]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/user-exec.c
Merge remote-tracking branch 'remotes/hdeller/tags/target-hppa-v3-pull-request' into...
[mirror_qemu.git] / accel / tcg / user-exec.c
1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace/trace-root.h"
30 #include "trace/mem.h"
31
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44
45 __thread uintptr_t helper_retaddr;
46
47 //#define DEBUG_SIGNAL
48
49 /* exit the current TB from a signal handler. The host registers are
50 restored in a state compatible with the CPU emulator
51 */
52 static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set)
53 {
54 /* XXX: use siglongjmp ? */
55 sigprocmask(SIG_SETMASK, old_set, NULL);
56 cpu_loop_exit_noexc(cpu);
57 }
58
59 /* 'pc' is the host PC at which the exception was raised. 'address' is
60 the effective address of the memory exception. 'is_write' is 1 if a
61 write caused the exception and otherwise 0'. 'old_set' is the
62 signal set which should be restored */
63 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
64 int is_write, sigset_t *old_set)
65 {
66 CPUState *cpu = current_cpu;
67 CPUClass *cc;
68 unsigned long address = (unsigned long)info->si_addr;
69 MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
70
71 switch (helper_retaddr) {
72 default:
73 /*
74 * Fault during host memory operation within a helper function.
75 * The helper's host return address, saved here, gives us a
76 * pointer into the generated code that will unwind to the
77 * correct guest pc.
78 */
79 pc = helper_retaddr;
80 break;
81
82 case 0:
83 /*
84 * Fault during host memory operation within generated code.
85 * (Or, a unrelated bug within qemu, but we can't tell from here).
86 *
87 * We take the host pc from the signal frame. However, we cannot
88 * use that value directly. Within cpu_restore_state_from_tb, we
89 * assume PC comes from GETPC(), as used by the helper functions,
90 * so we adjust the address by -GETPC_ADJ to form an address that
91 * is within the call insn, so that the address does not accidentially
92 * match the beginning of the next guest insn. However, when the
93 * pc comes from the signal frame it points to the actual faulting
94 * host memory insn and not the return from a call insn.
95 *
96 * Therefore, adjust to compensate for what will be done later
97 * by cpu_restore_state_from_tb.
98 */
99 pc += GETPC_ADJ;
100 break;
101
102 case 1:
103 /*
104 * Fault during host read for translation, or loosely, "execution".
105 *
106 * The guest pc is already pointing to the start of the TB for which
107 * code is being generated. If the guest translator manages the
108 * page crossings correctly, this is exactly the correct address
109 * (and if the translator doesn't handle page boundaries correctly
110 * there's little we can do about that here). Therefore, do not
111 * trigger the unwinder.
112 *
113 * Like tb_gen_code, release the memory lock before cpu_loop_exit.
114 */
115 pc = 0;
116 access_type = MMU_INST_FETCH;
117 mmap_unlock();
118 break;
119 }
120
121 /* For synchronous signals we expect to be coming from the vCPU
122 * thread (so current_cpu should be valid) and either from running
123 * code or during translation which can fault as we cross pages.
124 *
125 * If neither is true then something has gone wrong and we should
126 * abort rather than try and restart the vCPU execution.
127 */
128 if (!cpu || !cpu->running) {
129 printf("qemu:%s received signal outside vCPU context @ pc=0x%"
130 PRIxPTR "\n", __func__, pc);
131 abort();
132 }
133
134 #if defined(DEBUG_SIGNAL)
135 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
136 pc, address, is_write, *(unsigned long *)old_set);
137 #endif
138 /* XXX: locking issue */
139 /* Note that it is important that we don't call page_unprotect() unless
140 * this is really a "write to nonwriteable page" fault, because
141 * page_unprotect() assumes that if it is called for an access to
142 * a page that's writeable this means we had two threads racing and
143 * another thread got there first and already made the page writeable;
144 * so we will retry the access. If we were to call page_unprotect()
145 * for some other kind of fault that should really be passed to the
146 * guest, we'd end up in an infinite loop of retrying the faulting
147 * access.
