]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/arm/include/asm/bitops.h
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / arch / arm / include / asm / bitops.h
1 /*
2 * Copyright 1995, Russell King.
3 * Various bits and pieces copyrights include:
4 * Linus Torvalds (test_bit).
5 * Big endian support: Copyright 2001, Nicolas Pitre
6 * reworked by rmk.
7 *
8 * bit 0 is the LSB of an "unsigned long" quantity.
9 *
10 * Please note that the code in this file should never be included
11 * from user space. Many of these are not implemented in assembler
12 * since they would be too costly. Also, they require privileged
13 * instructions (which are not available from user mode) to ensure
14 * that they are atomic.
15 */
16
17 #ifndef __ASM_ARM_BITOPS_H
18 #define __ASM_ARM_BITOPS_H
19
20 #ifdef __KERNEL__
21
22 #ifndef _LINUX_BITOPS_H
23 #error only <linux/bitops.h> can be included directly
24 #endif
25
26 #include <linux/compiler.h>
27 #include <linux/irqflags.h>
28 #include <asm/barrier.h>
29
30 /*
31 * These functions are the basis of our bit ops.
32 *
33 * First, the atomic bitops. These use native endian.
34 */
35 static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
36 {
37 unsigned long flags;
38 unsigned long mask = BIT_MASK(bit);
39
40 p += BIT_WORD(bit);
41
42 raw_local_irq_save(flags);
43 *p |= mask;
44 raw_local_irq_restore(flags);
45 }
46
47 static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
48 {
49 unsigned long flags;
50 unsigned long mask = BIT_MASK(bit);
51
52 p += BIT_WORD(bit);
53
54 raw_local_irq_save(flags);
55 *p &= ~mask;
56 raw_local_irq_restore(flags);
57 }
58
59 static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
60 {
61 unsigned long flags;
62 unsigned long mask = BIT_MASK(bit);
63
64 p += BIT_WORD(bit);
65
66 raw_local_irq_save(flags);
67 *p ^= mask;
68 raw_local_irq_restore(flags);
69 }
70
71 static inline int
72 ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
73 {
74 unsigned long flags;
75 unsigned int res;
76 unsigned long mask = BIT_MASK(bit);
77
78 p += BIT_WORD(bit);
79
80 raw_local_irq_save(flags);
81 res = *p;
82 *p = res | mask;
83 raw_local_irq_restore(flags);
84
85 return (res & mask) != 0;
86 }
87
88 static inline int
89 ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
90 {
91 unsigned long flags;
92 unsigned int res;
93 unsigned long mask = BIT_MASK(bit);
94
95 p += BIT_WORD(bit);
96
97 raw_local_irq_save(flags);
98 res = *p;
99 *p = res & ~mask;
100 raw_local_irq_restore(flags);
101
102 return (res & mask) != 0;
103 }
104
105 static inline int
106 ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
107 {
108 unsigned long flags;
109 unsigned int res;
110 unsigned long mask = BIT_MASK(bit);
111
112 p += BIT_WORD(bit);
113
114 raw_local_irq_save(flags);
115 res = *p;
116 *p = res ^ mask;
117 raw_local_irq_restore(flags);
118
119 return (res & mask) != 0;
120 }
121
122 #include <asm-generic/bitops/non-atomic.h>
123
124 /*
125 * A note about Endian-ness.
126 * -------------------------
127 *
128 * When the ARM is put into big endian mode via CR15, the processor
129 * merely swaps the order of bytes within words, thus:
130 *
131 * ------------ physical data bus bits -----------
132 * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0
133 * little byte 3 byte 2 byte 1 byte 0
134 * big byte 0 byte 1 byte 2 byte 3
135 *
136 * This means that reading a 32-bit word at address 0 returns the same
137 * value irrespective of the endian mode bit.
138 *
139 * Peripheral devices should be connected with the data bus reversed in
140 * "Big Endian" mode. ARM Application Note 61 is applicable, and is
141 * available from http://www.arm.com/.
142 *
143 * The following assumes that the data bus connectivity for big endian
144 * mode has been followed.
145 *
146 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
147 */
148
149 /*
150 * Native endian assembly bitops. nr = 0 -> word 0 bit 0.
151 */
152 extern void _set_bit(int nr, volatile unsigned long * p);
153 extern void _clear_bit(int nr, volatile unsigned long * p);
154 extern void _change_bit(int nr, volatile unsigned long * p);
155 extern int _test_and_set_bit(int nr, volatile unsigned long * p);
156 extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
157 extern int _test_and_change_bit(int nr, volatile unsigned long * p);
158
159 /*
160 * Little endian assembly bitops. nr = 0 -> byte 0 bit 0.
161 */
162 extern int _find_first_zero_bit_le(const unsigned long *p, unsigned size);
163 extern int _find_next_zero_bit_le(const unsigned long *p, int size, int offset);
164 extern int _find_first_bit_le(const unsigned long *p, unsigned size);
165 extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
166
167 /*
168 * Big endian assembly bitops. nr = 0 -> byte 3 bit 0.
169 */
170 extern int _find_first_zero_bit_be(const unsigned long *p, unsigned size);
171 extern int _find_next_zero_bit_be(const unsigned long *p, int size, int offset);
172 extern int _find_first_bit_be(const unsigned long *p, unsigned size);
173 extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
174
175 #ifndef CONFIG_SMP
176 /*
177 * The __* form of bitops are non-atomic and may be reordered.
