]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/user-exec.c
Merge tag 'pull-riscv-to-apply-20230723-3' of https://github.com/alistair23/qemu...
[mirror_qemu.git] / accel / tcg / user-exec.c
1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "hw/core/tcg-cpu-ops.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "qemu/rcu.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/translate-all.h"
28 #include "exec/helper-proto.h"
29 #include "qemu/atomic128.h"
30 #include "trace/trace-root.h"
31 #include "tcg/tcg-ldst.h"
32 #include "internal.h"
33
34 __thread uintptr_t helper_retaddr;
35
36 //#define DEBUG_SIGNAL
37
38 /*
39 * Adjust the pc to pass to cpu_restore_state; return the memop type.
40 */
41 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
42 {
43 switch (helper_retaddr) {
44 default:
45 /*
46 * Fault during host memory operation within a helper function.
47 * The helper's host return address, saved here, gives us a
48 * pointer into the generated code that will unwind to the
49 * correct guest pc.
50 */
51 *pc = helper_retaddr;
52 break;
53
54 case 0:
55 /*
56 * Fault during host memory operation within generated code.
57 * (Or, a unrelated bug within qemu, but we can't tell from here).
58 *
59 * We take the host pc from the signal frame. However, we cannot
60 * use that value directly. Within cpu_restore_state_from_tb, we
61 * assume PC comes from GETPC(), as used by the helper functions,
62 * so we adjust the address by -GETPC_ADJ to form an address that
63 * is within the call insn, so that the address does not accidentally
64 * match the beginning of the next guest insn. However, when the
65 * pc comes from the signal frame it points to the actual faulting
66 * host memory insn and not the return from a call insn.
67 *
68 * Therefore, adjust to compensate for what will be done later
69 * by cpu_restore_state_from_tb.
70 */
71 *pc += GETPC_ADJ;
72 break;
73
74 case 1:
75 /*
76 * Fault during host read for translation, or loosely, "execution".
77 *
78 * The guest pc is already pointing to the start of the TB for which
79 * code is being generated. If the guest translator manages the
80 * page crossings correctly, this is exactly the correct address
81 * (and if the translator doesn't handle page boundaries correctly
82 * there's little we can do about that here). Therefore, do not
83 * trigger the unwinder.
84 */
85 *pc = 0;
86 return MMU_INST_FETCH;
87 }
88
89 return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
90 }
91
92 /**
93 * handle_sigsegv_accerr_write:
94 * @cpu: the cpu context
95 * @old_set: the sigset_t from the signal ucontext_t
96 * @host_pc: the host pc, adjusted for the signal
97 * @guest_addr: the guest address of the fault
98 *
99 * Return true if the write fault has been handled, and should be re-tried.
100 *
101 * Note that it is important that we don't call page_unprotect() unless
102 * this is really a "write to nonwritable page" fault, because
103 * page_unprotect() assumes that if it is called for an access to
104 * a page that's writable this means we had two threads racing and
105 * another thread got there first and already made the page writable;
106 * so we will retry the access. If we were to call page_unprotect()
107 * for some other kind of fault that should really be passed to the
108 * guest, we'd end up in an infinite loop of retrying the faulting access.
109 */
110 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
111 uintptr_t host_pc, abi_ptr guest_addr)
112 {
113 switch (page_unprotect(guest_addr, host_pc)) {
114 case 0:
115 /*
116 * Fault not caused by a page marked unwritable to protect
117 * cached translations, must be the guest binary's problem.
118 */
119 return false;
120 case 1:
121 /*
122 * Fault caused by protection of cached translation; TBs
123 * invalidated, so resume execution.
124 */
125 return true;
126 case 2:
127 /*
128 * Fault caused by protection of cached translation, and the
129 * currently executing TB was modified and must be exited immediately.
130 */
131 sigprocmask(SIG_SETMASK, old_set, NULL);
132 cpu_loop_exit_noexc(cpu);
133 /* NORETURN */
134 default:
135 g_assert_not_reached();
136 }
137 }
138
139 typedef struct PageFlagsNode {
140 struct rcu_head rcu;
141 IntervalTreeNode itree;
142 int flags;
143 } PageFlagsNode;
144
145 static IntervalTreeRoot pageflags_root;
146
147 static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
148 {
149 IntervalTreeNode *n;
150
151 n = interval_tree_iter_first(&pageflags_root, start, last);
152 return n ? container_of(n, PageFlagsNode, itree) : NULL;
153 }
154
155 static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
156 target_ulong last)
157 {
158 IntervalTreeNode *n;
159
160 n = interval_tree_iter_next(&p->itree, start, last);
161 return n ? container_of(n, PageFlagsNode, itree) : NULL;
162 }
163
164 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
165 {
166 IntervalTreeNode *n;
167 int rc = 0;
168
169 mmap_lock();
170 for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
171 n != NULL;
172 n = interval_tree_iter_next(n, 0, -1)) {
173 PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
174
175 rc = fn(priv, n->start, n->last + 1, p->flags);
176 if (rc != 0) {
177 break;
178 }
179 }
180 mmap_unlock();
181
182 return rc;
183 }
184
185 static int dump_region(void *priv, target_ulong start,
186 target_ulong end, unsigned long prot)
187 {
188 FILE *f = (FILE *)priv;
189
190 fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
191 start, end, end - start,
192 ((prot & PAGE_READ) ? 'r' : '-'),
193 ((prot & PAGE_WRITE) ? 'w' : '-'),
194 ((prot & PAGE_EXEC) ? 'x' : '-'));
195 return 0;
196 }
197
198 /* dump memory mappings */
199 void page_dump(FILE *f)
200 {
201 const int length = sizeof(target_ulong) * 2;
202
203 fprintf(f, "%-*s %-*s %-*s %s\n",
204 length, "start", length, "end", length, "size", "prot");
205 walk_memory_regions(f, dump_region);
206 }
207
208 int page_get_flags(target_ulong address)
209 {
210 PageFlagsNode *p = pageflags_find(address, address);
211
212 /*
213 * See util/interval-tree.c re lockless lookups: no false positives but
214 * there are false negatives. If we find nothing, retry with the mmap
215 * lock acquired.
