]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arc/mm/tlb.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / arc / mm / tlb.c
1 /*
2 * TLB Management (flush/create/diagnostics) for ARC700
3 *
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * vineetg: Aug 2011
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
12 *
13 * vineetg: May 2011
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
19 *
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
23 *
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
31 *
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
34 *
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
39 * TLBIVUTLB cmd
40 *
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
46 *
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesn't do anything if the range to
49 * flush is more than the size of TLB itself.
50 *
51 * Rahul Trivedi : Codito Technologies 2004
52 */
53
54 #include <linux/module.h>
55 #include <linux/bug.h>
56 #include <linux/mm_types.h>
57
58 #include <asm/arcregs.h>
59 #include <asm/setup.h>
60 #include <asm/mmu_context.h>
61 #include <asm/mmu.h>
62
63 /* Need for ARC MMU v2
64 *
65 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
66 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
67 * map into same set, there would be contention for the 2 ways causing severe
68 * Thrashing.
69 *
70 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
71 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
72 * Given this, the thrasing problem should never happen because once the 3
73 * J-TLB entries are created (even though 3rd will knock out one of the prev
74 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
75 *
76 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
77 * This is a simple design for keeping them in sync. So what do we do?
78 * The solution which James came up was pretty neat. It utilised the assoc
79 * of uTLBs by not invalidating always but only when absolutely necessary.
80 *
81 * - Existing TLB commands work as before
82 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
83 * - New command (TLBIVUTLB) to invalidate uTLBs.
84 *
85 * The uTLBs need only be invalidated when pages are being removed from the
86 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
87 * as a result of a miss, the removed entry is still allowed to exist in the
88 * uTLBs as it is still valid and present in the OS page table. This allows the
89 * full associativity of the uTLBs to hide the limited associativity of the main
90 * TLB.
91 *
92 * During a miss handler, the new "TLBWriteNI" command is used to load
93 * entries without clearing the uTLBs.
94 *
95 * When the OS page table is updated, TLB entries that may be associated with a
96 * removed page are removed (flushed) from the TLB using TLBWrite. In this
97 * circumstance, the uTLBs must also be cleared. This is done by using the
98 * existing TLBWrite command. An explicit IVUTLB is also required for those
99 * corner cases when TLBWrite was not executed at all because the corresp
100 * J-TLB entry got evicted/replaced.
101 */
102
103
104 /* A copy of the ASID from the PID reg is kept in asid_cache */
105 DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
106
107 /*
108 * Utility Routine to erase a J-TLB entry
109 * Caller needs to setup Index Reg (manually or via getIndex)
110 */
111 static inline void __tlb_entry_erase(void)
112 {
113 write_aux_reg(ARC_REG_TLBPD1, 0);
114
115 if (is_pae40_enabled())
116 write_aux_reg(ARC_REG_TLBPD1HI, 0);
117
118 write_aux_reg(ARC_REG_TLBPD0, 0);
119 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
120 }
121
122 #if (CONFIG_ARC_MMU_VER < 4)
123
124 static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
125 {
126 unsigned int idx;
127
128 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
129
130 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
131 idx = read_aux_reg(ARC_REG_TLBINDEX);
132
133 return idx;
134 }
135
136 static void tlb_entry_erase(unsigned int vaddr_n_asid)
137 {
138 unsigned int idx;
139
140 /* Locate the TLB entry for this vaddr + ASID */
141 idx = tlb_entry_lkup(vaddr_n_asid);
142
143 /* No error means entry found, zero it out */
144 if (likely(!(idx & TLB_LKUP_ERR))) {
145 __tlb_entry_erase();
146 } else {
147 /* Duplicate entry error */
148 WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
149 vaddr_n_asid);
150 }
151 }
152
153 /****************************************************************************
154 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
155 *
156 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
157 *
158 * utlb_invalidate ( )
159 * -For v2 MMU calls Flush uTLB Cmd
160 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
161 * This is because in v1 TLBWrite itself invalidate uTLBs
162 ***************************************************************************/
163
164 static void utlb_invalidate(void)
165 {
166 #if (CONFIG_ARC_MMU_VER >= 2)
167
168 #if (CONFIG_ARC_MMU_VER == 2)
169 /* MMU v2 introduced the uTLB Flush command.
