4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/cache.h>
16 #include <linux/mmu_context.h>
17 #include <linux/syscalls.h>
18 #include <linux/uaccess.h>
19 #include <linux/pagemap.h>
20 #include <asm/cacheflush.h>
21 #include <asm/cachectl.h>
22 #include <asm/setup.h>
24 static int l2_line_sz
;
26 volatile int slc_enable
= 1, ioc_enable
= 1;
27 unsigned long perip_base
= ARC_UNCACHED_ADDR_SPACE
; /* legacy value for boot */
29 void (*_cache_line_loop_ic_fn
)(phys_addr_t paddr
, unsigned long vaddr
,
30 unsigned long sz
, const int cacheop
);
32 void (*__dma_cache_wback_inv
)(phys_addr_t start
, unsigned long sz
);
33 void (*__dma_cache_inv
)(phys_addr_t start
, unsigned long sz
);
34 void (*__dma_cache_wback
)(phys_addr_t start
, unsigned long sz
);
36 char *arc_cache_mumbojumbo(int c
, char *buf
, int len
)
39 struct cpuinfo_arc_cache
*p
;
41 #define PR_CACHE(p, cfg, str) \
43 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \
45 n += scnprintf(buf + n, len - n, \
46 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \
47 (p)->sz_k, (p)->assoc, (p)->line_len, \
48 (p)->vipt ? "VIPT" : "PIPT", \
49 (p)->alias ? " aliasing" : "", \
52 PR_CACHE(&cpuinfo_arc700
[c
].icache
, CONFIG_ARC_HAS_ICACHE
, "I-Cache");
53 PR_CACHE(&cpuinfo_arc700
[c
].dcache
, CONFIG_ARC_HAS_DCACHE
, "D-Cache");
58 p
= &cpuinfo_arc700
[c
].slc
;
60 n
+= scnprintf(buf
+ n
, len
- n
,
61 "SLC\t\t: %uK, %uB Line%s\n",
62 p
->sz_k
, p
->line_len
, IS_USED_RUN(slc_enable
));
65 n
+= scnprintf(buf
+ n
, len
- n
, "IOC\t\t:%s\n",
66 IS_DISABLED_RUN(ioc_enable
));
72 * Read the Cache Build Confuration Registers, Decode them and save into
73 * the cpuinfo structure for later use.
74 * No Validation done here, simply read/convert the BCRs
76 static void read_decode_cache_bcr_arcv2(int cpu
)
78 struct cpuinfo_arc_cache
*p_slc
= &cpuinfo_arc700
[cpu
].slc
;
79 struct bcr_generic uncached_space
;
80 struct bcr_generic sbcr
;
83 #ifdef CONFIG_CPU_BIG_ENDIAN
84 unsigned int pad
:24, way
:2, lsz
:2, sz
:4;
86 unsigned int sz
:4, lsz
:2, way
:2, pad
:24;
90 struct bcr_clust_cfg
{
91 #ifdef CONFIG_CPU_BIG_ENDIAN
92 unsigned int pad
:7, c
:1, num_entries
:8, num_cores
:8, ver
:8;
94 unsigned int ver
:8, num_cores
:8, num_entries
:8, c
:1, pad
:7;
98 READ_BCR(ARC_REG_SLC_BCR
, sbcr
);
100 READ_BCR(ARC_REG_SLC_CFG
, slc_cfg
);
101 p_slc
->ver
= sbcr
.ver
;
102 p_slc
->sz_k
= 128 << slc_cfg
.sz
;
103 l2_line_sz
= p_slc
->line_len
= (slc_cfg
.lsz
== 0) ? 128 : 64;
106 READ_BCR(ARC_REG_CLUSTER_BCR
, cbcr
);
107 if (cbcr
.c
&& ioc_enable
)
110 /* Legacy Data Uncached BCR is deprecated from v3 onwards */
111 READ_BCR(ARC_REG_D_UNCACH_BCR
, uncached_space
);
112 if (uncached_space
.ver
> 2)
113 perip_base
= read_aux_reg(AUX_NON_VOL
) & 0xF0000000;
116 void read_decode_cache_bcr(void)
118 struct cpuinfo_arc_cache
*p_ic
, *p_dc
;
119 unsigned int cpu
= smp_processor_id();
121 #ifdef CONFIG_CPU_BIG_ENDIAN
122 unsigned int pad
:12, line_len
:4, sz
:4, config
:4, ver
:8;
124 unsigned int ver
:8, config
:4, sz
:4, line_len
:4, pad
:12;
128 p_ic
= &cpuinfo_arc700
[cpu
].icache
;
129 READ_BCR(ARC_REG_IC_BCR
, ibcr
);
135 BUG_ON(ibcr
.config
!= 3);