216 */
217 if (p) {
218 return p->flags;
219 }
220 if (have_mmap_lock()) {
221 return 0;
222 }
223
224 mmap_lock();
225 p = pageflags_find(address, address);
226 mmap_unlock();
227 return p ? p->flags : 0;
228 }
229
230 /* A subroutine of page_set_flags: insert a new node for [start,last]. */
231 static void pageflags_create(target_ulong start, target_ulong last, int flags)
232 {
233 PageFlagsNode *p = g_new(PageFlagsNode, 1);
234
235 p->itree.start = start;
236 p->itree.last = last;
237 p->flags = flags;
238 interval_tree_insert(&p->itree, &pageflags_root);
239 }
240
241 /* A subroutine of page_set_flags: remove everything in [start,last]. */
242 static bool pageflags_unset(target_ulong start, target_ulong last)
243 {
244 bool inval_tb = false;
245
246 while (true) {
247 PageFlagsNode *p = pageflags_find(start, last);
248 target_ulong p_last;
249
250 if (!p) {
251 break;
252 }
253
254 if (p->flags & PAGE_EXEC) {
255 inval_tb = true;
256 }
257
258 interval_tree_remove(&p->itree, &pageflags_root);
259 p_last = p->itree.last;
260
261 if (p->itree.start < start) {
262 /* Truncate the node from the end, or split out the middle. */
263 p->itree.last = start - 1;
264 interval_tree_insert(&p->itree, &pageflags_root);
265 if (last < p_last) {
266 pageflags_create(last + 1, p_last, p->flags);
267 break;
268 }
269 } else if (p_last <= last) {
270 /* Range completely covers node -- remove it. */
271 g_free_rcu(p, rcu);
272 } else {
273 /* Truncate the node from the start. */
274 p->itree.start = last + 1;
275 interval_tree_insert(&p->itree, &pageflags_root);
276 break;
277 }
278 }
279
280 return inval_tb;
281 }
282
283 /*
284 * A subroutine of page_set_flags: nothing overlaps [start,last],
285 * but check adjacent mappings and maybe merge into a single range.
286 */
287 static void pageflags_create_merge(target_ulong start, target_ulong last,
288 int flags)
289 {
290 PageFlagsNode *next = NULL, *prev = NULL;
291
292 if (start > 0) {
293 prev = pageflags_find(start - 1, start - 1);
294 if (prev) {
295 if (prev->flags == flags) {
296 interval_tree_remove(&prev->itree, &pageflags_root);
297 } else {
298 prev = NULL;
299 }
300 }
301 }
302 if (last + 1 != 0) {
303 next = pageflags_find(last + 1, last + 1);
304 if (next) {
305 if (next->flags == flags) {
306 interval_tree_remove(&next->itree, &pageflags_root);
307 } else {
308 next = NULL;
309 }
310 }
311 }
312
313 if (prev) {
314 if (next) {
315 prev->itree.last = next->itree.last;
316 g_free_rcu(next, rcu);
317 } else {
318 prev->itree.last = last;
319 }
320 interval_tree_insert(&prev->itree, &pageflags_root);
321 } else if (next) {
322 next->itree.start = start;
323 interval_tree_insert(&next->itree, &pageflags_root);
324 } else {
325 pageflags_create(start, last, flags);
326 }
327 }
328
329 /*
330 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
331 * By default, they are not kept.
332 */
333 #ifndef PAGE_TARGET_STICKY
334 #define PAGE_TARGET_STICKY 0
335 #endif
336 #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
337
338 /* A subroutine of page_set_flags: add flags to [start,last]. */
339 static bool pageflags_set_clear(target_ulong start, target_ulong last,
340 int set_flags, int clear_flags)
341 {
342 PageFlagsNode *p;
343 target_ulong p_start, p_last;
344 int p_flags, merge_flags;
345 bool inval_tb = false;
346
347 restart:
348 p = pageflags_find(start, last);
349 if (!p) {
350 if (set_flags) {
351 pageflags_create_merge(start, last, set_flags);
352 }
353 goto done;
354 }
355
356 p_start = p->itree.start;
357 p_last = p->itree.last;
358 p_flags = p->flags;
359 /* Using mprotect on a page does not change sticky bits. */
360 merge_flags = (p_flags & ~clear_flags) | set_flags;
361
362 /*
363 * Need to flush if an overlapping executable region
364 * removes exec, or adds write.