170 * There was however an obscure hardware bug, where uTLB flush would
171 * fail when a prior probe for J-TLB (both totally unrelated) would
172 * return lkup err - because the entry didn't exist in MMU.
173 * The Workround was to set Index reg with some valid value, prior to
174 * flush. This was fixed in MMU v3 hence not needed any more
175 */
176 unsigned int idx;
177
178 /* make sure INDEX Reg is valid */
179 idx = read_aux_reg(ARC_REG_TLBINDEX);
180
181 /* If not write some dummy val */
182 if (unlikely(idx & TLB_LKUP_ERR))
183 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
184 #endif
185
186 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
187 #endif
188
189 }
190
191 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
192 {
193 unsigned int idx;
194
195 /*
196 * First verify if entry for this vaddr+ASID already exists
197 * This also sets up PD0 (vaddr, ASID..) for final commit
198 */
199 idx = tlb_entry_lkup(pd0);
200
201 /*
202 * If Not already present get a free slot from MMU.
203 * Otherwise, Probe would have located the entry and set INDEX Reg
204 * with existing location. This will cause Write CMD to over-write
205 * existing entry with new PD0 and PD1
206 */
207 if (likely(idx & TLB_LKUP_ERR))
208 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
209
210 /* setup the other half of TLB entry (pfn, rwx..) */
211 write_aux_reg(ARC_REG_TLBPD1, pd1);
212
213 /*
214 * Commit the Entry to MMU
215 * It doesn't sound safe to use the TLBWriteNI cmd here
216 * which doesn't flush uTLBs. I'd rather be safe than sorry.
217 */
218 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
219 }
220
221 #else /* CONFIG_ARC_MMU_VER >= 4) */
222
223 static void utlb_invalidate(void)
224 {
225 /* No need since uTLB is always in sync with JTLB */
226 }
227
228 static void tlb_entry_erase(unsigned int vaddr_n_asid)
229 {
230 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
231 write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
232 }
233
234 static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
235 {
236 write_aux_reg(ARC_REG_TLBPD0, pd0);
237 write_aux_reg(ARC_REG_TLBPD1, pd1);
238
239 if (is_pae40_enabled())
240 write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
241
242 write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
243 }
244
245 #endif
246
247 /*
248 * Un-conditionally (without lookup) erase the entire MMU contents
249 */
250
251 noinline void local_flush_tlb_all(void)
252 {
253 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
254 unsigned long flags;
255 unsigned int entry;
256 int num_tlb = mmu->sets * mmu->ways;
257
258 local_irq_save(flags);
259
260 /* Load PD0 and PD1 with template for a Blank Entry */
261 write_aux_reg(ARC_REG_TLBPD1, 0);
262
263 if (is_pae40_enabled())
264 write_aux_reg(ARC_REG_TLBPD1HI, 0);
265
266 write_aux_reg(ARC_REG_TLBPD0, 0);
267
268 for (entry = 0; entry < num_tlb; entry++) {
269 /* write this entry to the TLB */
270 write_aux_reg(ARC_REG_TLBINDEX, entry);
271 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
272 }
273
274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
275 const int stlb_idx = 0x800;
276
277 /* Blank sTLB entry */
278 write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
279
280 for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
281 write_aux_reg(ARC_REG_TLBINDEX, entry);
282 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
283 }
284 }
285
286 utlb_invalidate();
287
288 local_irq_restore(flags);
289 }
290
291 /*
292 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
293 */
294 noinline void local_flush_tlb_mm(struct mm_struct *mm)
295 {
296 /*
297 * Small optimisation courtesy IA64
298 * flush_mm called during fork,exit,munmap etc, multiple times as well.
