]> git.proxmox.com Git - mirror_qemu.git/blob - accel/tcg/user-exec.c
accel/tcg: Add endian-specific cpu_{ld, st}* operations
[mirror_qemu.git] / accel / tcg / user-exec.c
1 /*
2 * User emulator execution
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg.h"
24 #include "qemu/bitops.h"
25 #include "exec/cpu_ldst.h"
26 #include "translate-all.h"
27 #include "exec/helper-proto.h"
28 #include "qemu/atomic128.h"
29 #include "trace-root.h"
30 #include "trace/mem.h"
31
32 #undef EAX
33 #undef ECX
34 #undef EDX
35 #undef EBX
36 #undef ESP
37 #undef EBP
38 #undef ESI
39 #undef EDI
40 #undef EIP
41 #ifdef __linux__
42 #include <sys/ucontext.h>
43 #endif
44
45 __thread uintptr_t helper_retaddr;
46
47 //#define DEBUG_SIGNAL
48
49 /* exit the current TB from a signal handler. The host registers are
50 restored in a state compatible with the CPU emulator
51 */
52 static void cpu_exit_tb_from_sighandler(CPUState *cpu, sigset_t *old_set)
53 {
54 /* XXX: use siglongjmp ? */
55 sigprocmask(SIG_SETMASK, old_set, NULL);
56 cpu_loop_exit_noexc(cpu);
57 }
58
59 /* 'pc' is the host PC at which the exception was raised. 'address' is
60 the effective address of the memory exception. 'is_write' is 1 if a
61 write caused the exception and otherwise 0'. 'old_set' is the
62 signal set which should be restored */
63 static inline int handle_cpu_signal(uintptr_t pc, siginfo_t *info,
64 int is_write, sigset_t *old_set)
65 {
66 CPUState *cpu = current_cpu;
67 CPUClass *cc;
68 unsigned long address = (unsigned long)info->si_addr;
69 MMUAccessType access_type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
70
71 switch (helper_retaddr) {
72 default:
73 /*
74 * Fault during host memory operation within a helper function.
75 * The helper's host return address, saved here, gives us a
76 * pointer into the generated code that will unwind to the
77 * correct guest pc.
78 */
79 pc = helper_retaddr;
80 break;
81
82 case 0:
83 /*
84 * Fault during host memory operation within generated code.
85 * (Or, a unrelated bug within qemu, but we can't tell from here).
86 *
87 * We take the host pc from the signal frame. However, we cannot
88 * use that value directly. Within cpu_restore_state_from_tb, we
89 * assume PC comes from GETPC(), as used by the helper functions,
90 * so we adjust the address by -GETPC_ADJ to form an address that
91 * is within the call insn, so that the address does not accidentially
92 * match the beginning of the next guest insn. However, when the
93 * pc comes from the signal frame it points to the actual faulting
94 * host memory insn and not the return from a call insn.
95 *
96 * Therefore, adjust to compensate for what will be done later
97 * by cpu_restore_state_from_tb.
98 */
99 pc += GETPC_ADJ;
100 break;
101
102 case 1:
103 /*
104 * Fault during host read for translation, or loosely, "execution".
105 *
106 * The guest pc is already pointing to the start of the TB for which
107 * code is being generated. If the guest translator manages the
108 * page crossings correctly, this is exactly the correct address
109 * (and if the translator doesn't handle page boundaries correctly
110 * there's little we can do about that here). Therefore, do not
111 * trigger the unwinder.
112 *
113 * Like tb_gen_code, release the memory lock before cpu_loop_exit.
114 */
115 pc = 0;
116 access_type = MMU_INST_FETCH;
117 mmap_unlock();
118 break;
119 }
120
121 /* For synchronous signals we expect to be coming from the vCPU
122 * thread (so current_cpu should be valid) and either from running
123 * code or during translation which can fault as we cross pages.
124 *
125 * If neither is true then something has gone wrong and we should
126 * abort rather than try and restart the vCPU execution.
127 */
128 if (!cpu || !cpu->running) {
129 printf("qemu:%s received signal outside vCPU context @ pc=0x%"
130 PRIxPTR "\n", __func__, pc);
131 abort();
132 }
133
134 #if defined(DEBUG_SIGNAL)
135 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
136 pc, address, is_write, *(unsigned long *)old_set);
137 #endif
138 /* XXX: locking issue */
139 /* Note that it is important that we don't call page_unprotect() unless
140 * this is really a "write to nonwriteable page" fault, because
141 * page_unprotect() assumes that if it is called for an access to
142 * a page that's writeable this means we had two threads racing and
143 * another thread got there first and already made the page writeable;
144 * so we will retry the access. If we were to call page_unprotect()
145 * for some other kind of fault that should really be passed to the
146 * guest, we'd end up in an infinite loop of retrying the faulting
147 * access.