365 */
366 if ((p_flags & PAGE_EXEC)
367 && (!(merge_flags & PAGE_EXEC)
368 || (merge_flags & ~p_flags & PAGE_WRITE))) {
369 inval_tb = true;
370 }
371
372 /*
373 * If there is an exact range match, update and return without
374 * attempting to merge with adjacent regions.
375 */
376 if (start == p_start && last == p_last) {
377 if (merge_flags) {
378 p->flags = merge_flags;
379 } else {
380 interval_tree_remove(&p->itree, &pageflags_root);
381 g_free_rcu(p, rcu);
382 }
383 goto done;
384 }
385
386 /*
387 * If sticky bits affect the original mapping, then we must be more
388 * careful about the existing intervals and the separate flags.
389 */
390 if (set_flags != merge_flags) {
391 if (p_start < start) {
392 interval_tree_remove(&p->itree, &pageflags_root);
393 p->itree.last = start - 1;
394 interval_tree_insert(&p->itree, &pageflags_root);
395
396 if (last < p_last) {
397 if (merge_flags) {
398 pageflags_create(start, last, merge_flags);
399 }
400 pageflags_create(last + 1, p_last, p_flags);
401 } else {
402 if (merge_flags) {
403 pageflags_create(start, p_last, merge_flags);
404 }
405 if (p_last < last) {
406 start = p_last + 1;
407 goto restart;
408 }
409 }
410 } else {
411 if (start < p_start && set_flags) {
412 pageflags_create(start, p_start - 1, set_flags);
413 }
414 if (last < p_last) {
415 interval_tree_remove(&p->itree, &pageflags_root);
416 p->itree.start = last + 1;
417 interval_tree_insert(&p->itree, &pageflags_root);
418 if (merge_flags) {
419 pageflags_create(start, last, merge_flags);
420 }
421 } else {
422 if (merge_flags) {
423 p->flags = merge_flags;
424 } else {
425 interval_tree_remove(&p->itree, &pageflags_root);
426 g_free_rcu(p, rcu);
427 }
428 if (p_last < last) {
429 start = p_last + 1;
430 goto restart;
431 }
432 }
433 }
434 goto done;
435 }
436
437 /* If flags are not changing for this range, incorporate it. */
438 if (set_flags == p_flags) {
439 if (start < p_start) {
440 interval_tree_remove(&p->itree, &pageflags_root);
441 p->itree.start = start;
442 interval_tree_insert(&p->itree, &pageflags_root);
443 }
444 if (p_last < last) {
445 start = p_last + 1;
446 goto restart;
447 }
448 goto done;
449 }
450
451 /* Maybe split out head and/or tail ranges with the original flags. */
452 interval_tree_remove(&p->itree, &pageflags_root);
453 if (p_start < start) {
454 p->itree.last = start - 1;
455 interval_tree_insert(&p->itree, &pageflags_root);
456
457 if (p_last < last) {
458 goto restart;
459 }
460 if (last < p_last) {
461 pageflags_create(last + 1, p_last, p_flags);
462 }
463 } else if (last < p_last) {
464 p->itree.start = last + 1;
465 interval_tree_insert(&p->itree, &pageflags_root);
466 } else {
467 g_free_rcu(p, rcu);
468 goto restart;
469 }
470 if (set_flags) {
471 pageflags_create(start, last, set_flags);
472 }
473
474 done:
475 return inval_tb;
476 }
477
478 /*
479 * Modify the flags of a page and invalidate the code if necessary.
480 * The flag PAGE_WRITE_ORG is positioned automatically depending
481 * on PAGE_WRITE. The mmap_lock should already be held.