148 */
149 if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
150 h2g_valid(address)) {
151 switch (page_unprotect(h2g(address), pc)) {
152 case 0:
153 /* Fault not caused by a page marked unwritable to protect
154 * cached translations, must be the guest binary's problem.
155 */
156 break;
157 case 1:
158 /* Fault caused by protection of cached translation; TBs
159 * invalidated, so resume execution. Retain helper_retaddr
160 * for a possible second fault.
161 */
162 return 1;
163 case 2:
164 /* Fault caused by protection of cached translation, and the
165 * currently executing TB was modified and must be exited
166 * immediately. Clear helper_retaddr for next execution.
167 */
168 clear_helper_retaddr();
169 cpu_exit_tb_from_sighandler(cpu, old_set);
170 /* NORETURN */
171
172 default:
173 g_assert_not_reached();
174 }
175 }
176
177 /* Convert forcefully to guest address space, invalid addresses
178 are still valid segv ones */
179 address = h2g_nocheck(address);
180
181 /*
182 * There is no way the target can handle this other than raising
183 * an exception. Undo signal and retaddr state prior to longjmp.
184 */
185 sigprocmask(SIG_SETMASK, old_set, NULL);
186 clear_helper_retaddr();
187
188 cc = CPU_GET_CLASS(cpu);
189 cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc);
190 g_assert_not_reached();
191 }
192
193 static int probe_access_internal(CPUArchState *env, target_ulong addr,
194 int fault_size, MMUAccessType access_type,
195 bool nonfault, uintptr_t ra)
196 {
197 int flags;
198
199 switch (access_type) {
200 case MMU_DATA_STORE:
201 flags = PAGE_WRITE;
202 break;
203 case MMU_DATA_LOAD:
204 flags = PAGE_READ;
205 break;
206 case MMU_INST_FETCH:
207 flags = PAGE_EXEC;
208 break;
209 default:
210 g_assert_not_reached();
211 }
212
213 if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
214 if (nonfault) {
215 return TLB_INVALID_MASK;
216 } else {
217 CPUState *cpu = env_cpu(env);
218 CPUClass *cc = CPU_GET_CLASS(cpu);
219 cc->tlb_fill(cpu, addr, fault_size, access_type,
220 MMU_USER_IDX, false, ra);
221 g_assert_not_reached();
222 }
223 }
224 return 0;
225 }
226
227 int probe_access_flags(CPUArchState *env, target_ulong addr,
228 MMUAccessType access_type, int mmu_idx,
229 bool nonfault, void **phost, uintptr_t ra)
230 {
231 int flags;
232
233 flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
234 *phost = flags ? NULL : g2h(addr);
235 return flags;
236 }
237
238 void *probe_access(CPUArchState *env, target_ulong addr, int size,
239 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
240 {
241 int flags;
242
243 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
244 flags = probe_access_internal(env, addr, size, access_type, false, ra);
245 g_assert(flags == 0);
246
247 return size ? g2h(addr) : NULL;
248 }
249
250 #if defined(__i386__)
251
252 #if defined(__NetBSD__)
253 #include <ucontext.h>
254
255 #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
256 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
257 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
258 #define MASK_sig(context) ((context)->uc_sigmask)
259 #elif defined(__FreeBSD__) || defined(__DragonFly__)
260 #include <ucontext.h>
261
262 #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
263 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
264 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
265 #define MASK_sig(context) ((context)->uc_sigmask)
266 #elif defined(__OpenBSD__)
267 #define EIP_sig(context) ((context)->sc_eip)
268 #define TRAP_sig(context) ((context)->sc_trapno)
269 #define ERROR_sig(context) ((context)->sc_err)
270 #define MASK_sig(context) ((context)->sc_mask)
271 #else
272 #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
273 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
274 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
275 #define MASK_sig(context) ((context)->uc_sigmask)
276 #endif
277
278 int cpu_signal_handler(int host_signum, void *pinfo,
279 void *puc)
280 {
281 siginfo_t *info = pinfo;
