]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/alpha/kernel/traps.c
Merge branch 'hid-suspend' into picolcd
[mirror_ubuntu-bionic-kernel.git] / arch / alpha / kernel / traps.c
1 /*
2 * arch/alpha/kernel/traps.c
3 *
4 * (C) Copyright 1994 Linus Torvalds
5 */
6
7 /*
8 * This file initializes the trap entry points
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/mm.h>
13 #include <linux/sched.h>
14 #include <linux/tty.h>
15 #include <linux/delay.h>
16 #include <linux/smp_lock.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/kallsyms.h>
20 #include <linux/ratelimit.h>
21
22 #include <asm/gentrap.h>
23 #include <asm/uaccess.h>
24 #include <asm/unaligned.h>
25 #include <asm/sysinfo.h>
26 #include <asm/hwrpb.h>
27 #include <asm/mmu_context.h>
28
29 #include "proto.h"
30
31 /* Work-around for some SRMs which mishandle opDEC faults. */
32
33 static int opDEC_fix;
34
35 static void __cpuinit
36 opDEC_check(void)
37 {
38 __asm__ __volatile__ (
39 /* Load the address of... */
40 " br $16, 1f\n"
41 /* A stub instruction fault handler. Just add 4 to the
42 pc and continue. */
43 " ldq $16, 8($sp)\n"
44 " addq $16, 4, $16\n"
45 " stq $16, 8($sp)\n"
46 " call_pal %[rti]\n"
47 /* Install the instruction fault handler. */
48 "1: lda $17, 3\n"
49 " call_pal %[wrent]\n"
50 /* With that in place, the fault from the round-to-minf fp
51 insn will arrive either at the "lda 4" insn (bad) or one
52 past that (good). This places the correct fixup in %0. */
53 " lda %[fix], 0\n"
54 " cvttq/svm $f31,$f31\n"
55 " lda %[fix], 4"
56 : [fix] "=r" (opDEC_fix)
57 : [rti] "n" (PAL_rti), [wrent] "n" (PAL_wrent)
58 : "$0", "$1", "$16", "$17", "$22", "$23", "$24", "$25");
59
60 if (opDEC_fix)
61 printk("opDEC fixup enabled.\n");
62 }
63
64 void
65 dik_show_regs(struct pt_regs *regs, unsigned long *r9_15)
66 {
67 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx %s\n",
68 regs->pc, regs->r26, regs->ps, print_tainted());
69 print_symbol("pc is at %s\n", regs->pc);
70 print_symbol("ra is at %s\n", regs->r26 );
71 printk("v0 = %016lx t0 = %016lx t1 = %016lx\n",
72 regs->r0, regs->r1, regs->r2);
73 printk("t2 = %016lx t3 = %016lx t4 = %016lx\n",
74 regs->r3, regs->r4, regs->r5);
75 printk("t5 = %016lx t6 = %016lx t7 = %016lx\n",
76 regs->r6, regs->r7, regs->r8);
77
78 if (r9_15) {
79 printk("s0 = %016lx s1 = %016lx s2 = %016lx\n",
80 r9_15[9], r9_15[10], r9_15[11]);
81 printk("s3 = %016lx s4 = %016lx s5 = %016lx\n",
82 r9_15[12], r9_15[13], r9_15[14]);
83 printk("s6 = %016lx\n", r9_15[15]);
84 }
85
86 printk("a0 = %016lx a1 = %016lx a2 = %016lx\n",
87 regs->r16, regs->r17, regs->r18);
88 printk("a3 = %016lx a4 = %016lx a5 = %016lx\n",
89 regs->r19, regs->r20, regs->r21);
90 printk("t8 = %016lx t9 = %016lx t10= %016lx\n",
91 regs->r22, regs->r23, regs->r24);
92 printk("t11= %016lx pv = %016lx at = %016lx\n",
93 regs->r25, regs->r27, regs->r28);
94 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
95 #if 0
96 __halt();
97 #endif
98 }
99
100 #if 0
101 static char * ireg_name[] = {"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
102 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "s6",
103 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
104 "t10", "t11", "ra", "pv", "at", "gp", "sp", "zero"};
105 #endif
106
107 static void
108 dik_show_code(unsigned int *pc)
109 {
110 long i;
111
112 printk("Code:");
113 for (i = -6; i < 2; i++) {
114 unsigned int insn;
115 if (__get_user(insn, (unsigned int __user *)pc + i))
116 break;
117 printk("%c%08x%c", i ? ' ' : '<', insn, i ? ' ' : '>');
118 }
119 printk("\n");
120 }
121
122 static void
123 dik_show_trace(unsigned long *sp)
124 {
125 long i = 0;
126 printk("Trace:\n");
127 while (0x1ff8 & (unsigned long) sp) {
128 extern char _stext[], _etext[];
129 unsigned long tmp = *sp;
130 sp++;
131 if (tmp < (unsigned long) &_stext)
132 continue;
133 if (tmp >= (unsigned long) &_etext)
134 continue;
135 printk("[<%lx>]", tmp);
136 print_symbol(" %s", tmp);
137 printk("\n");
138 if (i > 40) {
139 printk(" ...");
140 break;
141 }
142 }
143 printk("\n");
144 }
145
146 static int kstack_depth_to_print = 24;
147
148 void show_stack(struct task_struct *task, unsigned long *sp)
149 {
150 unsigned long *stack;
151 int i;
152
153 /*
154 * debugging aid: "show_stack(NULL);" prints the
155 * back trace for this cpu.