148 */
149 if (is_write && info->si_signo == SIGSEGV && info->si_code == SEGV_ACCERR &&
150 h2g_valid(address)) {
151 switch (page_unprotect(h2g(address), pc)) {
152 case 0:
153 /* Fault not caused by a page marked unwritable to protect
154 * cached translations, must be the guest binary's problem.
155 */
156 break;
157 case 1:
158 /* Fault caused by protection of cached translation; TBs
159 * invalidated, so resume execution. Retain helper_retaddr
160 * for a possible second fault.
161 */
162 return 1;
163 case 2:
164 /* Fault caused by protection of cached translation, and the
165 * currently executing TB was modified and must be exited
166 * immediately. Clear helper_retaddr for next execution.
167 */
168 clear_helper_retaddr();
169 cpu_exit_tb_from_sighandler(cpu, old_set);
170 /* NORETURN */
171
172 default:
173 g_assert_not_reached();
174 }
175 }
176
177 /* Convert forcefully to guest address space, invalid addresses
178 are still valid segv ones */
179 address = h2g_nocheck(address);
180
181 /*
182 * There is no way the target can handle this other than raising
183 * an exception. Undo signal and retaddr state prior to longjmp.
184 */
185 sigprocmask(SIG_SETMASK, old_set, NULL);
186 clear_helper_retaddr();
187
188 cc = CPU_GET_CLASS(cpu);
189 cc->tlb_fill(cpu, address, 0, access_type, MMU_USER_IDX, false, pc);
190 g_assert_not_reached();
191 }
192
193 static int probe_access_internal(CPUArchState *env, target_ulong addr,
194 int fault_size, MMUAccessType access_type,
195 bool nonfault, uintptr_t ra)
196 {
197 int flags;
198
199 switch (access_type) {
200 case MMU_DATA_STORE:
201 flags = PAGE_WRITE;
202 break;
203 case MMU_DATA_LOAD:
204 flags = PAGE_READ;
205 break;
206 case MMU_INST_FETCH:
207 flags = PAGE_EXEC;
208 break;
209 default:
210 g_assert_not_reached();
211 }
212
213 if (!guest_addr_valid(addr) || page_check_range(addr, 1, flags) < 0) {
214 if (nonfault) {
215 return TLB_INVALID_MASK;
216 } else {
217 CPUState *cpu = env_cpu(env);
218 CPUClass *cc = CPU_GET_CLASS(cpu);
219 cc->tlb_fill(cpu, addr, fault_size, access_type,
220 MMU_USER_IDX, false, ra);
221 g_assert_not_reached();
222 }
223 }
224 return 0;
225 }
226
227 int probe_access_flags(CPUArchState *env, target_ulong addr,
228 MMUAccessType access_type, int mmu_idx,
229 bool nonfault, void **phost, uintptr_t ra)
230 {
231 int flags;
232
233 flags = probe_access_internal(env, addr, 0, access_type, nonfault, ra);
234 *phost = flags ? NULL : g2h(addr);
235 return flags;
236 }
237
238 void *probe_access(CPUArchState *env, target_ulong addr, int size,
239 MMUAccessType access_type, int mmu_idx, uintptr_t ra)
240 {
241 int flags;
242
243 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
244 flags = probe_access_internal(env, addr, size, access_type, false, ra);
245 g_assert(flags == 0);
246
247 return size ? g2h(addr) : NULL;
248 }
249
250 #if defined(__i386__)
251
252 #if defined(__NetBSD__)
253 #include <ucontext.h>
254
255 #define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
256 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
257 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
258 #define MASK_sig(context) ((context)->uc_sigmask)
259 #elif defined(__FreeBSD__) || defined(__DragonFly__)
260 #include <ucontext.h>
261
262 #define EIP_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_eip))
263 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
264 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
265 #define MASK_sig(context) ((context)->uc_sigmask)
266 #elif defined(__OpenBSD__)
267 #define EIP_sig(context) ((context)->sc_eip)
268 #define TRAP_sig(context) ((context)->sc_trapno)
269 #define ERROR_sig(context) ((context)->sc_err)
270 #define MASK_sig(context) ((context)->sc_mask)
271 #else
272 #define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
273 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
274 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
275 #define MASK_sig(context) ((context)->uc_sigmask)
276 #endif
277