282 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
283 ucontext_t *uc = puc;
284 #elif defined(__OpenBSD__)
285 struct sigcontext *uc = puc;
286 #else
287 ucontext_t *uc = puc;
288 #endif
289 unsigned long pc;
290 int trapno;
291
292 #ifndef REG_EIP
293 /* for glibc 2.1 */
294 #define REG_EIP EIP
295 #define REG_ERR ERR
296 #define REG_TRAPNO TRAPNO
297 #endif
298 pc = EIP_sig(uc);
299 trapno = TRAP_sig(uc);
300 return handle_cpu_signal(pc, info,
301 trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
302 &MASK_sig(uc));
303 }
304
305 #elif defined(__x86_64__)
306
307 #ifdef __NetBSD__
308 #define PC_sig(context) _UC_MACHINE_PC(context)
309 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
310 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
311 #define MASK_sig(context) ((context)->uc_sigmask)
312 #elif defined(__OpenBSD__)
313 #define PC_sig(context) ((context)->sc_rip)
314 #define TRAP_sig(context) ((context)->sc_trapno)
315 #define ERROR_sig(context) ((context)->sc_err)
316 #define MASK_sig(context) ((context)->sc_mask)
317 #elif defined(__FreeBSD__) || defined(__DragonFly__)
318 #include <ucontext.h>
319
320 #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
321 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
322 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
323 #define MASK_sig(context) ((context)->uc_sigmask)
324 #else
325 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
326 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
327 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
328 #define MASK_sig(context) ((context)->uc_sigmask)
329 #endif
330
331 int cpu_signal_handler(int host_signum, void *pinfo,
332 void *puc)
333 {
334 siginfo_t *info = pinfo;
335 unsigned long pc;
336 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
337 ucontext_t *uc = puc;
338 #elif defined(__OpenBSD__)
339 struct sigcontext *uc = puc;
340 #else
341 ucontext_t *uc = puc;
342 #endif
343
344 pc = PC_sig(uc);
345 return handle_cpu_signal(pc, info,
346 TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
347 &MASK_sig(uc));
348 }
349
350 #elif defined(_ARCH_PPC)
351
352 /***********************************************************************
353 * signal context platform-specific definitions
354 * From Wine
355 */
356 #ifdef linux
357 /* All Registers access - only for local access */
358 #define REG_sig(reg_name, context) \
359 ((context)->uc_mcontext.regs->reg_name)
360 /* Gpr Registers access */
361 #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
362 /* Program counter */
363 #define IAR_sig(context) REG_sig(nip, context)
364 /* Machine State Register (Supervisor) */
365 #define MSR_sig(context) REG_sig(msr, context)
366 /* Count register */
367 #define CTR_sig(context) REG_sig(ctr, context)
368 /* User's integer exception register */
369 #define XER_sig(context) REG_sig(xer, context)
370 /* Link register */
371 #define LR_sig(context) REG_sig(link, context)
372 /* Condition register */
373 #define CR_sig(context) REG_sig(ccr, context)
374
375 /* Float Registers access */
376 #define FLOAT_sig(reg_num, context) \
377 (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
378 #define FPSCR_sig(context) \
379 (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
380 /* Exception Registers access */
381 #define DAR_sig(context) REG_sig(dar, context)
382 #define DSISR_sig(context) REG_sig(dsisr, context)
383 #define TRAP_sig(context) REG_sig(trap, context)
384 #endif /* linux */
385
386 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
387 #include <ucontext.h>
388 #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
389 #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
390 #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
391 #define XER_sig(context) ((context)->uc_mcontext.mc_xer)
392 #define LR_sig(context) ((context)->uc_mcontext.mc_lr)
393 #define CR_sig(context) ((context)->uc_mcontext.mc_cr)
394 /* Exception Registers access */
395 #define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