136 p_ic
->assoc
= 2; /* Fixed to 2w set assoc */
137 } else if (ibcr
.ver
>= 4) {
138 p_ic
->assoc
= 1 << ibcr
.config
; /* 1,2,4,8 */
141 p_ic
->line_len
= 8 << ibcr
.line_len
;
142 p_ic
->sz_k
= 1 << (ibcr
.sz
- 1);
143 p_ic
->ver
= ibcr
.ver
;
145 p_ic
->alias
= p_ic
->sz_k
/p_ic
->assoc
/TO_KB(PAGE_SIZE
) > 1;
148 p_dc
= &cpuinfo_arc700
[cpu
].dcache
;
149 READ_BCR(ARC_REG_DC_BCR
, dbcr
);
155 BUG_ON(dbcr
.config
!= 2);
156 p_dc
->assoc
= 4; /* Fixed to 4w set assoc */
158 p_dc
->alias
= p_dc
->sz_k
/p_dc
->assoc
/TO_KB(PAGE_SIZE
) > 1;
159 } else if (dbcr
.ver
>= 4) {
160 p_dc
->assoc
= 1 << dbcr
.config
; /* 1,2,4,8 */
162 p_dc
->alias
= 0; /* PIPT so can't VIPT alias */
165 p_dc
->line_len
= 16 << dbcr
.line_len
;
166 p_dc
->sz_k
= 1 << (dbcr
.sz
- 1);
167 p_dc
->ver
= dbcr
.ver
;
171 read_decode_cache_bcr_arcv2(cpu
);
175 * Line Operation on {I,D}-Cache
180 #define OP_FLUSH_N_INV 0x3
181 #define OP_INV_IC 0x4
184 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
186 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
187 * The orig Cache Management Module "CDU" only required paddr to invalidate a
188 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
189 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
190 * the exact same line.
192 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
193 * paddr alone could not be used to correctly index the cache.
196 * MMU v1/v2 (Fixed Page Size 8k)
198 * The solution was to provide CDU with these additonal vaddr bits. These
199 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
200 * standard page size of 8k.
201 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
202 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
203 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
204 * represent the offset within cache-line. The adv of using this "clumsy"
205 * interface for additional info was no new reg was needed in CDU programming
208 * 17:13 represented the max num of bits passable, actual bits needed were
209 * fewer, based on the num-of-aliases possible.
210 * -for 2 alias possibility, only bit 13 needed (32K cache)
211 * -for 4 alias possibility, bits 14:13 needed (64K cache)
216 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
217 * only support 8k (default), 16k and 4k.
218 * However from hardware perspective, smaller page sizes aggrevate aliasing
219 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
220 * the existing scheme of piggybacking won't work for certain configurations.
221 * Two new registers IC_PTAG and DC_PTAG inttoduced.
222 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
226 void __cache_line_loop_v2(phys_addr_t paddr
, unsigned long vaddr
,
227 unsigned long sz
, const int op
)
229 unsigned int aux_cmd
;
231 const int full_page
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
233 if (op
== OP_INV_IC
) {
234 aux_cmd
= ARC_REG_IC_IVIL
;
236 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
237 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
240 /* Ensure we properly floor/ceil the non-line aligned/sized requests
241 * and have @paddr - aligned to cache line and integral @num_lines.