156 */
157 if(sp==NULL)
158 sp=(unsigned long*)&sp;
159
160 stack = sp;
161 for(i=0; i < kstack_depth_to_print; i++) {
162 if (((long) stack & (THREAD_SIZE-1)) == 0)
163 break;
164 if (i && ((i % 4) == 0))
165 printk("\n ");
166 printk("%016lx ", *stack++);
167 }
168 printk("\n");
169 dik_show_trace(sp);
170 }
171
172 void dump_stack(void)
173 {
174 show_stack(NULL, NULL);
175 }
176
177 EXPORT_SYMBOL(dump_stack);
178
179 void
180 die_if_kernel(char * str, struct pt_regs *regs, long err, unsigned long *r9_15)
181 {
182 if (regs->ps & 8)
183 return;
184 #ifdef CONFIG_SMP
185 printk("CPU %d ", hard_smp_processor_id());
186 #endif
187 printk("%s(%d): %s %ld\n", current->comm, task_pid_nr(current), str, err);
188 dik_show_regs(regs, r9_15);
189 add_taint(TAINT_DIE);
190 dik_show_trace((unsigned long *)(regs+1));
191 dik_show_code((unsigned int *)regs->pc);
192
193 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
194 printk("die_if_kernel recursion detected.\n");
195 local_irq_enable();
196 while (1);
197 }
198 do_exit(SIGSEGV);
199 }
200
201 #ifndef CONFIG_MATHEMU
202 static long dummy_emul(void) { return 0; }
203 long (*alpha_fp_emul_imprecise)(struct pt_regs *regs, unsigned long writemask)
204 = (void *)dummy_emul;
205 long (*alpha_fp_emul) (unsigned long pc)
206 = (void *)dummy_emul;
207 #else
208 long alpha_fp_emul_imprecise(struct pt_regs *regs, unsigned long writemask);
209 long alpha_fp_emul (unsigned long pc);
210 #endif
211
212 asmlinkage void
213 do_entArith(unsigned long summary, unsigned long write_mask,
214 struct pt_regs *regs)
215 {
216 long si_code = FPE_FLTINV;
217 siginfo_t info;
218
219 if (summary & 1) {
220 /* Software-completion summary bit is set, so try to
221 emulate the instruction. If the processor supports
222 precise exceptions, we don't have to search. */
223 if (!amask(AMASK_PRECISE_TRAP))
224 si_code = alpha_fp_emul(regs->pc - 4);
225 else
226 si_code = alpha_fp_emul_imprecise(regs, write_mask);
227 if (si_code == 0)
228 return;
229 }
230 die_if_kernel("Arithmetic fault", regs, 0, NULL);
231
232 info.si_signo = SIGFPE;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *) regs->pc;
236 send_sig_info(SIGFPE, &info, current);
237 }
238
239 asmlinkage void
240 do_entIF(unsigned long type, struct pt_regs *regs)
241 {
242 siginfo_t info;
243 int signo, code;
244
245 if ((regs->ps & ~IPL_MAX) == 0) {
246 if (type == 1) {
247 const unsigned int *data
248 = (const unsigned int *) regs->pc;
249 printk("Kernel bug at %s:%d\n",
250 (const char *)(data[1] | (long)data[2] << 32),
251 data[0]);
252 }
253 die_if_kernel((type == 1 ? "Kernel Bug" : "Instruction fault"),
254 regs, type, NULL);
255 }
256
257 switch (type) {
258 case 0: /* breakpoint */
259 info.si_signo = SIGTRAP;
260 info.si_errno = 0;
261 info.si_code = TRAP_BRKPT;
262 info.si_trapno = 0;
263 info.si_addr = (void __user *) regs->pc;
264
265 if (ptrace_cancel_bpt(current)) {
266 regs->pc -= 4; /* make pc point to former bpt */
267 }
268
269 send_sig_info(SIGTRAP, &info, current);
270 return;
271
272 case 1: /* bugcheck */
273 info.si_signo = SIGTRAP;
274 info.si_errno = 0;
275 info.si_code = __SI_FAULT;
276 info.si_addr = (void __user *) regs->pc;
277 info.si_trapno = 0;
278 send_sig_info(SIGTRAP, &info, current);
279 return;
280
281 case 2: /* gentrap */
282 info.si_addr = (void __user *) regs->pc;
283 info.si_trapno = regs->r16;
284 switch ((long) regs->r16) {
285 case GEN_INTOVF:
286 signo = SIGFPE;
287 code = FPE_INTOVF;
288 break;
289 case GEN_INTDIV:
290 signo = SIGFPE;
291 code = FPE_INTDIV;
292 break;
293 case GEN_FLTOVF:
294 signo = SIGFPE;
295 code = FPE_FLTOVF;
296 break;
297 case GEN_FLTDIV:
298 signo = SIGFPE;
299 code = FPE_FLTDIV;
300 break;
301 case GEN_FLTUND:
302 signo = SIGFPE;
303 code = FPE_FLTUND;
304 break;
305 case GEN_FLTINV:
306 signo = SIGFPE;
307 code = FPE_FLTINV;