178 */
179 #define ATOMIC_BITOP(name,nr,p) \
180 (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
181 #else
182 #define ATOMIC_BITOP(name,nr,p) _##name(nr,p)
183 #endif
184
185 /*
186 * Native endian atomic definitions.
187 */
188 #define set_bit(nr,p) ATOMIC_BITOP(set_bit,nr,p)
189 #define clear_bit(nr,p) ATOMIC_BITOP(clear_bit,nr,p)
190 #define change_bit(nr,p) ATOMIC_BITOP(change_bit,nr,p)
191 #define test_and_set_bit(nr,p) ATOMIC_BITOP(test_and_set_bit,nr,p)
192 #define test_and_clear_bit(nr,p) ATOMIC_BITOP(test_and_clear_bit,nr,p)
193 #define test_and_change_bit(nr,p) ATOMIC_BITOP(test_and_change_bit,nr,p)
194
195 #ifndef __ARMEB__
196 /*
197 * These are the little endian, atomic definitions.
198 */
199 #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz)
200 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off)
201 #define find_first_bit(p,sz) _find_first_bit_le(p,sz)
202 #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off)
203
204 #else
205 /*
206 * These are the big endian, atomic definitions.
207 */
208 #define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz)
209 #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off)
210 #define find_first_bit(p,sz) _find_first_bit_be(p,sz)
211 #define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off)
212
213 #endif
214
215 #if __LINUX_ARM_ARCH__ < 5
216
217 #include <asm-generic/bitops/ffz.h>
218 #include <asm-generic/bitops/__fls.h>
219 #include <asm-generic/bitops/__ffs.h>
220 #include <asm-generic/bitops/fls.h>
221 #include <asm-generic/bitops/ffs.h>
222
223 #else
224
225 static inline int constant_fls(int x)
226 {
227 int r = 32;
228
229 if (!x)
230 return 0;
231 if (!(x & 0xffff0000u)) {
232 x <<= 16;
233 r -= 16;
234 }
235 if (!(x & 0xff000000u)) {
236 x <<= 8;
237 r -= 8;
238 }
239 if (!(x & 0xf0000000u)) {
240 x <<= 4;
241 r -= 4;
242 }
243 if (!(x & 0xc0000000u)) {
244 x <<= 2;
245 r -= 2;
246 }
247 if (!(x & 0x80000000u)) {
248 x <<= 1;
249 r -= 1;
250 }
251 return r;
252 }
253
254 /*
255 * On ARMv5 and above those functions can be implemented around the
256 * clz instruction for much better code efficiency. __clz returns
257 * the number of leading zeros, zero input will return 32, and
258 * 0x80000000 will return 0.
259 */
260 static inline unsigned int __clz(unsigned int x)
261 {
262 unsigned int ret;
263
264 asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
265
266 return ret;
267 }
268
269 /*
270 * fls() returns zero if the input is zero, otherwise returns the bit
271 * position of the last set bit, where the LSB is 1 and MSB is 32.
272 */
273 static inline int fls(int x)
274 {
275 if (__builtin_constant_p(x))
276 return constant_fls(x);
277
278 return 32 - __clz(x);
279 }
280
281 /*
282 * __fls() returns the bit position of the last bit set, where the
283 * LSB is 0 and MSB is 31. Zero input is undefined.
284 */
285 static inline unsigned long __fls(unsigned long x)
286 {
287 return fls(x) - 1;
288 }
289
290 /*
291 * ffs() returns zero if the input was zero, otherwise returns the bit
292 * position of the first set bit, where the LSB is 1 and MSB is 32.
293 */
294 static inline int ffs(int x)
295 {
296 return fls(x & -x);
297 }
298
299 /*
300 * __ffs() returns the bit position of the first bit set, where the
301 * LSB is 0 and MSB is 31. Zero input is undefined.
302 */
303 static inline unsigned long __ffs(unsigned long x)
304 {
305 return ffs(x) - 1;
306 }
307
308 #define ffz(x) __ffs( ~(x) )
309
310 #endif
311
312 #include <asm-generic/bitops/fls64.h>
313
314 #include <asm-generic/bitops/sched.h>
315 #include <asm-generic/bitops/hweight.h>
316 #include <asm-generic/bitops/lock.h>
317
318 #ifdef __ARMEB__
319
320 static inline int find_first_zero_bit_le(const void *p, unsigned size)
321 {
322 return _find_first_zero_bit_le(p, size);
323 }
324 #define find_first_zero_bit_le find_first_zero_bit_le
325
326 static inline int find_next_zero_bit_le(const void *p, int size, int offset)
327 {
328 return _find_next_zero_bit_le(p, size, offset);
329 }
330 #define find_next_zero_bit_le find_next_zero_bit_le
331
332 static inline int find_next_bit_le(const void *p, int size, int offset)
333 {
334 return _find_next_bit_le(p, size, offset);
335 }
336 #define find_next_bit_le find_next_bit_le
337
338 #endif
339
340 #include <asm-generic/bitops/le.h>
341
342 /*
343 * Ext2 is defined to use little-endian byte ordering.
344 */
345 #include <asm-generic/bitops/ext2-atomic-setbit.h>
346
347 #endif /* __KERNEL__ */
348
349 #endif /* _ARM_BITOPS_H */