278 int cpu_signal_handler(int host_signum, void *pinfo,
279 void *puc)
280 {
281 siginfo_t *info = pinfo;
282 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
283 ucontext_t *uc = puc;
284 #elif defined(__OpenBSD__)
285 struct sigcontext *uc = puc;
286 #else
287 ucontext_t *uc = puc;
288 #endif
289 unsigned long pc;
290 int trapno;
291
292 #ifndef REG_EIP
293 /* for glibc 2.1 */
294 #define REG_EIP EIP
295 #define REG_ERR ERR
296 #define REG_TRAPNO TRAPNO
297 #endif
298 pc = EIP_sig(uc);
299 trapno = TRAP_sig(uc);
300 return handle_cpu_signal(pc, info,
301 trapno == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
302 &MASK_sig(uc));
303 }
304
305 #elif defined(__x86_64__)
306
307 #ifdef __NetBSD__
308 #define PC_sig(context) _UC_MACHINE_PC(context)
309 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
310 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
311 #define MASK_sig(context) ((context)->uc_sigmask)
312 #elif defined(__OpenBSD__)
313 #define PC_sig(context) ((context)->sc_rip)
314 #define TRAP_sig(context) ((context)->sc_trapno)
315 #define ERROR_sig(context) ((context)->sc_err)
316 #define MASK_sig(context) ((context)->sc_mask)
317 #elif defined(__FreeBSD__) || defined(__DragonFly__)
318 #include <ucontext.h>
319
320 #define PC_sig(context) (*((unsigned long *)&(context)->uc_mcontext.mc_rip))
321 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
322 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
323 #define MASK_sig(context) ((context)->uc_sigmask)
324 #else
325 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
326 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
327 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
328 #define MASK_sig(context) ((context)->uc_sigmask)
329 #endif
330
331 int cpu_signal_handler(int host_signum, void *pinfo,
332 void *puc)
333 {
334 siginfo_t *info = pinfo;
335 unsigned long pc;
336 #if defined(__NetBSD__) || defined(__FreeBSD__) || defined(__DragonFly__)
337 ucontext_t *uc = puc;
338 #elif defined(__OpenBSD__)
339 struct sigcontext *uc = puc;
340 #else
341 ucontext_t *uc = puc;
342 #endif
343
344 pc = PC_sig(uc);
345 return handle_cpu_signal(pc, info,
346 TRAP_sig(uc) == 0xe ? (ERROR_sig(uc) >> 1) & 1 : 0,
347 &MASK_sig(uc));
348 }
349
350 #elif defined(_ARCH_PPC)
351
352 /***********************************************************************
353 * signal context platform-specific definitions
354 * From Wine
355 */
356 #ifdef linux
357 /* All Registers access - only for local access */
358 #define REG_sig(reg_name, context) \
359 ((context)->uc_mcontext.regs->reg_name)
360 /* Gpr Registers access */
361 #define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
362 /* Program counter */
363 #define IAR_sig(context) REG_sig(nip, context)
364 /* Machine State Register (Supervisor) */
365 #define MSR_sig(context) REG_sig(msr, context)
366 /* Count register */
367 #define CTR_sig(context) REG_sig(ctr, context)
368 /* User's integer exception register */
369 #define XER_sig(context) REG_sig(xer, context)
370 /* Link register */
371 #define LR_sig(context) REG_sig(link, context)
372 /* Condition register */
373 #define CR_sig(context) REG_sig(ccr, context)
374
375 /* Float Registers access */
376 #define FLOAT_sig(reg_num, context) \
377 (((double *)((char *)((context)->uc_mcontext.regs + 48 * 4)))[reg_num])
378 #define FPSCR_sig(context) \
379 (*(int *)((char *)((context)->uc_mcontext.regs + (48 + 32 * 2) * 4)))
380 /* Exception Registers access */
381 #define DAR_sig(context) REG_sig(dar, context)
382 #define DSISR_sig(context) REG_sig(dsisr, context)
383 #define TRAP_sig(context) REG_sig(trap, context)
384 #endif /* linux */
385
386 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
387 #include <ucontext.h>
388 #define IAR_sig(context) ((context)->uc_mcontext.mc_srr0)
389 #define MSR_sig(context) ((context)->uc_mcontext.mc_srr1)
390 #define CTR_sig(context) ((context)->uc_mcontext.mc_ctr)
391 #define XER_sig(context) ((context)->uc_mcontext.mc_xer)
392 #define LR_sig(context) ((context)->uc_mcontext.mc_lr)