299 * Only for fork( ) do we need to move parent to a new MMU ctxt,
300 * all other cases are NOPs, hence this check.
301 */
302 if (atomic_read(&mm->mm_users) == 0)
303 return;
304
305 /*
306 * - Move to a new ASID, but only if the mm is still wired in
307 * (Android Binder ended up calling this for vma->mm != tsk->mm,
308 * causing h/w - s/w ASID to get out of sync)
309 * - Also get_new_mmu_context() new implementation allocates a new
310 * ASID only if it is not allocated already - so unallocate first
311 */
312 destroy_context(mm);
313 if (current->mm == mm)
314 get_new_mmu_context(mm);
315 }
316
317 /*
318 * Flush a Range of TLB entries for userland.
319 * @start is inclusive, while @end is exclusive
320 * Difference between this and Kernel Range Flush is
321 * -Here the fastest way (if range is too large) is to move to next ASID
322 * without doing any explicit Shootdown
323 * -In case of kernel Flush, entry has to be shot down explictly
324 */
325 void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
326 unsigned long end)
327 {
328 const unsigned int cpu = smp_processor_id();
329 unsigned long flags;
330
331 /* If range @start to @end is more than 32 TLB entries deep,
332 * its better to move to a new ASID rather than searching for
333 * individual entries and then shooting them down
334 *
335 * The calc above is rough, doesn't account for unaligned parts,
336 * since this is heuristics based anyways
337 */
338 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
339 local_flush_tlb_mm(vma->vm_mm);
340 return;
341 }
342
343 /*
344 * @start moved to page start: this alone suffices for checking
345 * loop end condition below, w/o need for aligning @end to end
346 * e.g. 2000 to 4001 will anyhow loop twice
347 */
348 start &= PAGE_MASK;
349
350 local_irq_save(flags);
351
352 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
353 while (start < end) {
354 tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
355 start += PAGE_SIZE;
356 }
357 }
358
359 utlb_invalidate();
360
361 local_irq_restore(flags);
362 }
363
364 /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
365 * @start, @end interpreted as kvaddr
366 * Interestingly, shared TLB entries can also be flushed using just
367 * @start,@end alone (interpreted as user vaddr), although technically SASID
368 * is also needed. However our smart TLbProbe lookup takes care of that.
369 */
370 void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
371 {
372 unsigned long flags;
373
374 /* exactly same as above, except for TLB entry not taking ASID */
375
376 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
377 local_flush_tlb_all();
378 return;
379 }
380
381 start &= PAGE_MASK;
382
383 local_irq_save(flags);
384 while (start < end) {
385 tlb_entry_erase(start);
386 start += PAGE_SIZE;
387 }
388
389 utlb_invalidate();
390
391 local_irq_restore(flags);
392 }
393
394 /*
395 * Delete TLB entry in MMU for a given page (??? address)
396 * NOTE One TLB entry contains translation for single PAGE
397 */
398
399 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
400 {
401 const unsigned int cpu = smp_processor_id();
402 unsigned long flags;
403
404 /* Note that it is critical that interrupts are DISABLED between
405 * checking the ASID and using it flush the TLB entry
406 */
407 local_irq_save(flags);
408
409 if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
410 tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
411 utlb_invalidate();
412 }
413
414 local_irq_restore(flags);
415 }
416
417 #ifdef CONFIG_SMP
418
419 struct tlb_args {
420 struct vm_area_struct *ta_vma;
421 unsigned long ta_start;
422 unsigned long ta_end;
423 };
424
425 static inline void ipi_flush_tlb_page(void *arg)
426 {
427 struct tlb_args *ta = arg;
428
429 local_flush_tlb_page(ta->ta_vma, ta->ta_start);
430 }
431
432 static inline void ipi_flush_tlb_range(void *arg)
433 {
434 struct tlb_args *ta = arg;
435
436 local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
437 }
438
439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
440 static inline void ipi_flush_pmd_tlb_range(void *arg)
441 {
442 struct tlb_args *ta = arg;
443
444 local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
445 }
446 #endif
447
448 static inline void ipi_flush_tlb_kernel_range(void *arg)
449 {
450 struct tlb_args *ta = (struct tlb_args *)arg;
451
452 local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
453 }
454
455 void flush_tlb_all(void)
456 {
457 on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
458 }
459
460 void flush_tlb_mm(struct mm_struct *mm)
461 {
