
776 {
777 int flags;
778
779 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
780 flags = probe_access_internal(env, addr, size, access_type, false, ra);
781 g_assert(flags == 0);
782
783 return size ? g2h(env_cpu(env), addr) : NULL;
784 }
785
786 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
787 void **hostp)
788 {
789 int flags;
790
791 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
792 g_assert(flags == 0);
793
794 if (hostp) {
795 *hostp = g2h_untagged(addr);
796 }
797 return addr;
798 }
799
800 #ifdef TARGET_PAGE_DATA_SIZE
801 /*
802 * Allocate chunks of target data together. For the only current user,
803 * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
804 * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
805 */
806 #define TPD_PAGES 64
807 #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES)
808
809 typedef struct TargetPageDataNode {
810 struct rcu_head rcu;
811 IntervalTreeNode itree;
812 char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
813 } TargetPageDataNode;
814
815 static IntervalTreeRoot targetdata_root;
816
817 void page_reset_target_data(target_ulong start, target_ulong last)
818 {
819 IntervalTreeNode *n, *next;
820
821 assert_memory_lock();
822
823 start &= TARGET_PAGE_MASK;
824 last |= ~TARGET_PAGE_MASK;
825
826 for (n = interval_tree_iter_first(&targetdata_root, start, last),
827 next = n ? interval_tree_iter_next(n, start, last) : NULL;
828 n != NULL;
829 n = next,
830 next = next ? interval_tree_iter_next(n, start, last) : NULL) {
831 target_ulong n_start, n_last, p_ofs, p_len;
832 TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
833
834 if (n->start >= start && n->last <= last) {
835 interval_tree_remove(n, &targetdata_root);
836 g_free_rcu(t, rcu);
837 continue;
838 }
839
840 if (n->start < start) {
841 n_start = start;
842 p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
843 } else {
844 n_start = n->start;
845 p_ofs = 0;
846 }
847 n_last = MIN(last, n->last);
848 p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
849
850 memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
851 }
852 }
853
854 void *page_get_target_data(target_ulong address)
855 {
856 IntervalTreeNode *n;
857 TargetPageDataNode *t;
858 target_ulong page, region;
859
860 page = address & TARGET_PAGE_MASK;
861 region = address & TBD_MASK;
862
863 n = interval_tree_iter_first(&targetdata_root, page, page);
864 if (!n) {
865 /*
866 * See util/interval-tree.c re lockless lookups: no false positives
867 * but there are false negatives. If we find nothing, retry with
868 * the mmap lock acquired. We also need the lock for the
869 * allocation + insert.
870 */
871 mmap_lock();
872 n = interval_tree_iter_first(&targetdata_root, page, page);
873 if (!n) {
874 t = g_new0(TargetPageDataNode, 1);
875 n = &t->itree;
876 n->start = region;
877 n->last = region | ~TBD_MASK;
878 interval_tree_insert(n, &targetdata_root);
879 }
880 mmap_unlock();
881 }
882
883 t = container_of(n, TargetPageDataNode, itree);
884 return t->data[(page - region) >> TARGET_PAGE_BITS];
885 }
886 #else
887 void page_reset_target_data(target_ulong start, target_ulong last) { }
888 #endif /* TARGET_PAGE_DATA_SIZE */
889
890 /* The softmmu versions of these helpers are in cputlb.c. */
891
892 static void *cpu_mmu_lookup(CPUArchState *env, abi_ptr addr,
893 MemOp mop, uintptr_t ra, MMUAccessType type)
894 {
895 int a_bits = get_alignment_bits(mop);
896 void *ret;
897
898 /* Enforce guest required alignment. */
899 if (unlikely(addr & ((1 << a_bits) - 1))) {
900 cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
901 }
902
903 ret = g2h(env_cpu(env), addr);
904 set_helper_retaddr(ra);
905 return ret;
906 }
907
908 #include "ldst_atomicity.c.inc"
909
910 static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
911 MemOp mop, uintptr_t ra)
912 {
913 void *haddr;
914 uint8_t ret;
915
916 tcg_debug_assert((mop & MO_SIZE) == MO_8);
917 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
918 ret = ldub_p(haddr);
919 clear_helper_retaddr();
920 return ret;
921 }
922
923 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
