]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/include/asm/kvm_mmu.h
ca62f95f3b4c95664acd7c39bf4a5112b28dfca2
[mirror_ubuntu-bionic-kernel.git] / arch / arm / include / asm / kvm_mmu.h
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #ifndef __ARM_KVM_MMU_H__
20 #define __ARM_KVM_MMU_H__
21
22 #include <asm/memory.h>
23 #include <asm/page.h>
24
25 /*
26 * We directly use the kernel VA for the HYP, as we can directly share
27 * the mapping (HTTBR "covers" TTBR1).
28 */
29 #define kern_hyp_va(kva) (kva)
30
31 /* Contrary to arm64, there is no need to generate a PC-relative address */
32 #define hyp_symbol_addr(s) \
33 ({ \
34 typeof(s) *addr = &(s); \
35 addr; \
36 })
37
38 /*
39 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
40 */
41 #define KVM_MMU_CACHE_MIN_PAGES 2
42
43 #ifndef __ASSEMBLY__
44
45 #include <linux/highmem.h>
46 #include <asm/cacheflush.h>
47 #include <asm/pgalloc.h>
48 #include <asm/stage2_pgtable.h>
49
50 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
51 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
52 void free_hyp_pgds(void);
53
54 void stage2_unmap_vm(struct kvm *kvm);
55 int kvm_alloc_stage2_pgd(struct kvm *kvm);
56 void kvm_free_stage2_pgd(struct kvm *kvm);
57 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
58 phys_addr_t pa, unsigned long size, bool writable);
59
60 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
61
62 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
63
64 phys_addr_t kvm_mmu_get_httbr(void);
65 phys_addr_t kvm_get_idmap_vector(void);
66 int kvm_mmu_init(void);
67 void kvm_clear_hyp_idmap(void);
68
69 static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd)
70 {
71 *pmd = new_pmd;
72 dsb(ishst);
73 }
74
75 static inline void kvm_set_pte(pte_t *pte, pte_t new_pte)
76 {
77 *pte = new_pte;
78 dsb(ishst);
79 }
80
81 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
82 {
83 pte_val(pte) |= L_PTE_S2_RDWR;
84 return pte;
85 }
86
87 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
88 {
89 pmd_val(pmd) |= L_PMD_S2_RDWR;
90 return pmd;
91 }
92
93 static inline void kvm_set_s2pte_readonly(pte_t *pte)
94 {
95 pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
96 }
97
98 static inline bool kvm_s2pte_readonly(pte_t *pte)
99 {
100 return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
101 }
102
103 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
104 {
105 pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
106 }
107
108 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
109 {
110 return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
111 }
112
113 static inline bool kvm_page_empty(void *ptr)
114 {
115 struct page *ptr_page = virt_to_page(ptr);
116 return page_count(ptr_page) == 1;
117 }
118
119 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
120 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
121 #define kvm_pud_table_empty(kvm, pudp) false
122
123 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
124 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
125 #define hyp_pud_table_empty(pudp) false
126
127 struct kvm;
128
129 #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
130
131 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
132 {
133 return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
134 }
135
136 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
137 kvm_pfn_t pfn,
138 unsigned long size)
139 {
140 /*
141 * If we are going to insert an instruction page and the icache is
142 * either VIPT or PIPT, there is a potential problem where the host
143 * (or another VM) may have used the same page as this guest, and we
144 * read incorrect data from the icache. If we're using a PIPT cache,
145 * we can invalidate just that page, but if we are using a VIPT cache
146 * we need to invalidate the entire icache - damn shame - as written
147 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
148 *
149 * VIVT caches are tagged using both the ASID and the VMID and doesn't
150 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
151 *
152 * We need to do this through a kernel mapping (using the
153 * user-space mapping has proved to be the wrong
154 * solution). For that, we need to kmap one page at a time,
155 * and iterate over the range.
156 */
157
158 VM_BUG_ON(size & ~PAGE_MASK);
159
160 while (size) {
161 void *va = kmap_atomic_pfn(pfn);
162
163 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
164
165 if (icache_is_pipt())
166 __cpuc_coherent_user_range((unsigned long)va,
167 (unsigned long)va + PAGE_SIZE);
168
169 size -= PAGE_SIZE;
170 pfn++;
171
172 kunmap_atomic(va);
173 }
174
175 if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) {
176 /* any kind of VIPT cache */
177 __flush_icache_all();
178 }
179 }
180
181 static inline void __kvm_flush_dcache_pte(pte_t pte)
182 {
183 void *va = kmap_atomic(pte_page(pte));
184
185 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
186
187 kunmap_atomic(va);
188 }
189
190 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
191 {
192 unsigned long size = PMD_SIZE;
193 kvm_pfn_t pfn = pmd_pfn(pmd);
194
195 while (size) {
196 void *va = kmap_atomic_pfn(pfn);
197
198 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
199
200 pfn++;
201 size -= PAGE_SIZE;
202
203 kunmap_atomic(va);
204 }
205 }
206
207 static inline void __kvm_flush_dcache_pud(pud_t pud)
208 {
209 }
210
211 #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
212
213 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
214 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
215
216 static inline bool __kvm_cpu_uses_extended_idmap(void)
217 {
218 return false;
219 }
220
221 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
222 pgd_t *hyp_pgd,
223 pgd_t *merged_hyp_pgd,
224 unsigned long hyp_idmap_start) { }
225
226 static inline unsigned int kvm_get_vmid_bits(void)
227 {
228 return 8;
229 }
230
231 /*
232 * We are not in the kvm->srcu critical section most of the time, so we take
233 * the SRCU read lock here. Since we copy the data from the user page, we
234 * can immediately drop the lock again.
235 */
236 static inline int kvm_read_guest_lock(struct kvm *kvm,
237 gpa_t gpa, void *data, unsigned long len)
238 {
239 int srcu_idx = srcu_read_lock(&kvm->srcu);
240 int ret = kvm_read_guest(kvm, gpa, data, len);
241
242 srcu_read_unlock(&kvm->srcu, srcu_idx);
243
244 return ret;
245 }
246
247 static inline void *kvm_get_hyp_vector(void)
248 {
249 switch(read_cpuid_part()) {
250 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
251 case ARM_CPU_PART_CORTEX_A12:
252 case ARM_CPU_PART_CORTEX_A17:
253 {
254 extern char __kvm_hyp_vector_bp_inv[];
255 return kvm_ksym_ref(__kvm_hyp_vector_bp_inv);
256 }
257
258 case ARM_CPU_PART_BRAHMA_B15:
259 case ARM_CPU_PART_CORTEX_A15:
260 {
261 extern char __kvm_hyp_vector_ic_inv[];
262 return kvm_ksym_ref(__kvm_hyp_vector_ic_inv);
263 }
264 #endif
265 default:
266 {
267 extern char __kvm_hyp_vector[];
268 return kvm_ksym_ref(__kvm_hyp_vector);
269 }
270 }
271 }
272
273 static inline int kvm_map_vectors(void)
274 {
275 return 0;
276 }
277
278 static inline int hyp_map_aux_data(void)
279 {
280 return 0;
281 }
282
283 #endif /* !__ASSEMBLY__ */
284
285 #endif /* __ARM_KVM_MMU_H__ */