462 on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
463 mm, 1);
464 }
465
466 void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
467 {
468 struct tlb_args ta = {
469 .ta_vma = vma,
470 .ta_start = uaddr
471 };
472
473 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
474 }
475
476 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
477 unsigned long end)
478 {
479 struct tlb_args ta = {
480 .ta_vma = vma,
481 .ta_start = start,
482 .ta_end = end
483 };
484
485 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
486 }
487
488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
489 void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
490 unsigned long end)
491 {
492 struct tlb_args ta = {
493 .ta_vma = vma,
494 .ta_start = start,
495 .ta_end = end
496 };
497
498 on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
499 }
500 #endif
501
502 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
503 {
504 struct tlb_args ta = {
505 .ta_start = start,
506 .ta_end = end
507 };
508
509 on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
510 }
511 #endif
512
513 /*
514 * Routine to create a TLB entry
515 */
516 void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
517 {
518 unsigned long flags;
519 unsigned int asid_or_sasid, rwx;
520 unsigned long pd0;
521 pte_t pd1;
522
523 /*
524 * create_tlb() assumes that current->mm == vma->mm, since
525 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
526 * -completes the lazy write to SASID reg (again valid for curr tsk)
527 *
528 * Removing the assumption involves
529 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
530 * -Fix the TLB paranoid debug code to not trigger false negatives.
531 * -More importantly it makes this handler inconsistent with fast-path
532 * TLB Refill handler which always deals with "current"
533 *
534 * Lets see the use cases when current->mm != vma->mm and we land here
535 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
536 * Here VM wants to pre-install a TLB entry for user stack while
537 * current->mm still points to pre-execve mm (hence the condition).
538 * However the stack vaddr is soon relocated (randomization) and
539 * move_page_tables() tries to undo that TLB entry.
540 * Thus not creating TLB entry is not any worse.
541 *
542 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
543 * breakpoint in debugged task. Not creating a TLB now is not
544 * performance critical.
545 *
546 * Both the cases above are not good enough for code churn.
547 */
548 if (current->active_mm != vma->vm_mm)
549 return;
550
551 local_irq_save(flags);
552
553 tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
554
555 vaddr &= PAGE_MASK;
556
557 /* update this PTE credentials */
558 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
559
560 /* Create HW TLB(PD0,PD1) from PTE */
561
562 /* ASID for this task */
563 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
564
565 pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
566
567 /*
568 * ARC MMU provides fully orthogonal access bits for K/U mode,
569 * however Linux only saves 1 set to save PTE real-estate
570 * Here we convert 3 PTE bits into 6 MMU bits:
571 * -Kernel only entries have Kr Kw Kx 0 0 0
572 * -User entries have mirrored K and U bits
573 */
574 rwx = pte_val(*ptep) & PTE_BITS_RWX;
575
576 if (pte_val(*ptep) & _PAGE_GLOBAL)
577 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
578 else
579 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
580
581 pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
582
583 tlb_entry_insert(pd0, pd1);
584
585 local_irq_restore(flags);
586 }
587
588 /*
589 * Called at the end of pagefault, for a userspace mapped page
590 * -pre-install the corresponding TLB entry into MMU
591 * -Finalize the delayed D-cache flush of kernel mapping of page due to
592 * flush_dcache_page(), copy_user_page()
593 *
594 * Note that flush (when done) involves both WBACK - so physical page is
595 * in sync as well as INV - so any non-congruent aliases don't remain
596 */
597 void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
598 pte_t *ptep)
599 {
600 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
601 phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
602 struct page *page = pfn_to_page(pte_pfn(*ptep));
603
604 create_tlb(vma, vaddr, ptep);
605
606 if (page == ZERO_PAGE(0)) {
607 return;
608 }
609
610 /*
611 * Exec page : Independent of aliasing/page-color considerations,
612 * since icache doesn't snoop dcache on ARC, any dirty
613 * K-mapping of a code page needs to be wback+inv so that
614 * icache fetch by userspace sees code correctly.