396 #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
397 #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
398 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
399
400 int cpu_signal_handler(int host_signum, void *pinfo,
401 void *puc)
402 {
403 siginfo_t *info = pinfo;
404 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
405 ucontext_t *uc = puc;
406 #else
407 ucontext_t *uc = puc;
408 #endif
409 unsigned long pc;
410 int is_write;
411
412 pc = IAR_sig(uc);
413 is_write = 0;
414 #if 0
415 /* ppc 4xx case */
416 if (DSISR_sig(uc) & 0x00800000) {
417 is_write = 1;
418 }
419 #else
420 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
421 is_write = 1;
422 }
423 #endif
424 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
425 }
426
427 #elif defined(__alpha__)
428
429 int cpu_signal_handler(int host_signum, void *pinfo,
430 void *puc)
431 {
432 siginfo_t *info = pinfo;
433 ucontext_t *uc = puc;
434 uint32_t *pc = uc->uc_mcontext.sc_pc;
435 uint32_t insn = *pc;
436 int is_write = 0;
437
438 /* XXX: need kernel patch to get write flag faster */
439 switch (insn >> 26) {
440 case 0x0d: /* stw */
441 case 0x0e: /* stb */
442 case 0x0f: /* stq_u */
443 case 0x24: /* stf */
444 case 0x25: /* stg */
445 case 0x26: /* sts */
446 case 0x27: /* stt */
447 case 0x2c: /* stl */
448 case 0x2d: /* stq */
449 case 0x2e: /* stl_c */
450 case 0x2f: /* stq_c */
451 is_write = 1;
452 }
453
454 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
455 }
456 #elif defined(__sparc__)
457
458 int cpu_signal_handler(int host_signum, void *pinfo,
459 void *puc)
460 {
461 siginfo_t *info = pinfo;
462 int is_write;
463 uint32_t insn;
464 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
465 uint32_t *regs = (uint32_t *)(info + 1);
466 void *sigmask = (regs + 20);
467 /* XXX: is there a standard glibc define ? */
468 unsigned long pc = regs[1];
469 #else
470 #ifdef __linux__
471 struct sigcontext *sc = puc;
472 unsigned long pc = sc->sigc_regs.tpc;
473 void *sigmask = (void *)sc->sigc_mask;
474 #elif defined(__OpenBSD__)
475 struct sigcontext *uc = puc;
476 unsigned long pc = uc->sc_pc;
477 void *sigmask = (void *)(long)uc->sc_mask;
478 #elif defined(__NetBSD__)
479 ucontext_t *uc = puc;
480 unsigned long pc = _UC_MACHINE_PC(uc);
481 void *sigmask = (void *)&uc->uc_sigmask;
482 #endif
483 #endif
484
485 /* XXX: need kernel patch to get write flag faster */
486 is_write = 0;
487 insn = *(uint32_t *)pc;
488 if ((insn >> 30) == 3) {
489 switch ((insn >> 19) & 0x3f) {
490 case 0x05: /* stb */
491 case 0x15: /* stba */
492 case 0x06: /* sth */
493 case 0x16: /* stha */
494 case 0x04: /* st */
495 case 0x14: /* sta */
496 case 0x07: /* std */
497 case 0x17: /* stda */
498 case 0x0e: /* stx */
499 case 0x1e: /* stxa */
500 case 0x24: /* stf */
501 case 0x34: /* stfa */
502 case 0x27: /* stdf */
503 case 0x37: /* stdfa */
504 case 0x26: /* stqf */
505 case 0x36: /* stqfa */
506 case 0x25: /* stfsr */
507 case 0x3c: /* casa */
508 case 0x3e: /* casxa */
509 is_write = 1;
510 break;
511 }
512 }
513 return handle_cpu_signal(pc, info, is_write, sigmask);
514 }
515
516 #elif defined(__arm__)
517
518 #if defined(__NetBSD__)
519 #include <ucontext.h>
520 #include <sys/siginfo.h>
521 #endif
522
523 int cpu_signal_handler(int host_signum, void *pinfo,
524 void *puc)
525 {
526 siginfo_t *info = pinfo;
527 #if defined(__NetBSD__)
528 ucontext_t *uc = puc;
529 siginfo_t *si = pinfo;
530 #else
531 ucontext_t *uc = puc;
532 #endif
533 unsigned long pc;
534 uint32_t fsr;
535 int is_write;
536
537 #if defined(__NetBSD__)
538 pc = uc->uc_mcontext.__gregs[_REG_R15];
539 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
540 pc = uc->uc_mcontext.gregs[R15];
541 #else
542 pc = uc->uc_mcontext.arm_pc;
543 #endif
544
545 #ifdef __NetBSD__
546 fsr = si->si_trap;
547 #else
548 fsr = uc->uc_mcontext.error_code;
549 #endif
550 /*
551 * In the FSR, bit 11 is WnR, assuming a v6 or
552 * later processor. On v5 we will always report
553 * this as a read, which will fail later.