242 * This however can be avoided for page sized since:
243 * -@paddr will be cache-line aligned already (being page aligned)
244 * -@sz will be integral multiple of line size (being page sized).
247 sz
+= paddr
& ~CACHE_LINE_MASK
;
248 paddr
&= CACHE_LINE_MASK
;
249 vaddr
&= CACHE_LINE_MASK
;
252 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
254 /* MMUv2 and before: paddr contains stuffed vaddrs bits */
255 paddr
|= (vaddr
>> PAGE_SHIFT
) & 0x1F;
257 while (num_lines
-- > 0) {
258 write_aux_reg(aux_cmd
, paddr
);
259 paddr
+= L1_CACHE_BYTES
;
264 * For ARC700 MMUv3 I-cache and D-cache flushes
265 * Also reused for HS38 aliasing I-cache configuration
268 void __cache_line_loop_v3(phys_addr_t paddr
, unsigned long vaddr
,
269 unsigned long sz
, const int op
)
271 unsigned int aux_cmd
, aux_tag
;
273 const int full_page
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
275 if (op
== OP_INV_IC
) {
276 aux_cmd
= ARC_REG_IC_IVIL
;
277 aux_tag
= ARC_REG_IC_PTAG
;
279 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
280 aux_tag
= ARC_REG_DC_PTAG
;
283 /* Ensure we properly floor/ceil the non-line aligned/sized requests
284 * and have @paddr - aligned to cache line and integral @num_lines.
285 * This however can be avoided for page sized since:
286 * -@paddr will be cache-line aligned already (being page aligned)
287 * -@sz will be integral multiple of line size (being page sized).
290 sz
+= paddr
& ~CACHE_LINE_MASK
;
291 paddr
&= CACHE_LINE_MASK
;
292 vaddr
&= CACHE_LINE_MASK
;
294 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
297 * MMUv3, cache ops require paddr in PTAG reg
298 * if V-P const for loop, PTAG can be written once outside loop
301 write_aux_reg(aux_tag
, paddr
);
304 * This is technically for MMU v4, using the MMU v3 programming model
305 * Special work for HS38 aliasing I-cache configuratino with PAE40
306 * - upper 8 bits of paddr need to be written into PTAG_HI
307 * - (and needs to be written before the lower 32 bits)
308 * Note that PTAG_HI is hoisted outside the line loop
310 if (is_pae40_enabled() && op
== OP_INV_IC
)
311 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
313 while (num_lines
-- > 0) {
315 write_aux_reg(aux_tag
, paddr
);
316 paddr
+= L1_CACHE_BYTES
;
319 write_aux_reg(aux_cmd
, vaddr
);
320 vaddr
+= L1_CACHE_BYTES
;
325 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
326 * Here's how cache ops are implemented
328 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
329 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
330 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
331 * respectively, similar to MMU v3 programming model, hence
332 * __cache_line_loop_v3() is used)
334 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
335 * needs to be written into PTAG_HI
338 void __cache_line_loop_v4(phys_addr_t paddr
, unsigned long vaddr
,
339 unsigned long sz
, const int cacheop
)
341 unsigned int aux_cmd
;
343 const int full_page_op
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
345 if (cacheop
== OP_INV_IC
) {
346 aux_cmd
= ARC_REG_IC_IVIL
;
348 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
349 aux_cmd
= cacheop
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
352 /* Ensure we properly floor/ceil the non-line aligned/sized requests
353 * and have @paddr - aligned to cache line and integral @num_lines.
354 * This however can be avoided for page sized since:
355 * -@paddr will be cache-line aligned already (being page aligned)
356 * -@sz will be integral multiple of line size (being page sized).