393 #define CR_sig(context) ((context)->uc_mcontext.mc_cr)
394 /* Exception Registers access */
395 #define DAR_sig(context) ((context)->uc_mcontext.mc_dar)
396 #define DSISR_sig(context) ((context)->uc_mcontext.mc_dsisr)
397 #define TRAP_sig(context) ((context)->uc_mcontext.mc_exc)
398 #endif /* __FreeBSD__|| __FreeBSD_kernel__ */
399
400 int cpu_signal_handler(int host_signum, void *pinfo,
401 void *puc)
402 {
403 siginfo_t *info = pinfo;
404 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
405 ucontext_t *uc = puc;
406 #else
407 ucontext_t *uc = puc;
408 #endif
409 unsigned long pc;
410 int is_write;
411
412 pc = IAR_sig(uc);
413 is_write = 0;
414 #if 0
415 /* ppc 4xx case */
416 if (DSISR_sig(uc) & 0x00800000) {
417 is_write = 1;
418 }
419 #else
420 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) {
421 is_write = 1;
422 }
423 #endif
424 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
425 }
426
427 #elif defined(__alpha__)
428
429 int cpu_signal_handler(int host_signum, void *pinfo,
430 void *puc)
431 {
432 siginfo_t *info = pinfo;
433 ucontext_t *uc = puc;
434 uint32_t *pc = uc->uc_mcontext.sc_pc;
435 uint32_t insn = *pc;
436 int is_write = 0;
437
438 /* XXX: need kernel patch to get write flag faster */
439 switch (insn >> 26) {
440 case 0x0d: /* stw */
441 case 0x0e: /* stb */
442 case 0x0f: /* stq_u */
443 case 0x24: /* stf */
444 case 0x25: /* stg */
445 case 0x26: /* sts */
446 case 0x27: /* stt */
447 case 0x2c: /* stl */
448 case 0x2d: /* stq */
449 case 0x2e: /* stl_c */
450 case 0x2f: /* stq_c */
451 is_write = 1;
452 }
453
454 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
455 }
456 #elif defined(__sparc__)
457
458 int cpu_signal_handler(int host_signum, void *pinfo,
459 void *puc)
460 {
461 siginfo_t *info = pinfo;
462 int is_write;
463 uint32_t insn;
464 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
465 uint32_t *regs = (uint32_t *)(info + 1);
466 void *sigmask = (regs + 20);
467 /* XXX: is there a standard glibc define ? */
468 unsigned long pc = regs[1];
469 #else
470 #ifdef __linux__
471 struct sigcontext *sc = puc;
472 unsigned long pc = sc->sigc_regs.tpc;
473 void *sigmask = (void *)sc->sigc_mask;
474 #elif defined(__OpenBSD__)
475 struct sigcontext *uc = puc;
476 unsigned long pc = uc->sc_pc;
477 void *sigmask = (void *)(long)uc->sc_mask;
478 #elif defined(__NetBSD__)
479 ucontext_t *uc = puc;
480 unsigned long pc = _UC_MACHINE_PC(uc);
481 void *sigmask = (void *)&uc->uc_sigmask;
482 #endif
483 #endif
484
485 /* XXX: need kernel patch to get write flag faster */
486 is_write = 0;
487 insn = *(uint32_t *)pc;
488 if ((insn >> 30) == 3) {
489 switch ((insn >> 19) & 0x3f) {
490 case 0x05: /* stb */
491 case 0x15: /* stba */
492 case 0x06: /* sth */
493 case 0x16: /* stha */
494 case 0x04: /* st */
495 case 0x14: /* sta */
496 case 0x07: /* std */
497 case 0x17: /* stda */
498 case 0x0e: /* stx */
499 case 0x1e: /* stxa */
500 case 0x24: /* stf */
501 case 0x34: /* stfa */
502 case 0x27: /* stdf */
503 case 0x37: /* stdfa */
504 case 0x26: /* stqf */
505 case 0x36: /* stqfa */
506 case 0x25: /* stfsr */
507 case 0x3c: /* casa */
508 case 0x3e: /* casxa */
509 is_write = 1;
510 break;
511 }
512 }
513 return handle_cpu_signal(pc, info, is_write, sigmask);
514 }
515
516 #elif defined(__arm__)
517
518 #if defined(__NetBSD__)
519 #include <ucontext.h>
520 #endif
521
522 int cpu_signal_handler(int host_signum, void *pinfo,
523 void *puc)
524 {
525 siginfo_t *info = pinfo;
526 #if defined(__NetBSD__)
527 ucontext_t *uc = puc;
528 #else
529 ucontext_t *uc = puc;
530 #endif
531 unsigned long pc;
532 int is_write;
533
534 #if defined(__NetBSD__)
535 pc = uc->uc_mcontext.__gregs[_REG_R15];
536 #elif defined(__GLIBC__) && (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
537 pc = uc->uc_mcontext.gregs[R15];
538 #else
539 pc = uc->uc_mcontext.arm_pc;
540 #endif
541
542 /* error_code is the FSR value, in which bit 11 is WnR (assuming a v6 or
543 * later processor; on v5 we will always report this as a read).