554 */
555 is_write = extract32(fsr, 11, 1);
556 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
557 }
558
559 #elif defined(__aarch64__)
560
561 #if defined(__NetBSD__)
562
563 #include <ucontext.h>
564 #include <sys/siginfo.h>
565
566 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
567 {
568 ucontext_t *uc = puc;
569 siginfo_t *si = pinfo;
570 unsigned long pc;
571 int is_write;
572 uint32_t esr;
573
574 pc = uc->uc_mcontext.__gregs[_REG_PC];
575 esr = si->si_trap;
576
577 /*
578 * siginfo_t::si_trap is the ESR value, for data aborts ESR.EC
579 * is 0b10010x: then bit 6 is the WnR bit
580 */
581 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
582 return handle_cpu_signal(pc, si, is_write, &uc->uc_sigmask);
583 }
584
585 #else
586
587 #ifndef ESR_MAGIC
588 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
589 #define ESR_MAGIC 0x45535201
590 struct esr_context {
591 struct _aarch64_ctx head;
592 uint64_t esr;
593 };
594 #endif
595
596 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
597 {
598 return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
599 }
600
601 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
602 {
603 return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
604 }
605
606 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
607 {
608 siginfo_t *info = pinfo;
609 ucontext_t *uc = puc;
610 uintptr_t pc = uc->uc_mcontext.pc;
611 bool is_write;
612 struct _aarch64_ctx *hdr;
613 struct esr_context const *esrctx = NULL;
614
615 /* Find the esr_context, which has the WnR bit in it */
616 for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
617 if (hdr->magic == ESR_MAGIC) {
618 esrctx = (struct esr_context const *)hdr;
619 break;
620 }
621 }
622
623 if (esrctx) {
624 /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
625 uint64_t esr = esrctx->esr;
626 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
627 } else {
628 /*
629 * Fall back to parsing instructions; will only be needed
630 * for really ancient (pre-3.16) kernels.
631 */
632 uint32_t insn = *(uint32_t *)pc;
633
634 is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */
635 || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */
636 || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */
637 || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */
638 || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */
639 || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */
640 || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */
641 /* Ignore bits 10, 11 & 21, controlling indexing. */
642 || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */
643 || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */
644 /* Ignore bits 23 & 24, controlling indexing. */
645 || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
646 }
647 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
648 }
649 #endif
650
651 #elif defined(__s390__)
652
653 int cpu_signal_handler(int host_signum, void *pinfo,
654 void *puc)
655 {
656 siginfo_t *info = pinfo;
657 ucontext_t *uc = puc;
658 unsigned long pc;
659 uint16_t *pinsn;
660 int is_write = 0;
661
662 pc = uc->uc_mcontext.psw.addr;
663
664 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
665 of the normal 2 arguments. The 3rd argument contains the "int_code"
666 from the hardware which does in fact contain the is_write value.