359 sz
+= paddr
& ~CACHE_LINE_MASK
;
360 paddr
&= CACHE_LINE_MASK
;
363 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
366 * For HS38 PAE40 configuration
367 * - upper 8 bits of paddr need to be written into PTAG_HI
368 * - (and needs to be written before the lower 32 bits)
370 if (is_pae40_enabled()) {
371 if (cacheop
== OP_INV_IC
)
373 * Non aliasing I-cache in HS38,
374 * aliasing I-cache handled in __cache_line_loop_v3()
376 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
378 write_aux_reg(ARC_REG_DC_PTAG_HI
, (u64
)paddr
>> 32);
381 while (num_lines
-- > 0) {
382 write_aux_reg(aux_cmd
, paddr
);
383 paddr
+= L1_CACHE_BYTES
;
387 #if (CONFIG_ARC_MMU_VER < 3)
388 #define __cache_line_loop __cache_line_loop_v2
389 #elif (CONFIG_ARC_MMU_VER == 3)
390 #define __cache_line_loop __cache_line_loop_v3
391 #elif (CONFIG_ARC_MMU_VER > 3)
392 #define __cache_line_loop __cache_line_loop_v4
395 #ifdef CONFIG_ARC_HAS_DCACHE
397 /***************************************************************
398 * Machine specific helpers for Entire D-Cache or Per Line ops
401 static inline void __before_dc_op(const int op
)
403 if (op
== OP_FLUSH_N_INV
) {
404 /* Dcache provides 2 cmd: FLUSH or INV
405 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
406 * flush-n-inv is achieved by INV cmd but with IM=1
407 * So toggle INV sub-mode depending on op request and default
409 const unsigned int ctl
= ARC_REG_DC_CTRL
;
410 write_aux_reg(ctl
, read_aux_reg(ctl
) | DC_CTRL_INV_MODE_FLUSH
);
414 static inline void __after_dc_op(const int op
)
417 const unsigned int ctl
= ARC_REG_DC_CTRL
;
420 /* flush / flush-n-inv both wait */
421 while ((reg
= read_aux_reg(ctl
)) & DC_CTRL_FLUSH_STATUS
)
424 /* Switch back to default Invalidate mode */
425 if (op
== OP_FLUSH_N_INV
)
426 write_aux_reg(ctl
, reg
& ~DC_CTRL_INV_MODE_FLUSH
);
431 * Operation on Entire D-Cache
432 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
433 * Note that constant propagation ensures all the checks are gone
436 static inline void __dc_entire_op(const int op
)
442 if (op
& OP_INV
) /* Inv or flush-n-inv use same cmd reg */
443 aux
= ARC_REG_DC_IVDC
;
445 aux
= ARC_REG_DC_FLSH
;
447 write_aux_reg(aux
, 0x1);
452 /* For kernel mappings cache operation: index is same as paddr */
453 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op)
456 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
458 static inline void __dc_line_op(phys_addr_t paddr
, unsigned long vaddr
,
459 unsigned long sz
, const int op
)
463 local_irq_save(flags
);
467 __cache_line_loop(paddr
, vaddr
, sz
, op
);
471 local_irq_restore(flags
);
476 #define __dc_entire_op(op)
477 #define __dc_line_op(paddr, vaddr, sz, op)
478 #define __dc_line_op_k(paddr, sz, op)
480 #endif /* CONFIG_ARC_HAS_DCACHE */
482 #ifdef CONFIG_ARC_HAS_ICACHE
484 static inline void __ic_entire_inv(void)
486 write_aux_reg(ARC_REG_IC_IVIC
, 1);
487 read_aux_reg(ARC_REG_IC_CTRL
); /* blocks */
491 __ic_line_inv_vaddr_local(phys_addr_t paddr
, unsigned long vaddr
,
496 local_irq_save(flags
);
497 (*_cache_line_loop_ic_fn
)(paddr
, vaddr
, sz
, OP_INV_IC
);
498 local_irq_restore(flags
);
503 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s)
508 phys_addr_t paddr
, vaddr
;
512 static void __ic_line_inv_vaddr_helper(void *info
)
514 struct ic_inv_args
*ic_inv
= info
;
516 __ic_line_inv_vaddr_local(ic_inv
->paddr
, ic_inv
->vaddr
, ic_inv
->sz
);
519 static void __ic_line_inv_vaddr(phys_addr_t paddr
, unsigned long vaddr