482 */
483 void page_set_flags(target_ulong start, target_ulong last, int flags)
484 {
485 bool reset = false;
486 bool inval_tb = false;
487
488 /* This function should never be called with addresses outside the
489 guest address space. If this assert fires, it probably indicates
490 a missing call to h2g_valid. */
491 assert(start <= last);
492 assert(last <= GUEST_ADDR_MAX);
493 /* Only set PAGE_ANON with new mappings. */
494 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
495 assert_memory_lock();
496
497 start &= TARGET_PAGE_MASK;
498 last |= ~TARGET_PAGE_MASK;
499
500 if (!(flags & PAGE_VALID)) {
501 flags = 0;
502 } else {
503 reset = flags & PAGE_RESET;
504 flags &= ~PAGE_RESET;
505 if (flags & PAGE_WRITE) {
506 flags |= PAGE_WRITE_ORG;
507 }
508 }
509
510 if (!flags || reset) {
511 page_reset_target_data(start, last);
512 inval_tb |= pageflags_unset(start, last);
513 }
514 if (flags) {
515 inval_tb |= pageflags_set_clear(start, last, flags,
516 ~(reset ? 0 : PAGE_STICKY));
517 }
518 if (inval_tb) {
519 tb_invalidate_phys_range(start, last);
520 }
521 }
522
523 bool page_check_range(target_ulong start, target_ulong len, int flags)
524 {
525 target_ulong last;
526 int locked; /* tri-state: =0: unlocked, +1: global, -1: local */
527 bool ret;
528
529 if (len == 0) {
530 return true; /* trivial length */
531 }
532
533 last = start + len - 1;
534 if (last < start) {
535 return false; /* wrap around */
536 }
537
538 locked = have_mmap_lock();
539 while (true) {
540 PageFlagsNode *p = pageflags_find(start, last);
541 int missing;
542
543 if (!p) {
544 if (!locked) {
545 /*
546 * Lockless lookups have false negatives.
547 * Retry with the lock held.
548 */
549 mmap_lock();
550 locked = -1;
551 p = pageflags_find(start, last);
552 }
553 if (!p) {
554 ret = false; /* entire region invalid */
555 break;
556 }
557 }
558 if (start < p->itree.start) {
559 ret = false; /* initial bytes invalid */
560 break;
561 }
562
563 missing = flags & ~p->flags;
564 if (missing & ~PAGE_WRITE) {
565 ret = false; /* page doesn't match */
566 break;
567 }
568 if (missing & PAGE_WRITE) {
569 if (!(p->flags & PAGE_WRITE_ORG)) {
570 ret = false; /* page not writable */
571 break;
572 }
573 /* Asking about writable, but has been protected: undo. */
574 if (!page_unprotect(start, 0)) {
575 ret = false;
576 break;
577 }
578 /* TODO: page_unprotect should take a range, not a single page. */
579 if (last - start < TARGET_PAGE_SIZE) {
580 ret = true; /* ok */
581 break;
582 }
583 start += TARGET_PAGE_SIZE;
584 continue;
585 }
586
587 if (last <= p->itree.last) {
588 ret = true; /* ok */
589 break;
590 }
591 start = p->itree.last + 1;
592 }
593
594 /* Release the lock if acquired locally. */
595 if (locked < 0) {
596 mmap_unlock();
597 }
598 return ret;
599 }
600
601 bool page_check_range_empty(target_ulong start, target_ulong last)
602 {
603 assert(last >= start);
604 assert_memory_lock();
605 return pageflags_find(start, last) == NULL;
606 }
607
608 target_ulong page_find_range_empty(target_ulong min, target_ulong max,
609 target_ulong len, target_ulong align)
610 {
611 target_ulong len_m1, align_m1;
612
613 assert(min <= max);
614 assert(max <= GUEST_ADDR_MAX);
615 assert(len != 0);
616 assert(is_power_of_2(align));
617 assert_memory_lock();
618
619 len_m1 = len - 1;
620 align_m1 = align - 1;
621
622 /* Iteratively narrow the search region. */
623 while (1) {
624 PageFlagsNode *p;
625
626 /* Align min and double-check there's enough space remaining. */
627 min = (min + align_m1) & ~align_m1;
628 if (min > max) {
629 return -1;
630 }
631 if (len_m1 > max - min) {
632 return -1;
633 }
634
635 p = pageflags_find(min, min + len_m1);
636 if (p == NULL) {
637 /* Found! */
638 return min;
639 }
640 if (max <= p->itree.last) {
641 /* Existing allocation fills the remainder of the search region. */
642 return -1;
643 }
644 /* Skip across existing allocation. */
645 min = p->itree.last + 1;
646 }
647 }
648
649 void page_protect(tb_page_addr_t address)
650 {
651 PageFlagsNode *p;
652 target_ulong start, last;
653 int prot;
654
655 assert_memory_lock();
656
657 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
658 start = address & TARGET_PAGE_MASK;
659 last = start + TARGET_PAGE_SIZE - 1;
660 } else {
661 start = address & qemu_host_page_mask;
662 last = start + qemu_host_page_size - 1;
663 }
664
665 p = pageflags_find(start, last);
666 if (!p) {
667 return;
668 }
669 prot = p->flags;
670
671 if (unlikely(p->itree.last < last)) {
672 /* More than one protection region covers the one host page. */
673 assert(TARGET_PAGE_SIZE < qemu_host_page_size);
674 while ((p = pageflags_next(p, start, last)) != NULL) {
675 prot |= p->flags;
676 }
677 }
678
679 if (prot & PAGE_WRITE) {
680 pageflags_set_clear(start, last, 0, PAGE_WRITE);
681 mprotect(g2h_untagged(start), qemu_host_page_size,
682 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
683 }
684 }
685
686 /*
687 * Called from signal handler: invalidate the code and unprotect the
688 * page. Return 0 if the fault was not handled, 1 if it was handled,
689 * and 2 if it was handled but the caller must cause the TB to be
690 * immediately exited. (We can only return 2 if the 'pc' argument is
691 * non-zero.)