308 break;
309 case GEN_FLTINE:
310 signo = SIGFPE;
311 code = FPE_FLTRES;
312 break;
313 case GEN_ROPRAND:
314 signo = SIGFPE;
315 code = __SI_FAULT;
316 break;
317
318 case GEN_DECOVF:
319 case GEN_DECDIV:
320 case GEN_DECINV:
321 case GEN_ASSERTERR:
322 case GEN_NULPTRERR:
323 case GEN_STKOVF:
324 case GEN_STRLENERR:
325 case GEN_SUBSTRERR:
326 case GEN_RANGERR:
327 case GEN_SUBRNG:
328 case GEN_SUBRNG1:
329 case GEN_SUBRNG2:
330 case GEN_SUBRNG3:
331 case GEN_SUBRNG4:
332 case GEN_SUBRNG5:
333 case GEN_SUBRNG6:
334 case GEN_SUBRNG7:
335 default:
336 signo = SIGTRAP;
337 code = __SI_FAULT;
338 break;
339 }
340
341 info.si_signo = signo;
342 info.si_errno = 0;
343 info.si_code = code;
344 info.si_addr = (void __user *) regs->pc;
345 send_sig_info(signo, &info, current);
346 return;
347
348 case 4: /* opDEC */
349 if (implver() == IMPLVER_EV4) {
350 long si_code;
351
352 /* The some versions of SRM do not handle
353 the opDEC properly - they return the PC of the
354 opDEC fault, not the instruction after as the
355 Alpha architecture requires. Here we fix it up.
356 We do this by intentionally causing an opDEC
357 fault during the boot sequence and testing if
358 we get the correct PC. If not, we set a flag
359 to correct it every time through. */
360 regs->pc += opDEC_fix;
361
362 /* EV4 does not implement anything except normal
363 rounding. Everything else will come here as
364 an illegal instruction. Emulate them. */
365 si_code = alpha_fp_emul(regs->pc - 4);
366 if (si_code == 0)
367 return;
368 if (si_code > 0) {
369 info.si_signo = SIGFPE;
370 info.si_errno = 0;
371 info.si_code = si_code;
372 info.si_addr = (void __user *) regs->pc;
373 send_sig_info(SIGFPE, &info, current);
374 return;
375 }
376 }
377 break;
378
379 case 3: /* FEN fault */
380 /* Irritating users can call PAL_clrfen to disable the
381 FPU for the process. The kernel will then trap in
382 do_switch_stack and undo_switch_stack when we try
383 to save and restore the FP registers.
384
385 Given that GCC by default generates code that uses the
386 FP registers, PAL_clrfen is not useful except for DoS
387 attacks. So turn the bleeding FPU back on and be done
388 with it. */
389 current_thread_info()->pcb.flags |= 1;
390 __reload_thread(&current_thread_info()->pcb);
391 return;
392
393 case 5: /* illoc */
394 default: /* unexpected instruction-fault type */
395 ;
396 }
397
398 info.si_signo = SIGILL;
399 info.si_errno = 0;
400 info.si_code = ILL_ILLOPC;
401 info.si_addr = (void __user *) regs->pc;
402 send_sig_info(SIGILL, &info, current);
403 }
404
405 /* There is an ifdef in the PALcode in MILO that enables a
406 "kernel debugging entry point" as an unprivileged call_pal.
407
408 We don't want to have anything to do with it, but unfortunately
409 several versions of MILO included in distributions have it enabled,
410 and if we don't put something on the entry point we'll oops. */
411
412 asmlinkage void
413 do_entDbg(struct pt_regs *regs)
414 {
415 siginfo_t info;
416
417 die_if_kernel("Instruction fault", regs, 0, NULL);
418
419 info.si_signo = SIGILL;
420 info.si_errno = 0;
421 info.si_code = ILL_ILLOPC;
422 info.si_addr = (void __user *) regs->pc;
423 force_sig_info(SIGILL, &info, current);
424 }
425
426
427 /*
428 * entUna has a different register layout to be reasonably simple. It
429 * needs access to all the integer registers (the kernel doesn't use
430 * fp-regs), and it needs to have them in order for simpler access.
431 *
432 * Due to the non-standard register layout (and because we don't want
433 * to handle floating-point regs), user-mode unaligned accesses are
434 * handled separately by do_entUnaUser below.
435 *
436 * Oh, btw, we don't handle the "gp" register correctly, but if we fault
437 * on a gp-register unaligned load/store, something is _very_ wrong
438 * in the kernel anyway..