,
522 struct ic_inv_args ic_inv
= {
528 on_each_cpu(__ic_line_inv_vaddr_helper
, &ic_inv
, 1);
531 #endif /* CONFIG_SMP */
533 #else /* !CONFIG_ARC_HAS_ICACHE */
535 #define __ic_entire_inv()
536 #define __ic_line_inv_vaddr(pstart, vstart, sz)
538 #endif /* CONFIG_ARC_HAS_ICACHE */
540 noinline
void slc_op(phys_addr_t paddr
, unsigned long sz
, const int op
)
542 #ifdef CONFIG_ISA_ARCV2
544 * SLC is shared between all cores and concurrent aux operations from
545 * multiple cores need to be serialized using a spinlock
546 * A concurrent operation can be silently ignored and/or the old/new
547 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
550 static DEFINE_SPINLOCK(lock
);
554 spin_lock_irqsave(&lock
, flags
);
557 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
558 * - b'000 (default) is Flush,
559 * - b'001 is Invalidate if CTRL.IM == 0
560 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1
562 ctrl
= read_aux_reg(ARC_REG_SLC_CTRL
);
564 /* Don't rely on default value of IM bit */
565 if (!(op
& OP_FLUSH
)) /* i.e. OP_INV */
566 ctrl
&= ~SLC_CTRL_IM
; /* clear IM: Disable flush before Inv */
571 ctrl
|= SLC_CTRL_RGN_OP_INV
; /* Inv or flush-n-inv */
573 ctrl
&= ~SLC_CTRL_RGN_OP_INV
;
575 write_aux_reg(ARC_REG_SLC_CTRL
, ctrl
);
578 * Lower bits are ignored, no need to clip
579 * END needs to be setup before START (latter triggers the operation)
580 * END can't be same as START, so add (l2_line_sz - 1) to sz
582 write_aux_reg(ARC_REG_SLC_RGN_END
, (paddr
+ sz
+ l2_line_sz
- 1));
583 write_aux_reg(ARC_REG_SLC_RGN_START
, paddr
);
585 while (read_aux_reg(ARC_REG_SLC_CTRL
) & SLC_CTRL_BUSY
);
587 spin_unlock_irqrestore(&lock
, flags
);
591 /***********************************************************
596 * Handle cache congruency of kernel and userspace mappings of page when kernel
597 * writes-to/reads-from
599 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
600 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
601 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
602 * -In SMP, if hardware caches are coherent
604 * There's a corollary case, where kernel READs from a userspace mapped page.
605 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
607 void flush_dcache_page(struct page
*page
)
609 struct address_space
*mapping
;
611 if (!cache_is_vipt_aliasing()) {
612 clear_bit(PG_dc_clean
, &page
->flags
);
616 /* don't handle anon pages here */
617 mapping
= page_mapping(page
);
622 * pagecache page, file not yet mapped to userspace
623 * Make a note that K-mapping is dirty
625 if (!mapping_mapped(mapping
)) {
626 clear_bit(PG_dc_clean
, &page
->flags
);
627 } else if (page_mapcount(page
)) {
629 /* kernel reading from page with U-mapping */
630 phys_addr_t paddr
= (unsigned long)page_address(page
);
631 unsigned long vaddr
= page
->index
<< PAGE_SHIFT
;
633 if (addr_not_cache_congruent(paddr
, vaddr
))
634 __flush_dcache_page(paddr
, vaddr
);
637 EXPORT_SYMBOL(flush_dcache_page
);
640 * DMA ops for systems with L1 cache only
641 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
643 static void __dma_cache_wback_inv_l1(phys_addr_t start
, unsigned long sz
)
645 __dc_line_op_k(start
, sz
, OP_FLUSH_N_INV
);
648 static void __dma_cache_inv_l1(phys_addr_t start
, unsigned long sz
)
650 __dc_line_op_k(start
, sz
, OP_INV
);
653 static void __dma_cache_wback_l1(phys_addr_t start
, unsigned long sz
)
655 __dc_line_op_k(start
, sz
, OP_FLUSH
);
659 * DMA ops for systems with both L1 and L2 caches, but without IOC