924 MemOpIdx oi, uintptr_t ra)
925 {
926 return do_ld1_mmu(env, addr, get_memop(oi), ra);
927 }
928
929 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
930 MemOpIdx oi, uintptr_t ra)
931 {
932 return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
933 }
934
935 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
936 MemOpIdx oi, uintptr_t ra)
937 {
938 uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
939 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
940 return ret;
941 }
942
943 static uint16_t do_ld2_he_mmu(CPUArchState *env, abi_ptr addr,
944 MemOp mop, uintptr_t ra)
945 {
946 void *haddr;
947 uint16_t ret;
948
949 tcg_debug_assert((mop & MO_SIZE) == MO_16);
950 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
951 ret = load_atom_2(env, ra, haddr, mop);
952 clear_helper_retaddr();
953 return ret;
954 }
955
956 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
957 MemOpIdx oi, uintptr_t ra)
958 {
959 MemOp mop = get_memop(oi);
960 uint16_t ret = do_ld2_he_mmu(env, addr, mop, ra);
961
962 if (mop & MO_BSWAP) {
963 ret = bswap16(ret);
964 }
965 return ret;
966 }
967
968 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
969 MemOpIdx oi, uintptr_t ra)
970 {
971 MemOp mop = get_memop(oi);
972 int16_t ret = do_ld2_he_mmu(env, addr, mop, ra);
973
974 if (mop & MO_BSWAP) {
975 ret = bswap16(ret);
976 }
977 return ret;
978 }
979
980 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
981 MemOpIdx oi, uintptr_t ra)
982 {
983 MemOp mop = get_memop(oi);
984 uint16_t ret;
985
986 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
987 ret = do_ld2_he_mmu(env, addr, mop, ra);
988 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
989 return cpu_to_be16(ret);
990 }
991
992 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
993 MemOpIdx oi, uintptr_t ra)
994 {
995 MemOp mop = get_memop(oi);
996 uint16_t ret;
997
998 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
999 ret = do_ld2_he_mmu(env, addr, mop, ra);
1000 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1001 return cpu_to_le16(ret);
1002 }
1003
1004 static uint32_t do_ld4_he_mmu(CPUArchState *env, abi_ptr addr,
1005 MemOp mop, uintptr_t ra)
1006 {
1007 void *haddr;
1008 uint32_t ret;
1009
1010 tcg_debug_assert((mop & MO_SIZE) == MO_32);
1011 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1012 ret = load_atom_4(env, ra, haddr, mop);
1013 clear_helper_retaddr();
1014 return ret;
1015 }
1016
1017 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
1018 MemOpIdx oi, uintptr_t ra)
1019 {
1020 MemOp mop = get_memop(oi);
1021 uint32_t ret = do_ld4_he_mmu(env, addr, mop, ra);
1022
1023 if (mop & MO_BSWAP) {
1024 ret = bswap32(ret);
1025 }
1026 return ret;
1027 }
1028
1029 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
1030 MemOpIdx oi, uintptr_t ra)
1031 {
1032 MemOp mop = get_memop(oi);
1033 int32_t ret = do_ld4_he_mmu(env, addr, mop, ra);
1034
1035 if (mop & MO_BSWAP) {
1036 ret = bswap32(ret);
1037 }
1038 return ret;
1039 }
1040
1041 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
1042 MemOpIdx oi, uintptr_t ra)
1043 {
1044 MemOp mop = get_memop(oi);
1045 uint32_t ret;
1046
1047 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1048 ret = do_ld4_he_mmu(env, addr, mop, ra);
1049 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1050 return cpu_to_be32(ret);
1051 }
1052
1053 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
1054 MemOpIdx oi, uintptr_t ra)
1055 {
1056 MemOp mop = get_memop(oi);
1057 uint32_t ret;
1058
1059 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1060 ret = do_ld4_he_mmu(env, addr, mop, ra);
1061 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1062 return cpu_to_le32(ret);
1063 }
1064
1065 static uint64_t do_ld8_he_mmu(CPUArchState *env, abi_ptr addr,
1066 MemOp mop, uintptr_t ra)
1067 {
1068 void *haddr;
1069 uint64_t ret;
1070
1071 tcg_debug_assert((mop & MO_SIZE) == MO_64);
1072 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1073 ret = load_atom_8(env, ra, haddr, mop);
1074 clear_helper_retaddr();
1075 return ret;
1076 }
1077