615 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
616 * so userspace sees the right data.
617 * (Avoids the flush for Non-exec + congruent mapping case)
618 */
619 if ((vma->vm_flags & VM_EXEC) ||
620 addr_not_cache_congruent(paddr, vaddr)) {
621
622 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
623 if (dirty) {
624 /* wback + inv dcache lines (K-mapping) */
625 __flush_dcache_page(paddr, paddr);
626
627 /* invalidate any existing icache lines (U-mapping) */
628 if (vma->vm_flags & VM_EXEC)
629 __inv_icache_page(paddr, vaddr);
630 }
631 }
632 }
633
634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
635
636 /*
637 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
638 * support.
639 *
640 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
641 * new bit "SZ" in TLB page descriptor to distinguish between them.
642 * Super Page size is configurable in hardware (4K to 16M), but fixed once
643 * RTL builds.
644 *
645 * The exact THP size a Linx configuration will support is a function of:
646 * - MMU page size (typical 8K, RTL fixed)
647 * - software page walker address split between PGD:PTE:PFN (typical
648 * 11:8:13, but can be changed with 1 line)
649 * So for above default, THP size supported is 8K * (2^8) = 2M
650 *
651 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
652 * reduces to 1 level (as PTE is folded into PGD and canonically referred
653 * to as PMD).
654 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
655 */
656
657 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
658 pmd_t *pmd)
659 {
660 pte_t pte = __pte(pmd_val(*pmd));
661 update_mmu_cache(vma, addr, &pte);
662 }
663
664 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
665 pgtable_t pgtable)
666 {
667 struct list_head *lh = (struct list_head *) pgtable;
668
669 assert_spin_locked(&mm->page_table_lock);
670
671 /* FIFO */
672 if (!pmd_huge_pte(mm, pmdp))
673 INIT_LIST_HEAD(lh);
674 else
675 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
676 pmd_huge_pte(mm, pmdp) = pgtable;
677 }
678
679 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
680 {
681 struct list_head *lh;
682 pgtable_t pgtable;
683
684 assert_spin_locked(&mm->page_table_lock);
685
686 pgtable = pmd_huge_pte(mm, pmdp);
687 lh = (struct list_head *) pgtable;
688 if (list_empty(lh))
689 pmd_huge_pte(mm, pmdp) = NULL;
690 else {
691 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
692 list_del(lh);
693 }
694
695 pte_val(pgtable[0]) = 0;
696 pte_val(pgtable[1]) = 0;
697
698 return pgtable;
699 }
700
701 void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
702 unsigned long end)
703 {
704 unsigned int cpu;
705 unsigned long flags;
706
707 local_irq_save(flags);
708
709 cpu = smp_processor_id();
710
711 if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
712 unsigned int asid = hw_pid(vma->vm_mm, cpu);
713
714 /* No need to loop here: this will always be for 1 Huge Page */
715 tlb_entry_erase(start | _PAGE_HW_SZ | asid);
716 }
717
718 local_irq_restore(flags);
719 }
720
721 #endif
722
723 /* Read the Cache Build Confuration Registers, Decode them and save into
724 * the cpuinfo structure for later use.
