]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arc/kernel/kprobes.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-jammy-kernel.git] / arch / arc / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4 */
5
6 #include <linux/types.h>
7 #include <linux/kprobes.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/kdebug.h>
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <asm/cacheflush.h>
14 #include <asm/current.h>
15 #include <asm/disasm.h>
16
17 #define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
18 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
19
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
24 {
25 /* Attempt to probe at unaligned address */
26 if ((unsigned long)p->addr & 0x01)
27 return -EINVAL;
28
29 /* Address should not be in exception handling code */
30
31 p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
32 p->opcode = *p->addr;
33
34 return 0;
35 }
36
37 void __kprobes arch_arm_kprobe(struct kprobe *p)
38 {
39 *p->addr = UNIMP_S_INSTRUCTION;
40
41 flush_icache_range((unsigned long)p->addr,
42 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
43 }
44
45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
46 {
47 *p->addr = p->opcode;
48
49 flush_icache_range((unsigned long)p->addr,
50 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
51 }
52
53 void __kprobes arch_remove_kprobe(struct kprobe *p)
54 {
55 arch_disarm_kprobe(p);
56
57 /* Can we remove the kprobe in the middle of kprobe handling? */
58 if (p->ainsn.t1_addr) {
59 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
60
61 flush_icache_range((unsigned long)p->ainsn.t1_addr,
62 (unsigned long)p->ainsn.t1_addr +
63 sizeof(kprobe_opcode_t));
64
65 p->ainsn.t1_addr = NULL;
66 }
67
68 if (p->ainsn.t2_addr) {
69 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
70
71 flush_icache_range((unsigned long)p->ainsn.t2_addr,
72 (unsigned long)p->ainsn.t2_addr +
73 sizeof(kprobe_opcode_t));
74
75 p->ainsn.t2_addr = NULL;
76 }
77 }
78
79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
80 {
81 kcb->prev_kprobe.kp = kprobe_running();
82 kcb->prev_kprobe.status = kcb->kprobe_status;
83 }
84
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88 kcb->kprobe_status = kcb->prev_kprobe.status;
89 }
90
91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
92 {
93 __this_cpu_write(current_kprobe, p);
94 }
95
96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
97 struct pt_regs *regs)
98 {
99 /* Remove the trap instructions inserted for single step and
100 * restore the original instructions
101 */
102 if (p->ainsn.t1_addr) {
103 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104
105 flush_icache_range((unsigned long)p->ainsn.t1_addr,
106 (unsigned long)p->ainsn.t1_addr +
107 sizeof(kprobe_opcode_t));
108
109 p->ainsn.t1_addr = NULL;
110 }
111
112 if (p->ainsn.t2_addr) {
113 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114
115 flush_icache_range((unsigned long)p->ainsn.t2_addr,
116 (unsigned long)p->ainsn.t2_addr +
117 sizeof(kprobe_opcode_t));
118
119 p->ainsn.t2_addr = NULL;
120 }
121
122 return;
123 }
124
125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126 {
127 unsigned long next_pc;
128 unsigned long tgt_if_br = 0;
129 int is_branch;
130 unsigned long bta;
131
132 /* Copy the opcode back to the kprobe location and execute the
133 * instruction. Because of this we will not be able to get into the
134 * same kprobe until this kprobe is done
135 */
136 *(p->addr) = p->opcode;
137
138 flush_icache_range((unsigned long)p->addr,
139 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140
141 /* Now we insert the trap at the next location after this instruction to
142 * single step. If it is a branch we insert the trap at possible branch
143 * targets
144 */
145
146 bta = regs->bta;
147
148 if (regs->status32 & 0x40) {
149 /* We are in a delay slot with the branch taken */
150
151 next_pc = bta & ~0x01;
152
153 if (!p->ainsn.is_short) {
154 if (bta & 0x01)
155 regs->blink += 2;
156 else {
157 /* Branch not taken */
158 next_pc += 2;
159
160 /* next pc is taken from bta after executing the
161 * delay slot instruction
162 */
163 regs->bta += 2;
164 }
165 }
166
167 is_branch = 0;
168 } else
169 is_branch =
170 disasm_next_pc((unsigned long)p->addr, regs,
171 (struct callee_regs *) current->thread.callee_reg,
172 &next_pc, &tgt_if_br);
173
174 p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175 p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176 *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177
178 flush_icache_range((unsigned long)p->ainsn.t1_addr,
179 (unsigned long)p->ainsn.t1_addr +
180 sizeof(kprobe_opcode_t));
181
182 if (is_branch) {
183 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186
187 flush_icache_range((unsigned long)p->ainsn.t2_addr,
188 (unsigned long)p->ainsn.t2_addr +
189 sizeof(kprobe_opcode_t));
190 }
191 }
192
193 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
194 {
195 struct kprobe *p;
196 struct kprobe_ctlblk *kcb;
197
198 preempt_disable();
199
200 kcb = get_kprobe_ctlblk();
201 p = get_kprobe((unsigned long *)addr);
202
203 if (p) {
204 /*
205 * We have reentered the kprobe_handler, since another kprobe
206 * was hit while within the handler, we save the original
207 * kprobes and single step on the instruction of the new probe
208 * without calling any user handlers to avoid recursive
209 * kprobes.