667 The rt signal handler, as far as I can tell, does not give this value
668 at all. Not that we could get to it from here even if it were. */
669 /* ??? This is not even close to complete, since it ignores all
670 of the read-modify-write instructions. */
671 pinsn = (uint16_t *)pc;
672 switch (pinsn[0] >> 8) {
673 case 0x50: /* ST */
674 case 0x42: /* STC */
675 case 0x40: /* STH */
676 is_write = 1;
677 break;
678 case 0xc4: /* RIL format insns */
679 switch (pinsn[0] & 0xf) {
680 case 0xf: /* STRL */
681 case 0xb: /* STGRL */
682 case 0x7: /* STHRL */
683 is_write = 1;
684 }
685 break;
686 case 0xe3: /* RXY format insns */
687 switch (pinsn[2] & 0xff) {
688 case 0x50: /* STY */
689 case 0x24: /* STG */
690 case 0x72: /* STCY */
691 case 0x70: /* STHY */
692 case 0x8e: /* STPQ */
693 case 0x3f: /* STRVH */
694 case 0x3e: /* STRV */
695 case 0x2f: /* STRVG */
696 is_write = 1;
697 }
698 break;
699 }
700 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
701 }
702
703 #elif defined(__mips__)
704
705 int cpu_signal_handler(int host_signum, void *pinfo,
706 void *puc)
707 {
708 siginfo_t *info = pinfo;
709 ucontext_t *uc = puc;
710 greg_t pc = uc->uc_mcontext.pc;
711 int is_write;
712
713 /* XXX: compute is_write */
714 is_write = 0;
715 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
716 }
717
718 #elif defined(__riscv)
719
720 int cpu_signal_handler(int host_signum, void *pinfo,
721 void *puc)
722 {
723 siginfo_t *info = pinfo;
724 ucontext_t *uc = puc;
725 greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
726 uint32_t insn = *(uint32_t *)pc;
727 int is_write = 0;
728
729 /* Detect store by reading the instruction at the program
730 counter. Note: we currently only generate 32-bit
731 instructions so we thus only detect 32-bit stores */
732 switch (((insn >> 0) & 0b11)) {
733 case 3:
734 switch (((insn >> 2) & 0b11111)) {
735 case 8:
736 switch (((insn >> 12) & 0b111)) {
737 case 0: /* sb */
738 case 1: /* sh */
739 case 2: /* sw */
740 case 3: /* sd */
741 case 4: /* sq */
742 is_write = 1;
743 break;
744 default:
745 break;
746 }
747 break;
748 case 9:
749 switch (((insn >> 12) & 0b111)) {
750 case 2: /* fsw */
751 case 3: /* fsd */
752 case 4: /* fsq */
753 is_write = 1;
754 break;
755 default:
756 break;
757 }
758 break;
759 default:
760 break;
761 }
762 }
763
764 /* Check for compressed instructions */
765 switch (((insn >> 13) & 0b111)) {
766 case 7:
767 switch (insn & 0b11) {
768 case 0: /*c.sd */
769 case 2: /* c.sdsp */
770 is_write = 1;
771 break;
772 default:
773 break;
774 }
775 break;
776 case 6:
777 switch (insn & 0b11) {
778 case 0: /* c.sw */
779 case 3: /* c.swsp */
780 is_write = 1;
781 break;
782 default:
783 break;
784 }
785 break;
786 default:
787 break;
788 }
789
790 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
791 }
792
793 #else
794
795 #error host CPU specific signal handler needed
796
797 #endif
798
799 /* The softmmu versions of these helpers are in cputlb.c. */
800
801 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
802 {
803 uint32_t ret;
804 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
805
806 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
807 ret = ldub_p(g2h(ptr));
808 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
809 return ret;
810 }
811
812 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
813 {
814 int ret;
815 uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
816
817 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
818 ret = ldsb_p(g2h(ptr));
819 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
820 return ret;
821 }
822
823 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
824 {
825 uint32_t ret;
826 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
827
828 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
829 ret = lduw_be_p(g2h(ptr));
830 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
831 return ret;
832 }
833
834 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
835 {
836 int ret;
837 uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
838
839 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
840 ret = ldsw_be_p(g2h(ptr));
841 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
842 return ret;
843 }
844
845 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
846 {
847 uint32_t ret;
848 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
849
850 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
851 ret = ldl_be_p(g2h(ptr));
852 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
853 return ret;
854 }
855
856 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
857 {
858 uint64_t ret;
859 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
860
861 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