692 */
693 int page_unprotect(target_ulong address, uintptr_t pc)
694 {
695 PageFlagsNode *p;
696 bool current_tb_invalidated;
697
698 /*
699 * Technically this isn't safe inside a signal handler. However we
700 * know this only ever happens in a synchronous SEGV handler, so in
701 * practice it seems to be ok.
702 */
703 mmap_lock();
704
705 p = pageflags_find(address, address);
706
707 /* If this address was not really writable, nothing to do. */
708 if (!p || !(p->flags & PAGE_WRITE_ORG)) {
709 mmap_unlock();
710 return 0;
711 }
712
713 current_tb_invalidated = false;
714 if (p->flags & PAGE_WRITE) {
715 /*
716 * If the page is actually marked WRITE then assume this is because
717 * this thread raced with another one which got here first and
718 * set the page to PAGE_WRITE and did the TB invalidate for us.
719 */
720 #ifdef TARGET_HAS_PRECISE_SMC
721 TranslationBlock *current_tb = tcg_tb_lookup(pc);
722 if (current_tb) {
723 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
724 }
725 #endif
726 } else {
727 target_ulong start, len, i;
728 int prot;
729
730 if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
731 start = address & TARGET_PAGE_MASK;
732 len = TARGET_PAGE_SIZE;
733 prot = p->flags | PAGE_WRITE;
734 pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
735 current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
736 } else {
737 start = address & qemu_host_page_mask;
738 len = qemu_host_page_size;
739 prot = 0;
740
741 for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
742 target_ulong addr = start + i;
743
744 p = pageflags_find(addr, addr);
745 if (p) {
746 prot |= p->flags;
747 if (p->flags & PAGE_WRITE_ORG) {
748 prot |= PAGE_WRITE;
749 pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
750 PAGE_WRITE, 0);
751 }
752 }
753 /*
754 * Since the content will be modified, we must invalidate
755 * the corresponding translated code.
756 */
757 current_tb_invalidated |=
758 tb_invalidate_phys_page_unwind(addr, pc);
759 }
760 }
761 if (prot & PAGE_EXEC) {
762 prot = (prot & ~PAGE_EXEC) | PAGE_READ;
763 }
764 mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
765 }
766 mmap_unlock();
767
768 /* If current TB was invalidated return to main loop */
769 return current_tb_invalidated ? 2 : 1;
770 }
771
772 static int probe_access_internal(CPUArchState *env, vaddr addr,
773 int fault_size, MMUAccessType access_type,
774 bool nonfault, uintptr_t ra)
775 {
776 int acc_flag;
777 bool maperr;
778
779 switch (access_type) {
780 case MMU_DATA_STORE:
781 acc_flag = PAGE_WRITE_ORG;
782 break;
783 case MMU_DATA_LOAD:
784 acc_flag = PAGE_READ;
785 break;
786 case MMU_INST_FETCH:
787 acc_flag = PAGE_EXEC;
788 break;
789 default:
790 g_assert_not_reached();
791 }
792
793 if (guest_addr_valid_untagged(addr)) {
794 int page_flags = page_get_flags(addr);
795 if (page_flags & acc_flag) {
796 if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
797 && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
798 return TLB_MMIO;
799 }
800 return 0; /* success */
801 }
802 maperr = !(page_flags & PAGE_VALID);
803 } else {
804 maperr = true;
805 }
806
807 if (nonfault) {
808 return TLB_INVALID_MASK;
809 }
810
811 cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
812 }
813
814 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
815 MMUAccessType access_type, int mmu_idx,
816 bool nonfault, void **phost, uintptr_t ra)
817 {
818 int flags;
819
820 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
821 flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
822 *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
823 return flags;
824 }
825
826 void *probe_access(CPUArchState *env, vaddr addr, int size,
827 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
828 {
829 int flags;
830
831 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
832 flags = probe_access_internal(env, addr, size, access_type, false, ra);
833 g_assert((flags & ~TLB_MMIO) == 0);
834
835 return size ? g2h(env_cpu(env), addr) : NULL;
836 }
837
838 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
839 void **hostp)
840 {
841 int flags;
842
843 flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
844 g_assert(flags == 0);
845
846 if (hostp) {
847 *hostp = g2h_untagged(addr);
848 }
849 return addr;
850 }
851
852 #ifdef TARGET_PAGE_DATA_SIZE
853 /*
854 * Allocate chunks of target data together. For the only current user,
855 * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
856 * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
857 */
858 #define TPD_PAGES 64
859 #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES)
860
861 typedef struct TargetPageDataNode {
862 struct rcu_head rcu;
863 IntervalTreeNode itree;
864 char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
865 } TargetPageDataNode;
866
867 static IntervalTreeRoot targetdata_root;
868
869 void page_reset_target_data(target_ulong start, target_ulong last)
870 {
871 IntervalTreeNode *n, *next;
872
873 assert_memory_lock();
874
875 start &= TARGET_PAGE_MASK;
876 last |= ~TARGET_PAGE_MASK;
877
878 for (n = interval_tree_iter_first(&targetdata_root, start, last),
879 next = n ? interval_tree_iter_next(n, start, last) : NULL;
880 n != NULL;
881 n = next,
882 next = next ? interval_tree_iter_next(n, start, last) : NULL) {
883 target_ulong n_start, n_last, p_ofs, p_len;
884 TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
885
886 if (n->start >= start && n->last <= last) {
887 interval_tree_remove(n, &targetdata_root);
888 g_free_rcu(t, rcu);
889 continue;
890 }
891
892 if (n->start < start) {
893 n_start = start;
894 p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
895 } else {
896 n_start = n->start;
897 p_ofs = 0;
898 }
899 n_last = MIN(last, n->last);
900 p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
901
902 memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
903 }
904 }
905
906 void *page_get_target_data(target_ulong address)
907 {
908 IntervalTreeNode *n;
909 TargetPageDataNode *t;
910 target_ulong page, region;
911
912 page = address & TARGET_PAGE_MASK;
913 region = address & TBD_MASK;
914
915 n = interval_tree_iter_first(&targetdata_root, page, page);
916 if (!n) {
917 /*
918 * See util/interval-tree.c re lockless lookups: no false positives
919 * but there are false negatives. If we find nothing, retry with
920 * the mmap lock acquired. We also need the lock for the
921 * allocation + insert.