660 * Both L1 and L2 lines need to be explicitly flushed/invalidated
662 static void __dma_cache_wback_inv_slc(phys_addr_t start
, unsigned long sz
)
664 __dc_line_op_k(start
, sz
, OP_FLUSH_N_INV
);
665 slc_op(start
, sz
, OP_FLUSH_N_INV
);
668 static void __dma_cache_inv_slc(phys_addr_t start
, unsigned long sz
)
670 __dc_line_op_k(start
, sz
, OP_INV
);
671 slc_op(start
, sz
, OP_INV
);
674 static void __dma_cache_wback_slc(phys_addr_t start
, unsigned long sz
)
676 __dc_line_op_k(start
, sz
, OP_FLUSH
);
677 slc_op(start
, sz
, OP_FLUSH
);
681 * DMA ops for systems with IOC
682 * IOC hardware snoops all DMA traffic keeping the caches consistent with
683 * memory - eliding need for any explicit cache maintenance of DMA buffers
685 static void __dma_cache_wback_inv_ioc(phys_addr_t start
, unsigned long sz
) {}
686 static void __dma_cache_inv_ioc(phys_addr_t start
, unsigned long sz
) {}
687 static void __dma_cache_wback_ioc(phys_addr_t start
, unsigned long sz
) {}
692 void dma_cache_wback_inv(phys_addr_t start
, unsigned long sz
)
694 __dma_cache_wback_inv(start
, sz
);
696 EXPORT_SYMBOL(dma_cache_wback_inv
);
698 void dma_cache_inv(phys_addr_t start
, unsigned long sz
)
700 __dma_cache_inv(start
, sz
);
702 EXPORT_SYMBOL(dma_cache_inv
);
704 void dma_cache_wback(phys_addr_t start
, unsigned long sz
)
706 __dma_cache_wback(start
, sz
);
708 EXPORT_SYMBOL(dma_cache_wback
);
711 * This is API for making I/D Caches consistent when modifying
712 * kernel code (loadable modules, kprobes, kgdb...)
713 * This is called on insmod, with kernel virtual address for CODE of
714 * the module. ARC cache maintenance ops require PHY address thus we
715 * need to convert vmalloc addr to PHY addr
717 void flush_icache_range(unsigned long kstart
, unsigned long kend
)
721 WARN(kstart
< TASK_SIZE
, "%s() can't handle user vaddr", __func__
);
723 /* Shortcut for bigger flush ranges.
724 * Here we don't care if this was kernel virtual or phy addr
726 tot_sz
= kend
- kstart
;
727 if (tot_sz
> PAGE_SIZE
) {
732 /* Case: Kernel Phy addr (0x8000_0000 onwards) */
733 if (likely(kstart
> PAGE_OFFSET
)) {
735 * The 2nd arg despite being paddr will be used to index icache
736 * This is OK since no alternate virtual mappings will exist
737 * given the callers for this case: kprobe/kgdb in built-in
740 __sync_icache_dcache(kstart
, kstart
, kend
- kstart
);
745 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
746 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
747 * handling of kernel vaddr.
749 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
750 * it still needs to handle a 2 page scenario, where the range
751 * straddles across 2 virtual pages and hence need for loop
754 unsigned int off
, sz
;
755 unsigned long phy
, pfn
;
757 off
= kstart
% PAGE_SIZE
;
758 pfn
= vmalloc_to_pfn((void *)kstart
);
759 phy
= (pfn
<< PAGE_SHIFT
) + off
;
760 sz
= min_t(unsigned int, tot_sz
, PAGE_SIZE
- off
);
761 __sync_icache_dcache(phy
, kstart
, sz
);
766 EXPORT_SYMBOL(flush_icache_range
);
769 * General purpose helper to make I and D cache lines consistent.
770 * @paddr is phy addr of region
771 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
772 * However in one instance, when called by kprobe (for a breakpt in
773 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
774 * use a paddr to index the cache (despite VIPT). This is fine since since a
775 * builtin kernel page will not have any virtual mappings.