439 */
440 struct allregs {
441 unsigned long regs[32];
442 unsigned long ps, pc, gp, a0, a1, a2;
443 };
444
445 struct unaligned_stat {
446 unsigned long count, va, pc;
447 } unaligned[2];
448
449
450 /* Macro for exception fixup code to access integer registers. */
451 #define una_reg(r) (_regs[(r) >= 16 && (r) <= 18 ? (r)+19 : (r)])
452
453
454 asmlinkage void
455 do_entUna(void * va, unsigned long opcode, unsigned long reg,
456 struct allregs *regs)
457 {
458 long error, tmp1, tmp2, tmp3, tmp4;
459 unsigned long pc = regs->pc - 4;
460 unsigned long *_regs = regs->regs;
461 const struct exception_table_entry *fixup;
462
463 unaligned[0].count++;
464 unaligned[0].va = (unsigned long) va;
465 unaligned[0].pc = pc;
466
467 /* We don't want to use the generic get/put unaligned macros as
468 we want to trap exceptions. Only if we actually get an
469 exception will we decide whether we should have caught it. */
470
471 switch (opcode) {
472 case 0x0c: /* ldwu */
473 __asm__ __volatile__(
474 "1: ldq_u %1,0(%3)\n"
475 "2: ldq_u %2,1(%3)\n"
476 " extwl %1,%3,%1\n"
477 " extwh %2,%3,%2\n"
478 "3:\n"
479 ".section __ex_table,\"a\"\n"
480 " .long 1b - .\n"
481 " lda %1,3b-1b(%0)\n"
482 " .long 2b - .\n"
483 " lda %2,3b-2b(%0)\n"
484 ".previous"
485 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
486 : "r"(va), "0"(0));
487 if (error)
488 goto got_exception;
489 una_reg(reg) = tmp1|tmp2;
490 return;
491
492 case 0x28: /* ldl */
493 __asm__ __volatile__(
494 "1: ldq_u %1,0(%3)\n"
495 "2: ldq_u %2,3(%3)\n"
496 " extll %1,%3,%1\n"
497 " extlh %2,%3,%2\n"
498 "3:\n"
499 ".section __ex_table,\"a\"\n"
500 " .long 1b - .\n"
501 " lda %1,3b-1b(%0)\n"
502 " .long 2b - .\n"
503 " lda %2,3b-2b(%0)\n"
504 ".previous"
505 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
506 : "r"(va), "0"(0));
507 if (error)
508 goto got_exception;
509 una_reg(reg) = (int)(tmp1|tmp2);
510 return;
511
512 case 0x29: /* ldq */
513 __asm__ __volatile__(
514 "1: ldq_u %1,0(%3)\n"
515 "2: ldq_u %2,7(%3)\n"
516 " extql %1,%3,%1\n"
517 " extqh %2,%3,%2\n"
518 "3:\n"
519 ".section __ex_table,\"a\"\n"
520 " .long 1b - .\n"
521 " lda %1,3b-1b(%0)\n"
522 " .long 2b - .\n"
523 " lda %2,3b-2b(%0)\n"
524 ".previous"
525 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
526 : "r"(va), "0"(0));
527 if (error)
528 goto got_exception;
529 una_reg(reg) = tmp1|tmp2;
530 return;
531
532 /* Note that the store sequences do not indicate that they change
533 memory because it _should_ be affecting nothing in this context.
534 (Otherwise we have other, much larger, problems.) */
535 case 0x0d: /* stw */
536 __asm__ __volatile__(
537 "1: ldq_u %2,1(%5)\n"
538 "2: ldq_u %1,0(%5)\n"
539 " inswh %6,%5,%4\n"
540 " inswl %6,%5,%3\n"
541 " mskwh %2,%5,%2\n"
542 " mskwl %1,%5,%1\n"
543 " or %2,%4,%2\n"
544 " or %1,%3,%1\n"
545 "3: stq_u %2,1(%5)\n"
546 "4: stq_u %1,0(%5)\n"
547 "5:\n"
548 ".section __ex_table,\"a\"\n"
549 " .long 1b - .\n"
550 " lda %2,5b-1b(%0)\n"
551 " .long 2b - .\n"
552 " lda %1,5b-2b(%0)\n"
553 " .long 3b - .\n"
554 " lda $31,5b-3b(%0)\n"
555 " .long 4b - .\n"
556 " lda $31,5b-4b(%0)\n"
557 ".previous"
558 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
559 "=&r"(tmp3), "=&r"(tmp4)
560 : "r"(va), "r"(una_reg(reg)), "0"(0));
561 if (error)
562 goto got_exception;
563 return;
564
565 case 0x2c: /* stl */
566 __asm__ __volatile__(
567 "1: ldq_u %2,3(%5)\n"
568 "2: ldq_u %1,0(%5)\n"
569 " inslh %6,%5,%4\n"
570 " insll %6,%5,%3\n"
571 " msklh %2,%5,%2\n"
572 " mskll %1,%5,%1\n"
573 " or %2,%4,%2\n"
574 " or %1,%3,%1\n"