210 */
211 if (kprobe_running()) {
212 save_previous_kprobe(kcb);
213 set_current_kprobe(p);
214 kprobes_inc_nmissed_count(p);
215 setup_singlestep(p, regs);
216 kcb->kprobe_status = KPROBE_REENTER;
217 return 1;
218 }
219
220 set_current_kprobe(p);
221 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
222
223 /* If we have no pre-handler or it returned 0, we continue with
224 * normal processing. If we have a pre-handler and it returned
225 * non-zero - which means user handler setup registers to exit
226 * to another instruction, we must skip the single stepping.
227 */
228 if (!p->pre_handler || !p->pre_handler(p, regs)) {
229 setup_singlestep(p, regs);
230 kcb->kprobe_status = KPROBE_HIT_SS;
231 } else {
232 reset_current_kprobe();
233 preempt_enable_no_resched();
234 }
235
236 return 1;
237 }
238
239 /* no_kprobe: */
240 preempt_enable_no_resched();
241 return 0;
242 }
243
244 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
245 struct pt_regs *regs)
246 {
247 struct kprobe *cur = kprobe_running();
248 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
249
250 if (!cur)
251 return 0;
252
253 resume_execution(cur, addr, regs);
254
255 /* Rearm the kprobe */
256 arch_arm_kprobe(cur);
257
258 /*
259 * When we return from trap instruction we go to the next instruction
260 * We restored the actual instruction in resume_exectuiont and we to
261 * return to the same address and execute it
262 */
263 regs->ret = addr;
264
265 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
266 kcb->kprobe_status = KPROBE_HIT_SSDONE;
267 cur->post_handler(cur, regs, 0);
268 }
269
270 if (kcb->kprobe_status == KPROBE_REENTER) {
271 restore_previous_kprobe(kcb);
272 goto out;
273 }
274
275 reset_current_kprobe();
276
277 out:
278 preempt_enable_no_resched();
279 return 1;
280 }
281
282 /*
283 * Fault can be for the instruction being single stepped or for the
284 * pre/post handlers in the module.
285 * This is applicable for applications like user probes, where we have the
286 * probe in user space and the handlers in the kernel
287 */
288
289 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
290 {
291 struct kprobe *cur = kprobe_running();
292 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
293
294 switch (kcb->kprobe_status) {
295 case KPROBE_HIT_SS:
296 case KPROBE_REENTER:
297 /*
298 * We are here because the instruction being single stepped
299 * caused the fault. We reset the current kprobe and allow the
300 * exception handler as if it is regular exception. In our
301 * case it doesn't matter because the system will be halted
302 */
303 resume_execution(cur, (unsigned long)cur->addr, regs);
304
305 if (kcb->kprobe_status == KPROBE_REENTER)
306 restore_previous_kprobe(kcb);
307 else
308 reset_current_kprobe();
309
310 preempt_enable_no_resched();
311 break;
312
313 case KPROBE_HIT_ACTIVE:
314 case KPROBE_HIT_SSDONE:
315 /*
316 * We are here because the instructions in the pre/post handler
317 * caused the fault.