862 ret = ldq_be_p(g2h(ptr));
863 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
864 return ret;
865 }
866
867 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
868 {
869 uint32_t ret;
870 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
871
872 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
873 ret = lduw_le_p(g2h(ptr));
874 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
875 return ret;
876 }
877
878 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
879 {
880 int ret;
881 uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
882
883 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
884 ret = ldsw_le_p(g2h(ptr));
885 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
886 return ret;
887 }
888
889 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
890 {
891 uint32_t ret;
892 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
893
894 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
895 ret = ldl_le_p(g2h(ptr));
896 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
897 return ret;
898 }
899
900 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
901 {
902 uint64_t ret;
903 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
904
905 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
906 ret = ldq_le_p(g2h(ptr));
907 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
908 return ret;
909 }
910
911 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
912 {
913 uint32_t ret;
914
915 set_helper_retaddr(retaddr);
916 ret = cpu_ldub_data(env, ptr);
917 clear_helper_retaddr();
918 return ret;
919 }
920
921 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
922 {
923 int ret;
924
925 set_helper_retaddr(retaddr);
926 ret = cpu_ldsb_data(env, ptr);
927 clear_helper_retaddr();
928 return ret;
929 }
930
931 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
932 {
933 uint32_t ret;
934
935 set_helper_retaddr(retaddr);
936 ret = cpu_lduw_be_data(env, ptr);
937 clear_helper_retaddr();
938 return ret;
939 }
940
941 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
942 {
943 int ret;
944
945 set_helper_retaddr(retaddr);
946 ret = cpu_ldsw_be_data(env, ptr);
947 clear_helper_retaddr();
948 return ret;
949 }
950
951 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
952 {
953 uint32_t ret;
954
955 set_helper_retaddr(retaddr);
956 ret = cpu_ldl_be_data(env, ptr);
957 clear_helper_retaddr();
958 return ret;
959 }
960
961 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
962 {
963 uint64_t ret;
964
965 set_helper_retaddr(retaddr);
966 ret = cpu_ldq_be_data(env, ptr);
967 clear_helper_retaddr();
968 return ret;
969 }
970
971 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
972 {
973 uint32_t ret;
974
975 set_helper_retaddr(retaddr);
976 ret = cpu_lduw_le_data(env, ptr);
977 clear_helper_retaddr();
978 return ret;
979 }
980
981 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
982 {
983 int ret;
984
985 set_helper_retaddr(retaddr);
986 ret = cpu_ldsw_le_data(env, ptr);
987 clear_helper_retaddr();
988 return ret;
989 }
990
991 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
992 {
993 uint32_t ret;
994
995 set_helper_retaddr(retaddr);
996 ret = cpu_ldl_le_data(env, ptr);
997 clear_helper_retaddr();
998 return ret;
999 }
1000
1001 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
1002 {
1003 uint64_t ret;
1004
1005 set_helper_retaddr(retaddr);
1006 ret = cpu_ldq_le_data(env, ptr);
1007 clear_helper_retaddr();
1008 return ret;
1009 }
1010
1011 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1012 {
1013 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
1014
1015 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1016 stb_p(g2h(ptr), val);
1017 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1018 }
1019
1020 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1021 {
1022 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
1023
1024 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1025 stw_be_p(g2h(ptr), val);
1026 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1027 }
1028
1029 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1030 {
1031 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
1032
1033 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1034 stl_be_p(g2h(ptr), val);
1035 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1036 }
1037
1038 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1039 {
1040 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1041
1042 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1043 stq_be_p(g2h(ptr), val);
1044 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1045 }
1046
1047 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1048 {
1049 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1050