725 * No Validation is done here, simply read/convert the BCRs
726 */
727 void read_decode_mmu_bcr(void)
728 {
729 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
730 unsigned int tmp;
731 struct bcr_mmu_1_2 {
732 #ifdef CONFIG_CPU_BIG_ENDIAN
733 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
734 #else
735 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
736 #endif
737 } *mmu2;
738
739 struct bcr_mmu_3 {
740 #ifdef CONFIG_CPU_BIG_ENDIAN
741 unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
742 u_itlb:4, u_dtlb:4;
743 #else
744 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
745 ways:4, ver:8;
746 #endif
747 } *mmu3;
748
749 struct bcr_mmu_4 {
750 #ifdef CONFIG_CPU_BIG_ENDIAN
751 unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
752 n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
753 #else
754 /* DTLB ITLB JES JE JA */
755 unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
756 pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
757 #endif
758 } *mmu4;
759
760 tmp = read_aux_reg(ARC_REG_MMU_BCR);
761 mmu->ver = (tmp >> 24);
762
763 if (mmu->ver <= 2) {
764 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
765 mmu->pg_sz_k = TO_KB(0x2000);
766 mmu->sets = 1 << mmu2->sets;
767 mmu->ways = 1 << mmu2->ways;
768 mmu->u_dtlb = mmu2->u_dtlb;
769 mmu->u_itlb = mmu2->u_itlb;
770 } else if (mmu->ver == 3) {
771 mmu3 = (struct bcr_mmu_3 *)&tmp;
772 mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
773 mmu->sets = 1 << mmu3->sets;
774 mmu->ways = 1 << mmu3->ways;
775 mmu->u_dtlb = mmu3->u_dtlb;
776 mmu->u_itlb = mmu3->u_itlb;
777 mmu->sasid = mmu3->sasid;
778 } else {
779 mmu4 = (struct bcr_mmu_4 *)&tmp;
780 mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
781 mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
782 mmu->sets = 64 << mmu4->n_entry;
783 mmu->ways = mmu4->n_ways * 2;
784 mmu->u_dtlb = mmu4->u_dtlb * 4;
785 mmu->u_itlb = mmu4->u_itlb * 4;
786 mmu->sasid = mmu4->sasid;
787 mmu->pae = mmu4->pae;
788 }
789 }
790
791 char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
792 {
793 int n = 0;
794 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
795 char super_pg[64] = "";
796
797 if (p_mmu->s_pg_sz_m)
798 scnprintf(super_pg, 64, "%dM Super Page %s",
799 p_mmu->s_pg_sz_m,
800 IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
801
802 n += scnprintf(buf + n, len - n,
803 "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
804 p_mmu->ver, p_mmu->pg_sz_k, super_pg,
805 p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
806 p_mmu->u_dtlb, p_mmu->u_itlb,
807 IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
808
809 return buf;
810 }
811
812 void arc_mmu_init(void)
813 {
814 char str[256];
815 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
816
817 printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
818
819 /*
820 * Can't be done in processor.h due to header include depenedencies
821 */
822 BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
823
824 /*
825 * stack top size sanity check,
826 * Can't be done in processor.h due to header include depenedencies
827 */
828 BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
829
830 /* For efficiency sake, kernel is compile time built for a MMU ver
831 * This must match the hardware it is running on.
832 * Linux built for MMU V2, if run on MMU V1 will break down because V1
833 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
834 * On the other hand, Linux built for V1 if run on MMU V2 will do
835 * un-needed workarounds to prevent memcpy thrashing.