575 "3: stq_u %2,3(%5)\n"
576 "4: stq_u %1,0(%5)\n"
577 "5:\n"
578 ".section __ex_table,\"a\"\n"
579 " .long 1b - .\n"
580 " lda %2,5b-1b(%0)\n"
581 " .long 2b - .\n"
582 " lda %1,5b-2b(%0)\n"
583 " .long 3b - .\n"
584 " lda $31,5b-3b(%0)\n"
585 " .long 4b - .\n"
586 " lda $31,5b-4b(%0)\n"
587 ".previous"
588 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
589 "=&r"(tmp3), "=&r"(tmp4)
590 : "r"(va), "r"(una_reg(reg)), "0"(0));
591 if (error)
592 goto got_exception;
593 return;
594
595 case 0x2d: /* stq */
596 __asm__ __volatile__(
597 "1: ldq_u %2,7(%5)\n"
598 "2: ldq_u %1,0(%5)\n"
599 " insqh %6,%5,%4\n"
600 " insql %6,%5,%3\n"
601 " mskqh %2,%5,%2\n"
602 " mskql %1,%5,%1\n"
603 " or %2,%4,%2\n"
604 " or %1,%3,%1\n"
605 "3: stq_u %2,7(%5)\n"
606 "4: stq_u %1,0(%5)\n"
607 "5:\n"
608 ".section __ex_table,\"a\"\n\t"
609 " .long 1b - .\n"
610 " lda %2,5b-1b(%0)\n"
611 " .long 2b - .\n"
612 " lda %1,5b-2b(%0)\n"
613 " .long 3b - .\n"
614 " lda $31,5b-3b(%0)\n"
615 " .long 4b - .\n"
616 " lda $31,5b-4b(%0)\n"
617 ".previous"
618 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
619 "=&r"(tmp3), "=&r"(tmp4)
620 : "r"(va), "r"(una_reg(reg)), "0"(0));
621 if (error)
622 goto got_exception;
623 return;
624 }
625
626 lock_kernel();
627 printk("Bad unaligned kernel access at %016lx: %p %lx %lu\n",
628 pc, va, opcode, reg);
629 do_exit(SIGSEGV);
630
631 got_exception:
632 /* Ok, we caught the exception, but we don't want it. Is there
633 someone to pass it along to? */
634 if ((fixup = search_exception_tables(pc)) != 0) {
635 unsigned long newpc;
636 newpc = fixup_exception(una_reg, fixup, pc);
637
638 printk("Forwarding unaligned exception at %lx (%lx)\n",
639 pc, newpc);
640
641 regs->pc = newpc;
642 return;
643 }
644
645 /*
646 * Yikes! No one to forward the exception to.
647 * Since the registers are in a weird format, dump them ourselves.
648 */
649 lock_kernel();
650
651 printk("%s(%d): unhandled unaligned exception\n",
652 current->comm, task_pid_nr(current));
653
654 printk("pc = [<%016lx>] ra = [<%016lx>] ps = %04lx\n",
655 pc, una_reg(26), regs->ps);
656 printk("r0 = %016lx r1 = %016lx r2 = %016lx\n",
657 una_reg(0), una_reg(1), una_reg(2));
658 printk("r3 = %016lx r4 = %016lx r5 = %016lx\n",
659 una_reg(3), una_reg(4), una_reg(5));
660 printk("r6 = %016lx r7 = %016lx r8 = %016lx\n",
661 una_reg(6), una_reg(7), una_reg(8));
662 printk("r9 = %016lx r10= %016lx r11= %016lx\n",
663 una_reg(9), una_reg(10), una_reg(11));
664 printk("r12= %016lx r13= %016lx r14= %016lx\n",
665 una_reg(12), una_reg(13), una_reg(14));
666 printk("r15= %016lx\n", una_reg(15));
667 printk("r16= %016lx r17= %016lx r18= %016lx\n",
668 una_reg(16), una_reg(17), una_reg(18));
669 printk("r19= %016lx r20= %016lx r21= %016lx\n",
670 una_reg(19), una_reg(20), una_reg(21));
671 printk("r22= %016lx r23= %016lx r24= %016lx\n",
672 una_reg(22), una_reg(23), una_reg(24));
673 printk("r25= %016lx r27= %016lx r28= %016lx\n",
674 una_reg(25), una_reg(27), una_reg(28));
675 printk("gp = %016lx sp = %p\n", regs->gp, regs+1);
676
677 dik_show_code((unsigned int *)pc);
678 dik_show_trace((unsigned long *)(regs+1));
679
680 if (test_and_set_thread_flag (TIF_DIE_IF_KERNEL)) {
681 printk("die_if_kernel recursion detected.\n");
682 local_irq_enable();
683 while (1);
684 }
685 do_exit(SIGSEGV);
686 }
687
688 /*
689 * Convert an s-floating point value in memory format to the
690 * corresponding value in register format. The exponent
691 * needs to be remapped to preserve non-finite values
692 * (infinities, not-a-numbers, denormals).