544 */
545 is_write = extract32(uc->uc_mcontext.error_code, 11, 1);
546 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
547 }
548
549 #elif defined(__aarch64__)
550
551 #ifndef ESR_MAGIC
552 /* Pre-3.16 kernel headers don't have these, so provide fallback definitions */
553 #define ESR_MAGIC 0x45535201
554 struct esr_context {
555 struct _aarch64_ctx head;
556 uint64_t esr;
557 };
558 #endif
559
560 static inline struct _aarch64_ctx *first_ctx(ucontext_t *uc)
561 {
562 return (struct _aarch64_ctx *)&uc->uc_mcontext.__reserved;
563 }
564
565 static inline struct _aarch64_ctx *next_ctx(struct _aarch64_ctx *hdr)
566 {
567 return (struct _aarch64_ctx *)((char *)hdr + hdr->size);
568 }
569
570 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
571 {
572 siginfo_t *info = pinfo;
573 ucontext_t *uc = puc;
574 uintptr_t pc = uc->uc_mcontext.pc;
575 bool is_write;
576 struct _aarch64_ctx *hdr;
577 struct esr_context const *esrctx = NULL;
578
579 /* Find the esr_context, which has the WnR bit in it */
580 for (hdr = first_ctx(uc); hdr->magic; hdr = next_ctx(hdr)) {
581 if (hdr->magic == ESR_MAGIC) {
582 esrctx = (struct esr_context const *)hdr;
583 break;
584 }
585 }
586
587 if (esrctx) {
588 /* For data aborts ESR.EC is 0b10010x: then bit 6 is the WnR bit */
589 uint64_t esr = esrctx->esr;
590 is_write = extract32(esr, 27, 5) == 0x12 && extract32(esr, 6, 1) == 1;
591 } else {
592 /*
593 * Fall back to parsing instructions; will only be needed
594 * for really ancient (pre-3.16) kernels.
595 */
596 uint32_t insn = *(uint32_t *)pc;
597
598 is_write = ((insn & 0xbfff0000) == 0x0c000000 /* C3.3.1 */
599 || (insn & 0xbfe00000) == 0x0c800000 /* C3.3.2 */
600 || (insn & 0xbfdf0000) == 0x0d000000 /* C3.3.3 */
601 || (insn & 0xbfc00000) == 0x0d800000 /* C3.3.4 */
602 || (insn & 0x3f400000) == 0x08000000 /* C3.3.6 */
603 || (insn & 0x3bc00000) == 0x39000000 /* C3.3.13 */
604 || (insn & 0x3fc00000) == 0x3d800000 /* ... 128bit */
605 /* Ignore bits 10, 11 & 21, controlling indexing. */
606 || (insn & 0x3bc00000) == 0x38000000 /* C3.3.8-12 */
607 || (insn & 0x3fe00000) == 0x3c800000 /* ... 128bit */
608 /* Ignore bits 23 & 24, controlling indexing. */
609 || (insn & 0x3a400000) == 0x28000000); /* C3.3.7,14-16 */
610 }
611 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
612 }
613
614 #elif defined(__s390__)
615
616 int cpu_signal_handler(int host_signum, void *pinfo,
617 void *puc)
618 {
619 siginfo_t *info = pinfo;
620 ucontext_t *uc = puc;
621 unsigned long pc;
622 uint16_t *pinsn;
623 int is_write = 0;
624
625 pc = uc->uc_mcontext.psw.addr;
626
627 /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
628 of the normal 2 arguments. The 3rd argument contains the "int_code"
629 from the hardware which does in fact contain the is_write value.