836 * Similarly MMU V3 has new features which won't work on older MMU
837 */
838 if (mmu->ver != CONFIG_ARC_MMU_VER) {
839 panic("MMU ver %d doesn't match kernel built for %d...\n",
840 mmu->ver, CONFIG_ARC_MMU_VER);
841 }
842
843 if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
844 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
845
846 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
847 mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
848 panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
849 (unsigned long)TO_MB(HPAGE_PMD_SIZE));
850
851 if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
852 panic("Hardware doesn't support PAE40\n");
853
854 /* Enable the MMU */
855 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
856
857 /* In smp we use this reg for interrupt 1 scratch */
858 #ifndef CONFIG_SMP
859 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
860 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
861 #endif
862 }
863
864 /*
865 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
866 * The mapping is Column-first.
867 * --------------------- -----------
868 * |way0|way1|way2|way3| |way0|way1|
869 * --------------------- -----------
870 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
871 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
872 * ~ ~ ~ ~
873 * [set127] | 508| 509| 510| 511| | 254| 255|
874 * --------------------- -----------
875 * For normal operations we don't(must not) care how above works since
876 * MMU cmd getIndex(vaddr) abstracts that out.
877 * However for walking WAYS of a SET, we need to know this
878 */
879 #define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
880
881 /* Handling of Duplicate PD (TLB entry) in MMU.
882 * -Could be due to buggy customer tapeouts or obscure kernel bugs
883 * -MMU complaints not at the time of duplicate PD installation, but at the
884 * time of lookup matching multiple ways.
885 * -Ideally these should never happen - but if they do - workaround by deleting
886 * the duplicate one.
887 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
888 */
889 volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
890
891 void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
892 struct pt_regs *regs)
893 {
894 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
895 unsigned int pd0[mmu->ways];
896 unsigned long flags;
897 int set;
898
899 local_irq_save(flags);
900
901 /* re-enable the MMU */
902 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
903
904 /* loop thru all sets of TLB */
905 for (set = 0; set < mmu->sets; set++) {
906
907 int is_valid, way;
908
909 /* read out all the ways of current set */
910 for (way = 0, is_valid = 0; way < mmu->ways; way++) {
911 write_aux_reg(ARC_REG_TLBINDEX,
912 SET_WAY_TO_IDX(mmu, set, way));
913 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
914 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
915 is_valid |= pd0[way] & _PAGE_PRESENT;
916 pd0[way] &= PAGE_MASK;
917 }
918
919 /* If all the WAYS in SET are empty, skip to next SET */
920 if (!is_valid)
921 continue;
922
923 /* Scan the set for duplicate ways: needs a nested loop */
924 for (way = 0; way < mmu->ways - 1; way++) {
925
926 int n;
927
928 if (!pd0[way])
929 continue;
930
931 for (n = way + 1; n < mmu->ways; n++) {
932 if (pd0[way] != pd0[n])
933 continue;
934
935 if (!dup_pd_silent)
936 pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
937 pd0[way], set, way, n);
938
939 /*
940 * clear entry @way and not @n.
941 * This is critical to our optimised loop
942 */
943 pd0[way] = 0;
944 write_aux_reg(ARC_REG_TLBINDEX,
945 SET_WAY_TO_IDX(mmu, set, way));
946 __tlb_entry_erase();
947 }
948 }
949 }
950
951 local_irq_restore(flags);
952 }
953
954 /***********************************************************************
955 * Diagnostic Routines
956 * -Called from Low Level TLB Hanlders if things don;t look good
957 **********************************************************************/
958
959 #ifdef CONFIG_ARC_DBG_TLB_PARANOIA
960
961 /*
962 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
963 * don't match
964 */
965 void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
966 {
967 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
968 is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
969
970 __asm__ __volatile__("flag 1");
971 }
972
973 void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
974 {
975 unsigned int mmu_asid;
976
977 mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
978
979 /*
980 * At the time of a TLB miss/installation
981 * - HW version needs to match SW version
982 * - SW needs to have a valid ASID
983 */
984 if (addr < 0x70000000 &&
985 ((mm_asid == MM_CTXT_NO_ASID) ||
986 (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
987 print_asid_mismatch(mm_asid, mmu_asid, 0);
988 }
989 #endif