922 */
923 mmap_lock();
924 n = interval_tree_iter_first(&targetdata_root, page, page);
925 if (!n) {
926 t = g_new0(TargetPageDataNode, 1);
927 n = &t->itree;
928 n->start = region;
929 n->last = region | ~TBD_MASK;
930 interval_tree_insert(n, &targetdata_root);
931 }
932 mmap_unlock();
933 }
934
935 t = container_of(n, TargetPageDataNode, itree);
936 return t->data[(page - region) >> TARGET_PAGE_BITS];
937 }
938 #else
939 void page_reset_target_data(target_ulong start, target_ulong last) { }
940 #endif /* TARGET_PAGE_DATA_SIZE */
941
942 /* The softmmu versions of these helpers are in cputlb.c. */
943
944 static void *cpu_mmu_lookup(CPUArchState *env, vaddr addr,
945 MemOp mop, uintptr_t ra, MMUAccessType type)
946 {
947 int a_bits = get_alignment_bits(mop);
948 void *ret;
949
950 /* Enforce guest required alignment. */
951 if (unlikely(addr & ((1 << a_bits) - 1))) {
952 cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
953 }
954
955 ret = g2h(env_cpu(env), addr);
956 set_helper_retaddr(ra);
957 return ret;
958 }
959
960 #include "ldst_atomicity.c.inc"
961
962 static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
963 MemOp mop, uintptr_t ra)
964 {
965 void *haddr;
966 uint8_t ret;
967
968 tcg_debug_assert((mop & MO_SIZE) == MO_8);
969 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
970 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
971 ret = ldub_p(haddr);
972 clear_helper_retaddr();
973 return ret;
974 }
975
976 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
977 MemOpIdx oi, uintptr_t ra)
978 {
979 return do_ld1_mmu(env, addr, get_memop(oi), ra);
980 }
981
982 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
983 MemOpIdx oi, uintptr_t ra)
984 {
985 return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
986 }
987
988 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
989 MemOpIdx oi, uintptr_t ra)
990 {
991 uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
992 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
993 return ret;
994 }
995
996 static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr,
997 MemOp mop, uintptr_t ra)
998 {
999 void *haddr;
1000 uint16_t ret;
1001
1002 tcg_debug_assert((mop & MO_SIZE) == MO_16);
1003 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1004 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1005 ret = load_atom_2(env, ra, haddr, mop);
1006 clear_helper_retaddr();
1007
1008 if (mop & MO_BSWAP) {
1009 ret = bswap16(ret);
1010 }
1011 return ret;
1012 }
1013
1014 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
1015 MemOpIdx oi, uintptr_t ra)
1016 {
1017 return do_ld2_mmu(env, addr, get_memop(oi), ra);
1018 }
1019
1020 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
1021 MemOpIdx oi, uintptr_t ra)
1022 {
1023 return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra);
1024 }
1025
1026 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
1027 MemOpIdx oi, uintptr_t ra)
1028 {
1029 uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra);
1030 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1031 return ret;
1032 }
1033
1034 static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr,
1035 MemOp mop, uintptr_t ra)
1036 {
1037 void *haddr;
1038 uint32_t ret;
1039
1040 tcg_debug_assert((mop & MO_SIZE) == MO_32);
1041 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1042 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1043 ret = load_atom_4(env, ra, haddr, mop);
1044 clear_helper_retaddr();
1045
1046 if (mop & MO_BSWAP) {
1047 ret = bswap32(ret);
1048 }
1049 return ret;
1050 }
1051
1052 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
1053 MemOpIdx oi, uintptr_t ra)
1054 {
1055 return do_ld4_mmu(env, addr, get_memop(oi), ra);
1056 }
1057
1058 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
1059 MemOpIdx oi, uintptr_t ra)
1060 {
1061 return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra);
1062 }
1063
1064 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
1065 MemOpIdx oi, uintptr_t ra)
1066 {
1067 uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra);
1068 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1069 return ret;
1070 }
1071
1072 static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr,
1073 MemOp mop, uintptr_t ra)
1074 {
1075 void *haddr;
1076 uint64_t ret;
1077
1078 tcg_debug_assert((mop & MO_SIZE) == MO_64);
1079 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1080 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1081 ret = load_atom_8(env, ra, haddr, mop);
1082 clear_helper_retaddr();
1083
1084 if (mop & MO_BSWAP) {
1085 ret = bswap64(ret);
1086 }
1087 return ret;
1088 }
1089