1078 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
1079 MemOpIdx oi, uintptr_t ra)
1080 {
1081 MemOp mop = get_memop(oi);
1082 uint64_t ret = do_ld8_he_mmu(env, addr, mop, ra);
1083
1084 if (mop & MO_BSWAP) {
1085 ret = bswap64(ret);
1086 }
1087 return ret;
1088 }
1089
1090 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
1091 MemOpIdx oi, uintptr_t ra)
1092 {
1093 MemOp mop = get_memop(oi);
1094 uint64_t ret;
1095
1096 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1097 ret = do_ld8_he_mmu(env, addr, mop, ra);
1098 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1099 return cpu_to_be64(ret);
1100 }
1101
1102 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
1103 MemOpIdx oi, uintptr_t ra)
1104 {
1105 MemOp mop = get_memop(oi);
1106 uint64_t ret;
1107
1108 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1109 ret = do_ld8_he_mmu(env, addr, mop, ra);
1110 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1111 return cpu_to_le64(ret);
1112 }
1113
1114 static Int128 do_ld16_he_mmu(CPUArchState *env, abi_ptr addr,
1115 MemOp mop, uintptr_t ra)
1116 {
1117 void *haddr;
1118 Int128 ret;
1119
1120 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1121 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1122 ret = load_atom_16(env, ra, haddr, mop);
1123 clear_helper_retaddr();
1124 return ret;
1125 }
1126
1127 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
1128 MemOpIdx oi, uintptr_t ra)
1129 {
1130 MemOp mop = get_memop(oi);
1131 Int128 ret = do_ld16_he_mmu(env, addr, mop, ra);
1132
1133 if (mop & MO_BSWAP) {
1134 ret = bswap128(ret);
1135 }
1136 return ret;
1137 }
1138
1139 Int128 helper_ld_i128(CPUArchState *env, target_ulong addr, MemOpIdx oi)
1140 {
1141 return helper_ld16_mmu(env, addr, oi, GETPC());
1142 }
1143
1144 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr,
1145 MemOpIdx oi, uintptr_t ra)
1146 {
1147 MemOp mop = get_memop(oi);
1148 Int128 ret;
1149
1150 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1151 ret = do_ld16_he_mmu(env, addr, mop, ra);
1152 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1153 if (!HOST_BIG_ENDIAN) {
1154 ret = bswap128(ret);
1155 }
1156 return ret;
1157 }
1158
1159 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr,
1160 MemOpIdx oi, uintptr_t ra)
1161 {
1162 MemOp mop = get_memop(oi);
1163 Int128 ret;
1164
1165 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1166 ret = do_ld16_he_mmu(env, addr, mop, ra);
1167 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1168 if (HOST_BIG_ENDIAN) {
1169 ret = bswap128(ret);
1170 }
1171 return ret;
1172 }
1173
1174 static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1175 MemOp mop, uintptr_t ra)
1176 {
1177 void *haddr;
1178
1179 tcg_debug_assert((mop & MO_SIZE) == MO_8);
1180 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1181 stb_p(haddr, val);
1182 clear_helper_retaddr();
1183 }
1184
1185 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1186 MemOpIdx oi, uintptr_t ra)
1187 {
1188 do_st1_mmu(env, addr, val, get_memop(oi), ra);
1189 }
1190
1191 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1192 MemOpIdx oi, uintptr_t ra)
1193 {
1194 do_st1_mmu(env, addr, val, get_memop(oi), ra);
1195 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1196 }
1197
1198 static void do_st2_he_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1199 MemOp mop, uintptr_t ra)
1200 {
1201 void *haddr;
1202
1203 tcg_debug_assert((mop & MO_SIZE) == MO_16);
1204 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1205 store_atom_2(env, ra, haddr, mop, val);
1206 clear_helper_retaddr();
1207 }
1208
1209 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1210 MemOpIdx oi, uintptr_t ra)
1211 {
1212 MemOp mop = get_memop(oi);
1213
1214 if (mop & MO_BSWAP) {
1215 val = bswap16(val);
1216 }
1217 do_st2_he_mmu(env, addr, val, mop, ra);
1218 }
1219
1220 void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1221 MemOpIdx oi, uintptr_t ra)
1222 {
1223 MemOp mop = get_memop(oi);
1224
1225 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1226 do_st2_he_mmu(env, addr, be16_to_cpu(val), mop, ra);