630 The rt signal handler, as far as I can tell, does not give this value
631 at all. Not that we could get to it from here even if it were. */
632 /* ??? This is not even close to complete, since it ignores all
633 of the read-modify-write instructions. */
634 pinsn = (uint16_t *)pc;
635 switch (pinsn[0] >> 8) {
636 case 0x50: /* ST */
637 case 0x42: /* STC */
638 case 0x40: /* STH */
639 is_write = 1;
640 break;
641 case 0xc4: /* RIL format insns */
642 switch (pinsn[0] & 0xf) {
643 case 0xf: /* STRL */
644 case 0xb: /* STGRL */
645 case 0x7: /* STHRL */
646 is_write = 1;
647 }
648 break;
649 case 0xe3: /* RXY format insns */
650 switch (pinsn[2] & 0xff) {
651 case 0x50: /* STY */
652 case 0x24: /* STG */
653 case 0x72: /* STCY */
654 case 0x70: /* STHY */
655 case 0x8e: /* STPQ */
656 case 0x3f: /* STRVH */
657 case 0x3e: /* STRV */
658 case 0x2f: /* STRVG */
659 is_write = 1;
660 }
661 break;
662 }
663 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
664 }
665
666 #elif defined(__mips__)
667
668 int cpu_signal_handler(int host_signum, void *pinfo,
669 void *puc)
670 {
671 siginfo_t *info = pinfo;
672 ucontext_t *uc = puc;
673 greg_t pc = uc->uc_mcontext.pc;
674 int is_write;
675
676 /* XXX: compute is_write */
677 is_write = 0;
678 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
679 }
680
681 #elif defined(__riscv)
682
683 int cpu_signal_handler(int host_signum, void *pinfo,
684 void *puc)
685 {
686 siginfo_t *info = pinfo;
687 ucontext_t *uc = puc;
688 greg_t pc = uc->uc_mcontext.__gregs[REG_PC];
689 uint32_t insn = *(uint32_t *)pc;
690 int is_write = 0;
691
692 /* Detect store by reading the instruction at the program
693 counter. Note: we currently only generate 32-bit
694 instructions so we thus only detect 32-bit stores */
695 switch (((insn >> 0) & 0b11)) {
696 case 3:
697 switch (((insn >> 2) & 0b11111)) {
698 case 8:
699 switch (((insn >> 12) & 0b111)) {
700 case 0: /* sb */
701 case 1: /* sh */
702 case 2: /* sw */
703 case 3: /* sd */
704 case 4: /* sq */
705 is_write = 1;
706 break;
707 default:
708 break;
709 }
710 break;
711 case 9:
712 switch (((insn >> 12) & 0b111)) {
713 case 2: /* fsw */
714 case 3: /* fsd */
715 case 4: /* fsq */
716 is_write = 1;
717 break;
718 default:
719 break;
720 }
721 break;
722 default:
723 break;
724 }
725 }
726
727 /* Check for compressed instructions */
728 switch (((insn >> 13) & 0b111)) {
729 case 7:
730 switch (insn & 0b11) {
731 case 0: /*c.sd */
732 case 2: /* c.sdsp */
733 is_write = 1;
734 break;
735 default:
736 break;
737 }
738 break;
739 case 6:
740 switch (insn & 0b11) {
741 case 0: /* c.sw */
742 case 3: /* c.swsp */
743 is_write = 1;
744 break;
745 default:
746 break;
747 }
748 break;
749 default:
750 break;
751 }
752
753 return handle_cpu_signal(pc, info, is_write, &uc->uc_sigmask);
754 }
755
756 #else
757
758 #error host CPU specific signal handler needed
759
760 #endif
761
762 /* The softmmu versions of these helpers are in cputlb.c. */
763
764 uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr)
765 {
766 uint32_t ret;
767 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, false);
768
769 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
770 ret = ldub_p(g2h(ptr));
771 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
772 return ret;
773 }
774
775 int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr)
776 {
777 int ret;
778 uint16_t meminfo = trace_mem_get_info(MO_SB, MMU_USER_IDX, false);
779
780 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
781 ret = ldsb_p(g2h(ptr));
782 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
783 return ret;
784 }
785
786 uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr)
787 {
788 uint32_t ret;
789 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, false);
790
791 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
792 ret = lduw_be_p(g2h(ptr));
793 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
794 return ret;
795 }
796
797 int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr)
798 {
799 int ret;
800 uint16_t meminfo = trace_mem_get_info(MO_BESW, MMU_USER_IDX, false);
801
802 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
803 ret = ldsw_be_p(g2h(ptr));
804 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
805 return ret;
806 }
807
808 uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr)
809 {
810 uint32_t ret;
811 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, false);
812
813 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
814 ret = ldl_be_p(g2h(ptr));
815 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
816 return ret;
817 }
818
819 uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr)
820 {
821 uint64_t ret;
822 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, false);
823
824 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
825 ret = ldq_be_p(g2h(ptr));