1090 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
1091 MemOpIdx oi, uintptr_t ra)
1092 {
1093 return do_ld8_mmu(env, addr, get_memop(oi), ra);
1094 }
1095
1096 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
1097 MemOpIdx oi, uintptr_t ra)
1098 {
1099 uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra);
1100 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1101 return ret;
1102 }
1103
1104 static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr,
1105 MemOp mop, uintptr_t ra)
1106 {
1107 void *haddr;
1108 Int128 ret;
1109
1110 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1111 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
1112 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
1113 ret = load_atom_16(env, ra, haddr, mop);
1114 clear_helper_retaddr();
1115
1116 if (mop & MO_BSWAP) {
1117 ret = bswap128(ret);
1118 }
1119 return ret;
1120 }
1121
1122 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
1123 MemOpIdx oi, uintptr_t ra)
1124 {
1125 return do_ld16_mmu(env, addr, get_memop(oi), ra);
1126 }
1127
1128 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi)
1129 {
1130 return helper_ld16_mmu(env, addr, oi, GETPC());
1131 }
1132
1133 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
1134 MemOpIdx oi, uintptr_t ra)
1135 {
1136 Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra);
1137 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
1138 return ret;
1139 }
1140
1141 static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1142 MemOp mop, uintptr_t ra)
1143 {
1144 void *haddr;
1145
1146 tcg_debug_assert((mop & MO_SIZE) == MO_8);
1147 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1148 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1149 stb_p(haddr, val);
1150 clear_helper_retaddr();
1151 }
1152
1153 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1154 MemOpIdx oi, uintptr_t ra)
1155 {
1156 do_st1_mmu(env, addr, val, get_memop(oi), ra);
1157 }
1158
1159 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
1160 MemOpIdx oi, uintptr_t ra)
1161 {
1162 do_st1_mmu(env, addr, val, get_memop(oi), ra);
1163 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1164 }
1165
1166 static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1167 MemOp mop, uintptr_t ra)
1168 {
1169 void *haddr;
1170
1171 tcg_debug_assert((mop & MO_SIZE) == MO_16);
1172 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1173 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1174
1175 if (mop & MO_BSWAP) {
1176 val = bswap16(val);
1177 }
1178 store_atom_2(env, ra, haddr, mop, val);
1179 clear_helper_retaddr();
1180 }
1181
1182 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1183 MemOpIdx oi, uintptr_t ra)
1184 {
1185 do_st2_mmu(env, addr, val, get_memop(oi), ra);
1186 }
1187
1188 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
1189 MemOpIdx oi, uintptr_t ra)
1190 {
1191 do_st2_mmu(env, addr, val, get_memop(oi), ra);
1192 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1193 }
1194
1195 static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1196 MemOp mop, uintptr_t ra)
1197 {
1198 void *haddr;
1199
1200 tcg_debug_assert((mop & MO_SIZE) == MO_32);
1201 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1202 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1203
1204 if (mop & MO_BSWAP) {
1205 val = bswap32(val);
1206 }
1207 store_atom_4(env, ra, haddr, mop, val);
1208 clear_helper_retaddr();
1209 }
1210
1211 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
1212 MemOpIdx oi, uintptr_t ra)
1213 {
1214 do_st4_mmu(env, addr, val, get_memop(oi), ra);
1215 }
1216
1217 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
1218 MemOpIdx oi, uintptr_t ra)
1219 {
1220 do_st4_mmu(env, addr, val, get_memop(oi), ra);
1221 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1222 }
1223
1224 static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1225 MemOp mop, uintptr_t ra)
1226 {
1227 void *haddr;
1228
1229 tcg_debug_assert((mop & MO_SIZE) == MO_64);
1230 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1231 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1232
1233 if (mop & MO_BSWAP) {
1234 val = bswap64(val);
1235 }
1236 store_atom_8(env, ra, haddr, mop, val);
1237 clear_helper_retaddr();
1238 }
1239
1240 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
1241 MemOpIdx oi, uintptr_t ra)
1242 {
1243 do_st8_mmu(env, addr, val, get_memop(oi), ra);
1244 }
1245
1246 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
1247 MemOpIdx oi, uintptr_t ra)
1248 {
1249 do_st8_mmu(env, addr, val, get_memop(oi), ra);
1250 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1251 }
1252