1227 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1228 }
1229
1230 void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1231 MemOpIdx oi, uintptr_t ra)
1232 {
1233 MemOp mop = get_memop(oi);
1234
1235 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1236 do_st2_he_mmu(env, addr, le16_to_cpu(val), mop, ra);
1237 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1238 }
1239
1240 static void do_st4_he_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1241 MemOp mop, uintptr_t ra)
1242 {
1243 void *haddr;
1244
1245 tcg_debug_assert((mop & MO_SIZE) == MO_32);
1246 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1247 store_atom_4(env, ra, haddr, mop, val);
1248 clear_helper_retaddr();
1249 }
1250
1251 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1252 MemOpIdx oi, uintptr_t ra)
1253 {
1254 MemOp mop = get_memop(oi);
1255
1256 if (mop & MO_BSWAP) {
1257 val = bswap32(val);
1258 }
1259 do_st4_he_mmu(env, addr, val, mop, ra);
1260 }
1261
1262 void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1263 MemOpIdx oi, uintptr_t ra)
1264 {
1265 MemOp mop = get_memop(oi);
1266
1267 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1268 do_st4_he_mmu(env, addr, be32_to_cpu(val), mop, ra);
1269 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1270 }
1271
1272 void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1273 MemOpIdx oi, uintptr_t ra)
1274 {
1275 MemOp mop = get_memop(oi);
1276
1277 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1278 do_st4_he_mmu(env, addr, le32_to_cpu(val), mop, ra);
1279 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1280 }
1281
1282 static void do_st8_he_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1283 MemOp mop, uintptr_t ra)
1284 {
1285 void *haddr;
1286
1287 tcg_debug_assert((mop & MO_SIZE) == MO_64);
1288 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1289 store_atom_8(env, ra, haddr, mop, val);
1290 clear_helper_retaddr();
1291 }
1292
1293 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
1294 MemOpIdx oi, uintptr_t ra)
1295 {
1296 MemOp mop = get_memop(oi);
1297
1298 if (mop & MO_BSWAP) {
1299 val = bswap64(val);
1300 }
1301 do_st8_he_mmu(env, addr, val, mop, ra);
1302 }
1303
1304 void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1305 MemOpIdx oi, uintptr_t ra)
1306 {
1307 MemOp mop = get_memop(oi);
1308
1309 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1310 do_st8_he_mmu(env, addr, cpu_to_be64(val), mop, ra);
1311 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1312 }
1313
1314 void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1315 MemOpIdx oi, uintptr_t ra)
1316 {
1317 MemOp mop = get_memop(oi);
1318
1319 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1320 do_st8_he_mmu(env, addr, cpu_to_le64(val), mop, ra);
1321 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1322 }
1323
1324 static void do_st16_he_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
1325 MemOp mop, uintptr_t ra)
1326 {
1327 void *haddr;
1328
1329 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1330 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1331 store_atom_16(env, ra, haddr, mop, val);
1332 clear_helper_retaddr();
1333 }
1334
1335 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
1336 MemOpIdx oi, uintptr_t ra)
1337 {
1338 MemOp mop = get_memop(oi);
1339
1340 if (mop & MO_BSWAP) {
1341 val = bswap128(val);
1342 }
1343 do_st16_he_mmu(env, addr, val, mop, ra);
1344 }
1345
1346 void helper_st_i128(CPUArchState *env, target_ulong addr,
1347 Int128 val, MemOpIdx oi)
1348 {
1349 helper_st16_mmu(env, addr, val, oi, GETPC());
1350 }
1351
1352 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr,
1353 Int128 val, MemOpIdx oi, uintptr_t ra)
1354 {
1355 MemOp mop = get_memop(oi);
1356
1357 tcg_debug_assert((mop & MO_BSWAP) == MO_BE);
1358 if (!HOST_BIG_ENDIAN) {
1359 val = bswap128(val);
1360 }
1361 do_st16_he_mmu(env, addr, val, mop, ra);
1362 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1363 }
1364
1365 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr,
1366 Int128 val, MemOpIdx oi, uintptr_t ra)