693 */
694 static inline unsigned long
695 s_mem_to_reg (unsigned long s_mem)
696 {
697 unsigned long frac = (s_mem >> 0) & 0x7fffff;
698 unsigned long sign = (s_mem >> 31) & 0x1;
699 unsigned long exp_msb = (s_mem >> 30) & 0x1;
700 unsigned long exp_low = (s_mem >> 23) & 0x7f;
701 unsigned long exp;
702
703 exp = (exp_msb << 10) | exp_low; /* common case */
704 if (exp_msb) {
705 if (exp_low == 0x7f) {
706 exp = 0x7ff;
707 }
708 } else {
709 if (exp_low == 0x00) {
710 exp = 0x000;
711 } else {
712 exp |= (0x7 << 7);
713 }
714 }
715 return (sign << 63) | (exp << 52) | (frac << 29);
716 }
717
718 /*
719 * Convert an s-floating point value in register format to the
720 * corresponding value in memory format.
721 */
722 static inline unsigned long
723 s_reg_to_mem (unsigned long s_reg)
724 {
725 return ((s_reg >> 62) << 30) | ((s_reg << 5) >> 34);
726 }
727
728 /*
729 * Handle user-level unaligned fault. Handling user-level unaligned
730 * faults is *extremely* slow and produces nasty messages. A user
731 * program *should* fix unaligned faults ASAP.
732 *
733 * Notice that we have (almost) the regular kernel stack layout here,
734 * so finding the appropriate registers is a little more difficult
735 * than in the kernel case.
736 *
737 * Finally, we handle regular integer load/stores only. In
738 * particular, load-linked/store-conditionally and floating point
739 * load/stores are not supported. The former make no sense with
740 * unaligned faults (they are guaranteed to fail) and I don't think
741 * the latter will occur in any decent program.
742 *
743 * Sigh. We *do* have to handle some FP operations, because GCC will
744 * uses them as temporary storage for integer memory to memory copies.
745 * However, we need to deal with stt/ldt and sts/lds only.
746 */
747
748 #define OP_INT_MASK ( 1L << 0x28 | 1L << 0x2c /* ldl stl */ \
749 | 1L << 0x29 | 1L << 0x2d /* ldq stq */ \
750 | 1L << 0x0c | 1L << 0x0d /* ldwu stw */ \
751 | 1L << 0x0a | 1L << 0x0e ) /* ldbu stb */
752
753 #define OP_WRITE_MASK ( 1L << 0x26 | 1L << 0x27 /* sts stt */ \
754 | 1L << 0x2c | 1L << 0x2d /* stl stq */ \
755 | 1L << 0x0d | 1L << 0x0e ) /* stw stb */
756
757 #define R(x) ((size_t) &((struct pt_regs *)0)->x)
758
759 static int unauser_reg_offsets[32] = {
760 R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), R(r8),
761 /* r9 ... r15 are stored in front of regs. */
762 -56, -48, -40, -32, -24, -16, -8,
763 R(r16), R(r17), R(r18),
764 R(r19), R(r20), R(r21), R(r22), R(r23), R(r24), R(r25), R(r26),
765 R(r27), R(r28), R(gp),
766 0, 0
767 };
768
769 #undef R
770
771 asmlinkage void
772 do_entUnaUser(void __user * va, unsigned long opcode,
773 unsigned long reg, struct pt_regs *regs)
774 {
775 static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
776
777 unsigned long tmp1, tmp2, tmp3, tmp4;
778 unsigned long fake_reg, *reg_addr = &fake_reg;
779 siginfo_t info;
780 long error;
781
782 /* Check the UAC bits to decide what the user wants us to do
783 with the unaliged access. */
784
785 if (!test_thread_flag (TIF_UAC_NOPRINT)) {
786 if (__ratelimit(&ratelimit)) {
787 printk("%s(%d): unaligned trap at %016lx: %p %lx %ld\n",
788 current->comm, task_pid_nr(current),
789 regs->pc - 4, va, opcode, reg);
790 }
791 }
792 if (test_thread_flag (TIF_UAC_SIGBUS))
793 goto give_sigbus;
794 /* Not sure why you'd want to use this, but... */
795 if (test_thread_flag (TIF_UAC_NOFIX))
796 return;
797