776 * kprobe on loadable module will be kernel vaddr.
778 void __sync_icache_dcache(phys_addr_t paddr
, unsigned long vaddr
, int len
)
780 __dc_line_op(paddr
, vaddr
, len
, OP_FLUSH_N_INV
);
781 __ic_line_inv_vaddr(paddr
, vaddr
, len
);
784 /* wrapper to compile time eliminate alignment checks in flush loop */
785 void __inv_icache_page(phys_addr_t paddr
, unsigned long vaddr
)
787 __ic_line_inv_vaddr(paddr
, vaddr
, PAGE_SIZE
);
791 * wrapper to clearout kernel or userspace mappings of a page
792 * For kernel mappings @vaddr == @paddr
794 void __flush_dcache_page(phys_addr_t paddr
, unsigned long vaddr
)
796 __dc_line_op(paddr
, vaddr
& PAGE_MASK
, PAGE_SIZE
, OP_FLUSH_N_INV
);
799 noinline
void flush_cache_all(void)
803 local_irq_save(flags
);
806 __dc_entire_op(OP_FLUSH_N_INV
);
808 local_irq_restore(flags
);
812 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
814 void flush_cache_mm(struct mm_struct
*mm
)
819 void flush_cache_page(struct vm_area_struct
*vma
, unsigned long u_vaddr
,
822 unsigned int paddr
= pfn
<< PAGE_SHIFT
;
824 u_vaddr
&= PAGE_MASK
;
826 __flush_dcache_page(paddr
, u_vaddr
);
828 if (vma
->vm_flags
& VM_EXEC
)
829 __inv_icache_page(paddr
, u_vaddr
);
832 void flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
838 void flush_anon_page(struct vm_area_struct
*vma
, struct page
*page
,
839 unsigned long u_vaddr
)
841 /* TBD: do we really need to clear the kernel mapping */
842 __flush_dcache_page(page_address(page
), u_vaddr
);
843 __flush_dcache_page(page_address(page
), page_address(page
));
849 void copy_user_highpage(struct page
*to
, struct page
*from
,
850 unsigned long u_vaddr
, struct vm_area_struct
*vma
)
852 void *kfrom
= kmap_atomic(from
);
853 void *kto
= kmap_atomic(to
);
854 int clean_src_k_mappings
= 0;
857 * If SRC page was already mapped in userspace AND it's U-mapping is
858 * not congruent with K-mapping, sync former to physical page so that
859 * K-mapping in memcpy below, sees the right data
861 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
862 * equally valid for SRC page as well
864 * For !VIPT cache, all of this gets compiled out as
865 * addr_not_cache_congruent() is 0
867 if (page_mapcount(from
) && addr_not_cache_congruent(kfrom
, u_vaddr
)) {
868 __flush_dcache_page((unsigned long)kfrom
, u_vaddr
);
869 clean_src_k_mappings
= 1;
872 copy_page(kto
, kfrom
);
875 * Mark DST page K-mapping as dirty for a later finalization by
876 * update_mmu_cache(). Although the finalization could have been done
877 * here as well (given that both vaddr/paddr are available).