1367 {
1368 MemOp mop = get_memop(oi);
1369
1370 tcg_debug_assert((mop & MO_BSWAP) == MO_LE);
1371 if (HOST_BIG_ENDIAN) {
1372 val = bswap128(val);
1373 }
1374 do_st16_he_mmu(env, addr, val, mop, ra);
1375 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1376 }
1377
1378 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1379 {
1380 uint32_t ret;
1381
1382 set_helper_retaddr(1);
1383 ret = ldub_p(g2h_untagged(ptr));
1384 clear_helper_retaddr();
1385 return ret;
1386 }
1387
1388 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1389 {
1390 uint32_t ret;
1391
1392 set_helper_retaddr(1);
1393 ret = lduw_p(g2h_untagged(ptr));
1394 clear_helper_retaddr();
1395 return ret;
1396 }
1397
1398 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1399 {
1400 uint32_t ret;
1401
1402 set_helper_retaddr(1);
1403 ret = ldl_p(g2h_untagged(ptr));
1404 clear_helper_retaddr();
1405 return ret;
1406 }
1407
1408 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1409 {
1410 uint64_t ret;
1411
1412 set_helper_retaddr(1);
1413 ret = ldq_p(g2h_untagged(ptr));
1414 clear_helper_retaddr();
1415 return ret;
1416 }
1417
1418 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1419 MemOpIdx oi, uintptr_t ra)
1420 {
1421 void *haddr;
1422 uint8_t ret;
1423
1424 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1425 ret = ldub_p(haddr);
1426 clear_helper_retaddr();
1427 return ret;
1428 }
1429
1430 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1431 MemOpIdx oi, uintptr_t ra)
1432 {
1433 void *haddr;
1434 uint16_t ret;
1435
1436 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1437 ret = lduw_p(haddr);
1438 clear_helper_retaddr();
1439 if (get_memop(oi) & MO_BSWAP) {
1440 ret = bswap16(ret);
1441 }
1442 return ret;
1443 }
1444
1445 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1446 MemOpIdx oi, uintptr_t ra)
1447 {
1448 void *haddr;
1449 uint32_t ret;
1450
1451 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1452 ret = ldl_p(haddr);
1453 clear_helper_retaddr();
1454 if (get_memop(oi) & MO_BSWAP) {
1455 ret = bswap32(ret);
1456 }
1457 return ret;
1458 }
1459
1460 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1461 MemOpIdx oi, uintptr_t ra)
1462 {
1463 void *haddr;
1464 uint64_t ret;
1465
1466 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
1467 ret = ldq_p(haddr);
1468 clear_helper_retaddr();
1469 if (get_memop(oi) & MO_BSWAP) {
1470 ret = bswap64(ret);
1471 }
1472 return ret;
1473 }
1474
1475 #include "ldst_common.c.inc"
1476
1477 /*
1478 * Do not allow unaligned operations to proceed. Return the host address.
1479 *
1480 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1481 */
1482 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1483 MemOpIdx oi, int size, int prot,
1484 uintptr_t retaddr)
1485 {
1486 MemOp mop = get_memop(oi);
1487 int a_bits = get_alignment_bits(mop);
1488 void *ret;
1489
1490 /* Enforce guest required alignment. */
1491 if (unlikely(addr & ((1 << a_bits) - 1))) {
1492 MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
1493 cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
1494 }
1495
1496 /* Enforce qemu required alignment. */
1497 if (unlikely(addr & (size - 1))) {
1498 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1499 }
1500
1501 ret = g2h(env_cpu(env), addr);
1502 set_helper_retaddr(retaddr);
1503 return ret;
1504 }
1505
1506 #include "atomic_common.c.inc"
1507
1508 /*
1509 * First set of functions passes in OI and RETADDR.
1510 * This makes them callable from other helpers.
1511 */
1512
1513 #define ATOMIC_NAME(X) \
1514 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1515 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1516
1517 #define DATA_SIZE 1
1518 #include "atomic_template.h"
1519
1520 #define DATA_SIZE 2
1521 #include "atomic_template.h"
1522
1523 #define DATA_SIZE 4
1524 #include "atomic_template.h"
1525
1526 #ifdef CONFIG_ATOMIC64
1527 #define DATA_SIZE 8
1528 #include "atomic_template.h"
1529 #endif
1530
1531 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1532 #define DATA_SIZE 16
1533 #include "atomic_template.h"
1534 #endif