798 /* Don't bother reading ds in the access check since we already
799 know that this came from the user. Also rely on the fact that
800 the page at TASK_SIZE is unmapped and so can't be touched anyway. */
801 if (!__access_ok((unsigned long)va, 0, USER_DS))
802 goto give_sigsegv;
803
804 ++unaligned[1].count;
805 unaligned[1].va = (unsigned long)va;
806 unaligned[1].pc = regs->pc - 4;
807
808 if ((1L << opcode) & OP_INT_MASK) {
809 /* it's an integer load/store */
810 if (reg < 30) {
811 reg_addr = (unsigned long *)
812 ((char *)regs + unauser_reg_offsets[reg]);
813 } else if (reg == 30) {
814 /* usp in PAL regs */
815 fake_reg = rdusp();
816 } else {
817 /* zero "register" */
818 fake_reg = 0;
819 }
820 }
821
822 /* We don't want to use the generic get/put unaligned macros as
823 we want to trap exceptions. Only if we actually get an
824 exception will we decide whether we should have caught it. */
825
826 switch (opcode) {
827 case 0x0c: /* ldwu */
828 __asm__ __volatile__(
829 "1: ldq_u %1,0(%3)\n"
830 "2: ldq_u %2,1(%3)\n"
831 " extwl %1,%3,%1\n"
832 " extwh %2,%3,%2\n"
833 "3:\n"
834 ".section __ex_table,\"a\"\n"
835 " .long 1b - .\n"
836 " lda %1,3b-1b(%0)\n"
837 " .long 2b - .\n"
838 " lda %2,3b-2b(%0)\n"
839 ".previous"
840 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
841 : "r"(va), "0"(0));
842 if (error)
843 goto give_sigsegv;
844 *reg_addr = tmp1|tmp2;
845 break;
846
847 case 0x22: /* lds */
848 __asm__ __volatile__(
849 "1: ldq_u %1,0(%3)\n"
850 "2: ldq_u %2,3(%3)\n"
851 " extll %1,%3,%1\n"
852 " extlh %2,%3,%2\n"
853 "3:\n"
854 ".section __ex_table,\"a\"\n"
855 " .long 1b - .\n"
856 " lda %1,3b-1b(%0)\n"
857 " .long 2b - .\n"
858 " lda %2,3b-2b(%0)\n"
859 ".previous"
860 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
861 : "r"(va), "0"(0));
862 if (error)
863 goto give_sigsegv;
864 alpha_write_fp_reg(reg, s_mem_to_reg((int)(tmp1|tmp2)));
865 return;
866
867 case 0x23: /* ldt */
868 __asm__ __volatile__(
869 "1: ldq_u %1,0(%3)\n"
870 "2: ldq_u %2,7(%3)\n"
871 " extql %1,%3,%1\n"
872 " extqh %2,%3,%2\n"
873 "3:\n"
874 ".section __ex_table,\"a\"\n"
875 " .long 1b - .\n"
876 " lda %1,3b-1b(%0)\n"
877 " .long 2b - .\n"
878 " lda %2,3b-2b(%0)\n"
879 ".previous"
880 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
881 : "r"(va), "0"(0));
882 if (error)
883 goto give_sigsegv;
884 alpha_write_fp_reg(reg, tmp1|tmp2);
885 return;
886
887 case 0x28: /* ldl */
888 __asm__ __volatile__(
889 "1: ldq_u %1,0(%3)\n"
890 "2: ldq_u %2,3(%3)\n"
891 " extll %1,%3,%1\n"
892 " extlh %2,%3,%2\n"
893 "3:\n"
894 ".section __ex_table,\"a\"\n"
895 " .long 1b - .\n"
896 " lda %1,3b-1b(%0)\n"
897 " .long 2b - .\n"
898 " lda %2,3b-2b(%0)\n"
899 ".previous"
900 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
901 : "r"(va), "0"(0));
902 if (error)
903 goto give_sigsegv;
904 *reg_addr = (int)(tmp1|tmp2);
905 break;
906
907 case 0x29: /* ldq */
908 __asm__ __volatile__(
909 "1: ldq_u %1,0(%3)\n"
910 "2: ldq_u %2,7(%3)\n"
911 " extql %1,%3,%1\n"
912 " extqh %2,%3,%2\n"
913 "3:\n"
914 ".section __ex_table,\"a\"\n"
915 " .long 1b - .\n"
916 " lda %1,3b-1b(%0)\n"
917 " .long 2b - .\n"
918 " lda %2,3b-2b(%0)\n"
919 ".previous"
920 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2)
921 : "r"(va), "0"(0));
922 if (error)
923 goto give_sigsegv;
924 *reg_addr = tmp1|tmp2;
925 break;
926
927 /* Note that the store sequences do not indicate that they change
928 memory because it _should_ be affecting nothing in this context.