826 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
827 return ret;
828 }
829
830 uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr)
831 {
832 uint32_t ret;
833 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, false);
834
835 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
836 ret = lduw_le_p(g2h(ptr));
837 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
838 return ret;
839 }
840
841 int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr)
842 {
843 int ret;
844 uint16_t meminfo = trace_mem_get_info(MO_LESW, MMU_USER_IDX, false);
845
846 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
847 ret = ldsw_le_p(g2h(ptr));
848 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
849 return ret;
850 }
851
852 uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr)
853 {
854 uint32_t ret;
855 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, false);
856
857 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
858 ret = ldl_le_p(g2h(ptr));
859 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
860 return ret;
861 }
862
863 uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr)
864 {
865 uint64_t ret;
866 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, false);
867
868 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
869 ret = ldq_le_p(g2h(ptr));
870 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
871 return ret;
872 }
873
874 uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
875 {
876 uint32_t ret;
877
878 set_helper_retaddr(retaddr);
879 ret = cpu_ldub_data(env, ptr);
880 clear_helper_retaddr();
881 return ret;
882 }
883
884 int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
885 {
886 int ret;
887
888 set_helper_retaddr(retaddr);
889 ret = cpu_ldsb_data(env, ptr);
890 clear_helper_retaddr();
891 return ret;
892 }
893
894 uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
895 {
896 uint32_t ret;
897
898 set_helper_retaddr(retaddr);
899 ret = cpu_lduw_be_data(env, ptr);
900 clear_helper_retaddr();
901 return ret;
902 }
903
904 int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
905 {
906 int ret;
907
908 set_helper_retaddr(retaddr);
909 ret = cpu_ldsw_be_data(env, ptr);
910 clear_helper_retaddr();
911 return ret;
912 }
913
914 uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
915 {
916 uint32_t ret;
917
918 set_helper_retaddr(retaddr);
919 ret = cpu_ldl_be_data(env, ptr);
920 clear_helper_retaddr();
921 return ret;
922 }
923
924 uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
925 {
926 uint64_t ret;
927
928 set_helper_retaddr(retaddr);
929 ret = cpu_ldq_be_data(env, ptr);
930 clear_helper_retaddr();
931 return ret;
932 }
933
934 uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
935 {
936 uint32_t ret;
937
938 set_helper_retaddr(retaddr);
939 ret = cpu_lduw_le_data(env, ptr);
940 clear_helper_retaddr();
941 return ret;
942 }
943
944 int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
945 {
946 int ret;
947
948 set_helper_retaddr(retaddr);
949 ret = cpu_ldsw_le_data(env, ptr);
950 clear_helper_retaddr();
951 return ret;
952 }
953
954 uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
955 {
956 uint32_t ret;
957
958 set_helper_retaddr(retaddr);
959 ret = cpu_ldl_le_data(env, ptr);
960 clear_helper_retaddr();
961 return ret;
962 }
963
964 uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr)
965 {
966 uint64_t ret;
967
968 set_helper_retaddr(retaddr);
969 ret = cpu_ldq_le_data(env, ptr);
970 clear_helper_retaddr();
971 return ret;
972 }
973
974 void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
975 {
976 uint16_t meminfo = trace_mem_get_info(MO_UB, MMU_USER_IDX, true);
977
978 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
979 stb_p(g2h(ptr), val);
980 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
981 }
982
983 void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
984 {
985 uint16_t meminfo = trace_mem_get_info(MO_BEUW, MMU_USER_IDX, true);
986
987 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
988 stw_be_p(g2h(ptr), val);
989 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
990 }
991
992 void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
993 {
994 uint16_t meminfo = trace_mem_get_info(MO_BEUL, MMU_USER_IDX, true);
995
996 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
997 stl_be_p(g2h(ptr), val);
998 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
999 }
1000
1001 void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1002 {
1003 uint16_t meminfo = trace_mem_get_info(MO_BEQ, MMU_USER_IDX, true);
1004
1005 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1006 stq_be_p(g2h(ptr), val);
1007 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1008 }
1009
1010 void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1011 {
1012 uint16_t meminfo = trace_mem_get_info(MO_LEUW, MMU_USER_IDX, true);