318 */
319
320 /* We increment the nmissed count for accounting,
321 * we can also use npre/npostfault count for accounting
322 * these specific fault cases.
323 */
324 kprobes_inc_nmissed_count(cur);
325
326 /*
327 * We come here because instructions in the pre/post
328 * handler caused the page_fault, this could happen
329 * if handler tries to access user space by
330 * copy_from_user(), get_user() etc. Let the
331 * user-specified handler try to fix it first.
332 */
333 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
334 return 1;
335
336 /*
337 * In case the user-specified fault handler returned zero,
338 * try to fix up.
339 */
340 if (fixup_exception(regs))
341 return 1;
342
343 /*
344 * fixup_exception() could not handle it,
345 * Let do_page_fault() fix it.
346 */
347 break;
348
349 default:
350 break;
351 }
352 return 0;
353 }
354
355 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
356 unsigned long val, void *data)
357 {
358 struct die_args *args = data;
359 unsigned long addr = args->err;
360 int ret = NOTIFY_DONE;
361
362 switch (val) {
363 case DIE_IERR:
364 if (arc_kprobe_handler(addr, args->regs))
365 return NOTIFY_STOP;
366 break;
367
368 case DIE_TRAP:
369 if (arc_post_kprobe_handler(addr, args->regs))
370 return NOTIFY_STOP;
371 break;
372
373 default:
374 break;
375 }
376
377 return ret;
378 }
379
380 static void __used kretprobe_trampoline_holder(void)
381 {
382 __asm__ __volatile__(".global kretprobe_trampoline\n"
383 "kretprobe_trampoline:\n" "nop\n");
384 }
385
386 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
387 struct pt_regs *regs)
388 {
389
390 ri->ret_addr = (kprobe_opcode_t *) regs->blink;
391
392 /* Replace the return addr with trampoline addr */
393 regs->blink = (unsigned long)&kretprobe_trampoline;
394 }
395
396 static int __kprobes trampoline_probe_handler(struct kprobe *p,
397 struct pt_regs *regs)
398 {
399 struct kretprobe_instance *ri = NULL;
400 struct hlist_head *head, empty_rp;
401 struct hlist_node *tmp;
402 unsigned long flags, orig_ret_address = 0;
403 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
404
405 INIT_HLIST_HEAD(&empty_rp);
406 kretprobe_hash_lock(current, &head, &flags);
407
408 /*
409 * It is possible to have multiple instances associated with a given
410 * task either because an multiple functions in the call path
411 * have a return probe installed on them, and/or more than one return
412 * return probe was registered for a target function.
413 *
414 * We can handle this because:
415 * - instances are always inserted at the head of the list
416 * - when multiple return probes are registered for the same
417 * function, the first instance's ret_addr will point to the
418 * real return address, and all the rest will point to
419 * kretprobe_trampoline
420 */
421 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422 if (ri->task != current)
423 /* another task is sharing our hash bucket */
424 continue;
425
426 if (ri->rp && ri->rp->handler)
427 ri->rp->handler(ri, regs);
428
429 orig_ret_address = (unsigned long)ri->ret_addr;
430 recycle_rp_inst(ri, &empty_rp);
431
432 if (orig_ret_address != trampoline_address) {
433 /*
434 * This is the real return address. Any other
435 * instances associated with this task are for
436 * other calls deeper on the call stack
437 */
438 break;
439 }
440 }
441
442 kretprobe_assert(ri, orig_ret_address, trampoline_address);
443 regs->ret = orig_ret_address;
444
445 kretprobe_hash_unlock(current, &flags);
446
447 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
448 hlist_del(&ri->hlist);
449 kfree(ri);
450 }
451
452 /* By returning a non zero value, we are telling the kprobe handler
453 * that we don't want the post_handler to run
454 */
455 return 1;
456 }
457
458 static struct kprobe trampoline_p = {
459 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
460 .pre_handler = trampoline_probe_handler
461 };
462
463 int __init arch_init_kprobes(void)
464 {
465 /* Registering the trampoline code for the kret probe */
466 return register_kprobe(&trampoline_p);
467 }
468
469 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
470 {
471 if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
472 return 1;
473
474 return 0;
475 }
476
477 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
478 {
479 notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
480 }