1051 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1052 stw_le_p(g2h(ptr), val);
1053 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1054 }
1055
1056 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1057 {
1058 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1059
1060 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1061 stl_le_p(g2h(ptr), val);
1062 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1063 }
1064
1065 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1066 {
1067 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1068
1069 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1070 stq_le_p(g2h(ptr), val);
1071 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1072 }
1073
1074 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1075 uint32_t val, uintptr_t retaddr)
1076 {
1077 set_helper_retaddr(retaddr);
1078 cpu_stb_data(env, ptr, val);
1079 clear_helper_retaddr();
1080 }
1081
1082 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1083 uint32_t val, uintptr_t retaddr)
1084 {
1085 set_helper_retaddr(retaddr);
1086 cpu_stw_be_data(env, ptr, val);
1087 clear_helper_retaddr();
1088 }
1089
1090 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1091 uint32_t val, uintptr_t retaddr)
1092 {
1093 set_helper_retaddr(retaddr);
1094 cpu_stl_be_data(env, ptr, val);
1095 clear_helper_retaddr();
1096 }
1097
1098 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1099 uint64_t val, uintptr_t retaddr)
1100 {
1101 set_helper_retaddr(retaddr);
1102 cpu_stq_be_data(env, ptr, val);
1103 clear_helper_retaddr();
1104 }
1105
1106 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1107 uint32_t val, uintptr_t retaddr)
1108 {
1109 set_helper_retaddr(retaddr);
1110 cpu_stw_le_data(env, ptr, val);
1111 clear_helper_retaddr();
1112 }
1113
1114 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1115 uint32_t val, uintptr_t retaddr)
1116 {
1117 set_helper_retaddr(retaddr);
1118 cpu_stl_le_data(env, ptr, val);
1119 clear_helper_retaddr();
1120 }
1121
1122 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1123 uint64_t val, uintptr_t retaddr)
1124 {
1125 set_helper_retaddr(retaddr);
1126 cpu_stq_le_data(env, ptr, val);
1127 clear_helper_retaddr();
1128 }
1129
1130 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1131 {
1132 uint32_t ret;
1133
1134 set_helper_retaddr(1);
1135 ret = ldub_p(g2h(ptr));
1136 clear_helper_retaddr();
1137 return ret;
1138 }
1139
1140 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1141 {
1142 uint32_t ret;
1143
1144 set_helper_retaddr(1);
1145 ret = lduw_p(g2h(ptr));
1146 clear_helper_retaddr();
1147 return ret;
1148 }
1149
1150 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1151 {
1152 uint32_t ret;
1153
1154 set_helper_retaddr(1);
1155 ret = ldl_p(g2h(ptr));
1156 clear_helper_retaddr();
1157 return ret;
1158 }
1159
1160 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1161 {
1162 uint64_t ret;
1163
1164 set_helper_retaddr(1);
1165 ret = ldq_p(g2h(ptr));
1166 clear_helper_retaddr();
1167 return ret;
1168 }
1169
1170 /* Do not allow unaligned operations to proceed. Return the host address. */
1171 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1172 int size, uintptr_t retaddr)
1173 {
1174 /* Enforce qemu required alignment. */
1175 if (unlikely(addr & (size - 1))) {
1176 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1177 }
1178 void *ret = g2h(addr);
1179 set_helper_retaddr(retaddr);
1180 return ret;
1181 }
1182
1183 /* Macro to call the above, with local variables from the use context. */
1184 #define ATOMIC_MMU_DECLS do {} while (0)
1185 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1186 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1187 #define ATOMIC_MMU_IDX MMU_USER_IDX
1188
1189 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1190 #define EXTRA_ARGS
1191
1192 #include "atomic_common.c.inc"
1193
1194 #define DATA_SIZE 1
1195 #include "atomic_template.h"
1196
1197 #define DATA_SIZE 2
1198 #include "atomic_template.h"
1199
1200 #define DATA_SIZE 4
1201 #include "atomic_template.h"
1202
1203 #ifdef CONFIG_ATOMIC64
1204 #define DATA_SIZE 8
1205 #include "atomic_template.h"
1206 #endif
1207
1208 /* The following is only callable from other helpers, and matches up
1209 with the softmmu version. */
1210
1211 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1212
1213 #undef EXTRA_ARGS
1214 #undef ATOMIC_NAME
1215 #undef ATOMIC_MMU_LOOKUP
1216
1217 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1218 #define ATOMIC_NAME(X) \
1219 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1220 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1221
1222 #define DATA_SIZE 16
1223 #include "atomic_template.h"
1224 #endif