1013
1014 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1015 stw_le_p(g2h(ptr), val);
1016 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1017 }
1018
1019 void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val)
1020 {
1021 uint16_t meminfo = trace_mem_get_info(MO_LEUL, MMU_USER_IDX, true);
1022
1023 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1024 stl_le_p(g2h(ptr), val);
1025 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1026 }
1027
1028 void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val)
1029 {
1030 uint16_t meminfo = trace_mem_get_info(MO_LEQ, MMU_USER_IDX, true);
1031
1032 trace_guest_mem_before_exec(env_cpu(env), ptr, meminfo);
1033 stq_le_p(g2h(ptr), val);
1034 qemu_plugin_vcpu_mem_cb(env_cpu(env), ptr, meminfo);
1035 }
1036
1037 void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
1038 uint32_t val, uintptr_t retaddr)
1039 {
1040 set_helper_retaddr(retaddr);
1041 cpu_stb_data(env, ptr, val);
1042 clear_helper_retaddr();
1043 }
1044
1045 void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
1046 uint32_t val, uintptr_t retaddr)
1047 {
1048 set_helper_retaddr(retaddr);
1049 cpu_stw_be_data(env, ptr, val);
1050 clear_helper_retaddr();
1051 }
1052
1053 void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
1054 uint32_t val, uintptr_t retaddr)
1055 {
1056 set_helper_retaddr(retaddr);
1057 cpu_stl_be_data(env, ptr, val);
1058 clear_helper_retaddr();
1059 }
1060
1061 void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
1062 uint64_t val, uintptr_t retaddr)
1063 {
1064 set_helper_retaddr(retaddr);
1065 cpu_stq_be_data(env, ptr, val);
1066 clear_helper_retaddr();
1067 }
1068
1069 void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
1070 uint32_t val, uintptr_t retaddr)
1071 {
1072 set_helper_retaddr(retaddr);
1073 cpu_stw_le_data(env, ptr, val);
1074 clear_helper_retaddr();
1075 }
1076
1077 void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
1078 uint32_t val, uintptr_t retaddr)
1079 {
1080 set_helper_retaddr(retaddr);
1081 cpu_stl_le_data(env, ptr, val);
1082 clear_helper_retaddr();
1083 }
1084
1085 void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
1086 uint64_t val, uintptr_t retaddr)
1087 {
1088 set_helper_retaddr(retaddr);
1089 cpu_stq_le_data(env, ptr, val);
1090 clear_helper_retaddr();
1091 }
1092
1093 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
1094 {
1095 uint32_t ret;
1096
1097 set_helper_retaddr(1);
1098 ret = ldub_p(g2h(ptr));
1099 clear_helper_retaddr();
1100 return ret;
1101 }
1102
1103 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
1104 {
1105 uint32_t ret;
1106
1107 set_helper_retaddr(1);
1108 ret = lduw_p(g2h(ptr));
1109 clear_helper_retaddr();
1110 return ret;
1111 }
1112
1113 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
1114 {
1115 uint32_t ret;
1116
1117 set_helper_retaddr(1);
1118 ret = ldl_p(g2h(ptr));
1119 clear_helper_retaddr();
1120 return ret;
1121 }
1122
1123 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
1124 {
1125 uint64_t ret;
1126
1127 set_helper_retaddr(1);
1128 ret = ldq_p(g2h(ptr));
1129 clear_helper_retaddr();
1130 return ret;
1131 }
1132
1133 /* Do not allow unaligned operations to proceed. Return the host address. */
1134 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1135 int size, uintptr_t retaddr)
1136 {
1137 /* Enforce qemu required alignment. */
1138 if (unlikely(addr & (size - 1))) {
1139 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1140 }
1141 void *ret = g2h(addr);
1142 set_helper_retaddr(retaddr);
1143 return ret;
1144 }
1145
1146 /* Macro to call the above, with local variables from the use context. */
1147 #define ATOMIC_MMU_DECLS do {} while (0)
1148 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, GETPC())
1149 #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
1150 #define ATOMIC_MMU_IDX MMU_USER_IDX
1151
1152 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1153 #define EXTRA_ARGS
1154
1155 #include "atomic_common.inc.c"
1156
1157 #define DATA_SIZE 1
1158 #include "atomic_template.h"
1159
1160 #define DATA_SIZE 2
1161 #include "atomic_template.h"
1162
1163 #define DATA_SIZE 4
1164 #include "atomic_template.h"
1165
1166 #ifdef CONFIG_ATOMIC64
1167 #define DATA_SIZE 8
1168 #include "atomic_template.h"
1169 #endif
1170
1171 /* The following is only callable from other helpers, and matches up
1172 with the softmmu version. */
1173
1174 #if HAVE_ATOMIC128 || HAVE_CMPXCHG128
1175
1176 #undef EXTRA_ARGS
1177 #undef ATOMIC_NAME
1178 #undef ATOMIC_MMU_LOOKUP
1179
1180 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
1181 #define ATOMIC_NAME(X) \
1182 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1183 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, DATA_SIZE, retaddr)
1184
1185 #define DATA_SIZE 16
1186 #include "atomic_template.h"
1187 #endif