1253 static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
1254 MemOp mop, uintptr_t ra)
1255 {
1256 void *haddr;
1257
1258 tcg_debug_assert((mop & MO_SIZE) == MO_128);
1259 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
1260 haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
1261
1262 if (mop & MO_BSWAP) {
1263 val = bswap128(val);
1264 }
1265 store_atom_16(env, ra, haddr, mop, val);
1266 clear_helper_retaddr();
1267 }
1268
1269 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
1270 MemOpIdx oi, uintptr_t ra)
1271 {
1272 do_st16_mmu(env, addr, val, get_memop(oi), ra);
1273 }
1274
1275 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
1276 {
1277 helper_st16_mmu(env, addr, val, oi, GETPC());
1278 }
1279
1280 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr,
1281 Int128 val, MemOpIdx oi, uintptr_t ra)
1282 {
1283 do_st16_mmu(env, addr, val, get_memop(oi), ra);
1284 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
1285 }
1286
1287 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1288 {
1289 uint32_t ret;
1290
1291 set_helper_retaddr(1);
1292 ret = ldub_p(g2h_untagged(ptr));
1293 clear_helper_retaddr();
1294 return ret;
1295 }
1296
1297 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1298 {
1299 uint32_t ret;
1300
1301 set_helper_retaddr(1);
1302 ret = lduw_p(g2h_untagged(ptr));
1303 clear_helper_retaddr();
1304 return ret;
1305 }
1306
1307 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1308 {
1309 uint32_t ret;
1310
1311 set_helper_retaddr(1);
1312 ret = ldl_p(g2h_untagged(ptr));
1313 clear_helper_retaddr();
1314 return ret;
1315 }
1316
1317 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1318 {
1319 uint64_t ret;
1320
1321 set_helper_retaddr(1);
1322 ret = ldq_p(g2h_untagged(ptr));
1323 clear_helper_retaddr();
1324 return ret;
1325 }
1326
1327 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
1328 MemOpIdx oi, uintptr_t ra)
1329 {
1330 void *haddr;
1331 uint8_t ret;
1332
1333 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1334 ret = ldub_p(haddr);
1335 clear_helper_retaddr();
1336 return ret;
1337 }
1338
1339 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
1340 MemOpIdx oi, uintptr_t ra)
1341 {
1342 void *haddr;
1343 uint16_t ret;
1344
1345 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1346 ret = lduw_p(haddr);
1347 clear_helper_retaddr();
1348 if (get_memop(oi) & MO_BSWAP) {
1349 ret = bswap16(ret);
1350 }
1351 return ret;
1352 }
1353
1354 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
1355 MemOpIdx oi, uintptr_t ra)
1356 {
1357 void *haddr;
1358 uint32_t ret;
1359
1360 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
1361 ret = ldl_p(haddr);
1362 clear_helper_retaddr();
1363 if (get_memop(oi) & MO_BSWAP) {
1364 ret = bswap32(ret);
1365 }
1366 return ret;
1367 }
1368
1369 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
1370 MemOpIdx oi, uintptr_t ra)
1371 {
1372 void *haddr;
1373 uint64_t ret;
1374
1375 haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
1376 ret = ldq_p(haddr);
1377 clear_helper_retaddr();
1378 if (get_memop(oi) & MO_BSWAP) {
1379 ret = bswap64(ret);
1380 }
1381 return ret;
1382 }
1383
1384 #include "ldst_common.c.inc"
1385
1386 /*
1387 * Do not allow unaligned operations to proceed. Return the host address.
1388 */
1389 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1390 int size, uintptr_t retaddr)
1391 {
1392 MemOp mop = get_memop(oi);
1393 int a_bits = get_alignment_bits(mop);
1394 void *ret;
1395
1396 /* Enforce guest required alignment. */
1397 if (unlikely(addr & ((1 << a_bits) - 1))) {
1398 cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, retaddr);
1399 }
1400
1401 /* Enforce qemu required alignment. */
1402 if (unlikely(addr & (size - 1))) {
1403 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1404 }
1405
1406 ret = g2h(env_cpu(env), addr);
1407 set_helper_retaddr(retaddr);
1408 return ret;
1409 }
1410
1411 #include "atomic_common.c.inc"
1412
1413 /*
1414 * First set of functions passes in OI and RETADDR.
1415 * This makes them callable from other helpers.
1416 */
1417
1418 #define ATOMIC_NAME(X) \
1419 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
1420 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1421
1422 #define DATA_SIZE 1
1423 #include "atomic_template.h"
1424
1425 #define DATA_SIZE 2
1426 #include "atomic_template.h"
1427
1428 #define DATA_SIZE 4
1429 #include "atomic_template.h"
1430
1431 #ifdef CONFIG_ATOMIC64
1432 #define DATA_SIZE 8
1433 #include "atomic_template.h"
1434 #endif
1435
1436 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
1437 #define DATA_SIZE 16
1438 #include "atomic_template.h"
1439 #endif