929 (Otherwise we have other, much larger, problems.) */
930 case 0x0d: /* stw */
931 __asm__ __volatile__(
932 "1: ldq_u %2,1(%5)\n"
933 "2: ldq_u %1,0(%5)\n"
934 " inswh %6,%5,%4\n"
935 " inswl %6,%5,%3\n"
936 " mskwh %2,%5,%2\n"
937 " mskwl %1,%5,%1\n"
938 " or %2,%4,%2\n"
939 " or %1,%3,%1\n"
940 "3: stq_u %2,1(%5)\n"
941 "4: stq_u %1,0(%5)\n"
942 "5:\n"
943 ".section __ex_table,\"a\"\n"
944 " .long 1b - .\n"
945 " lda %2,5b-1b(%0)\n"
946 " .long 2b - .\n"
947 " lda %1,5b-2b(%0)\n"
948 " .long 3b - .\n"
949 " lda $31,5b-3b(%0)\n"
950 " .long 4b - .\n"
951 " lda $31,5b-4b(%0)\n"
952 ".previous"
953 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
954 "=&r"(tmp3), "=&r"(tmp4)
955 : "r"(va), "r"(*reg_addr), "0"(0));
956 if (error)
957 goto give_sigsegv;
958 return;
959
960 case 0x26: /* sts */
961 fake_reg = s_reg_to_mem(alpha_read_fp_reg(reg));
962 /* FALLTHRU */
963
964 case 0x2c: /* stl */
965 __asm__ __volatile__(
966 "1: ldq_u %2,3(%5)\n"
967 "2: ldq_u %1,0(%5)\n"
968 " inslh %6,%5,%4\n"
969 " insll %6,%5,%3\n"
970 " msklh %2,%5,%2\n"
971 " mskll %1,%5,%1\n"
972 " or %2,%4,%2\n"
973 " or %1,%3,%1\n"
974 "3: stq_u %2,3(%5)\n"
975 "4: stq_u %1,0(%5)\n"
976 "5:\n"
977 ".section __ex_table,\"a\"\n"
978 " .long 1b - .\n"
979 " lda %2,5b-1b(%0)\n"
980 " .long 2b - .\n"
981 " lda %1,5b-2b(%0)\n"
982 " .long 3b - .\n"
983 " lda $31,5b-3b(%0)\n"
984 " .long 4b - .\n"
985 " lda $31,5b-4b(%0)\n"
986 ".previous"
987 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
988 "=&r"(tmp3), "=&r"(tmp4)
989 : "r"(va), "r"(*reg_addr), "0"(0));
990 if (error)
991 goto give_sigsegv;
992 return;
993
994 case 0x27: /* stt */
995 fake_reg = alpha_read_fp_reg(reg);
996 /* FALLTHRU */
997
998 case 0x2d: /* stq */
999 __asm__ __volatile__(
1000 "1: ldq_u %2,7(%5)\n"
1001 "2: ldq_u %1,0(%5)\n"
1002 " insqh %6,%5,%4\n"
1003 " insql %6,%5,%3\n"
1004 " mskqh %2,%5,%2\n"
1005 " mskql %1,%5,%1\n"
1006 " or %2,%4,%2\n"
1007 " or %1,%3,%1\n"
1008 "3: stq_u %2,7(%5)\n"
1009 "4: stq_u %1,0(%5)\n"
1010 "5:\n"
1011 ".section __ex_table,\"a\"\n\t"
1012 " .long 1b - .\n"
1013 " lda %2,5b-1b(%0)\n"
1014 " .long 2b - .\n"
1015 " lda %1,5b-2b(%0)\n"
1016 " .long 3b - .\n"
1017 " lda $31,5b-3b(%0)\n"
1018 " .long 4b - .\n"
1019 " lda $31,5b-4b(%0)\n"
1020 ".previous"
1021 : "=r"(error), "=&r"(tmp1), "=&r"(tmp2),
1022 "=&r"(tmp3), "=&r"(tmp4)
1023 : "r"(va), "r"(*reg_addr), "0"(0));
1024 if (error)
1025 goto give_sigsegv;
1026 return;
1027
1028 default:
1029 /* What instruction were you trying to use, exactly? */
1030 goto give_sigbus;
1031 }
1032
1033 /* Only integer loads should get here; everyone else returns early. */
1034 if (reg == 30)
1035 wrusp(fake_reg);
1036 return;
1037
1038 give_sigsegv:
1039 regs->pc -= 4; /* make pc point to faulting insn */
1040 info.si_signo = SIGSEGV;
1041 info.si_errno = 0;
1042
1043 /* We need to replicate some of the logic in mm/fault.c,
1044 since we don't have access to the fault code in the
1045 exception handling return path. */
1046 if (!__access_ok((unsigned long)va, 0, USER_DS))
1047 info.si_code = SEGV_ACCERR;
1048 else {
1049 struct mm_struct *mm = current->mm;
1050 down_read(&mm->mmap_sem);
1051 if (find_vma(mm, (unsigned long)va))
1052 info.si_code = SEGV_ACCERR;
1053 else
1054 info.si_code = SEGV_MAPERR;
1055 up_read(&mm->mmap_sem);
1056 }
1057 info.si_addr = va;
1058 send_sig_info(SIGSEGV, &info, current);
1059 return;
1060
1061 give_sigbus:
1062 regs->pc -= 4;
1063 info.si_signo = SIGBUS;
1064 info.si_errno = 0;
1065 info.si_code = BUS_ADRALN;
1066 info.si_addr = va;
1067 send_sig_info(SIGBUS, &info, current);
1068 return;
1069 }
1070
1071 void __cpuinit
1072 trap_init(void)
1073 {
1074 /* Tell PAL-code what global pointer we want in the kernel. */
1075 register unsigned long gptr __asm__("$29");
1076 wrkgp(gptr);
1077
1078 /* Hack for Multia (UDB) and JENSEN: some of their SRMs have
1079 a bug in the handling of the opDEC fault. Fix it up if so. */
1080 if (implver() == IMPLVER_EV4)
1081 opDEC_check();
1082
1083 wrent(entArith, 1);
1084 wrent(entMM, 2);
1085 wrent(entIF, 3);
1086 wrent(entUna, 4);
1087 wrent(entSys, 5);
1088 wrent(entDbg, 6);
1089 }