878 * But update_mmu_cache() already has code to do that for other
879 * non copied user pages (e.g. read faults which wire in pagecache page
882 clear_bit(PG_dc_clean
, &to
->flags
);
885 * if SRC was already usermapped and non-congruent to kernel mapping
886 * sync the kernel mapping back to physical page
888 if (clean_src_k_mappings
) {
889 __flush_dcache_page((unsigned long)kfrom
, (unsigned long)kfrom
);
890 set_bit(PG_dc_clean
, &from
->flags
);
892 clear_bit(PG_dc_clean
, &from
->flags
);
896 kunmap_atomic(kfrom
);
899 void clear_user_page(void *to
, unsigned long u_vaddr
, struct page
*page
)
902 clear_bit(PG_dc_clean
, &page
->flags
);
906 /**********************************************************************
907 * Explicit Cache flush request from user space via syscall
908 * Needed for JITs which generate code on the fly
910 SYSCALL_DEFINE3(cacheflush
, uint32_t, start
, uint32_t, sz
, uint32_t, flags
)
912 /* TBD: optimize this */
917 void arc_cache_init(void)
919 unsigned int __maybe_unused cpu
= smp_processor_id();
922 printk(arc_cache_mumbojumbo(0, str
, sizeof(str
)));
924 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE
)) {
925 struct cpuinfo_arc_cache
*ic
= &cpuinfo_arc700
[cpu
].icache
;
928 panic("cache support enabled but non-existent cache\n");
930 if (ic
->line_len
!= L1_CACHE_BYTES
)
931 panic("ICache line [%d] != kernel Config [%d]",
932 ic
->line_len
, L1_CACHE_BYTES
);
934 if (ic
->ver
!= CONFIG_ARC_MMU_VER
)
935 panic("Cache ver [%d] doesn't match MMU ver [%d]\n",
936 ic
->ver
, CONFIG_ARC_MMU_VER
);
939 * In MMU v4 (HS38x) the alising icache config uses IVIL/PTAG
940 * pair to provide vaddr/paddr respectively, just as in MMU v3
942 if (is_isa_arcv2() && ic
->alias
)
943 _cache_line_loop_ic_fn
= __cache_line_loop_v3
;
945 _cache_line_loop_ic_fn
= __cache_line_loop
;
948 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE
)) {
949 struct cpuinfo_arc_cache
*dc
= &cpuinfo_arc700
[cpu
].dcache
;
952 panic("cache support enabled but non-existent cache\n");
954 if (dc
->line_len
!= L1_CACHE_BYTES
)
955 panic("DCache line [%d] != kernel Config [%d]",
956 dc
->line_len
, L1_CACHE_BYTES
);
958 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
959 if (is_isa_arcompact()) {
960 int handled
= IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING
);
962 if (dc
->alias
&& !handled
)
963 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
964 else if (!dc
->alias
&& handled
)
965 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
969 if (is_isa_arcv2() && l2_line_sz
&& !slc_enable
) {
971 /* IM set : flush before invalidate */
972 write_aux_reg(ARC_REG_SLC_CTRL
,
973 read_aux_reg(ARC_REG_SLC_CTRL
) | SLC_CTRL_IM
);
975 write_aux_reg(ARC_REG_SLC_INVALIDATE
, 1);
977 /* Important to wait for flush to complete */
978 while (read_aux_reg(ARC_REG_SLC_CTRL
) & SLC_CTRL_BUSY
);
979 write_aux_reg(ARC_REG_SLC_CTRL
,
980 read_aux_reg(ARC_REG_SLC_CTRL
) | SLC_CTRL_DISABLE
);
983 if (is_isa_arcv2() && ioc_exists
) {
984 /* IO coherency base - 0x8z */
985 write_aux_reg(ARC_REG_IO_COH_AP0_BASE
, 0x80000);
986 /* IO coherency aperture size - 512Mb: 0x8z-0xAz */
987 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE
, 0x11);
988 /* Enable partial writes */
989 write_aux_reg(ARC_REG_IO_COH_PARTIAL
, 1);
990 /* Enable IO coherency */
991 write_aux_reg(ARC_REG_IO_COH_ENABLE
, 1);
993 __dma_cache_wback_inv
= __dma_cache_wback_inv_ioc
;
994 __dma_cache_inv
= __dma_cache_inv_ioc
;
995 __dma_cache_wback
= __dma_cache_wback_ioc
;
996 } else if (is_isa_arcv2() && l2_line_sz
&& slc_enable
) {
997 __dma_cache_wback_inv
= __dma_cache_wback_inv_slc
;
998 __dma_cache_inv
= __dma_cache_inv_slc
;
999 __dma_cache_wback
= __dma_cache_wback_slc
;
1001 __dma_cache_wback_inv
= __dma_cache_wback_inv_l1
;
1002 __dma_cache_inv
= __dma_cache_inv_l1
;
1003 __dma_cache_wback
= __dma_cache_wback_l1
;