]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/include/asm/pgtable.h
Merge remote-tracking branches 'spi/topic/devprop', 'spi/topic/fsl', 'spi/topic/fsl...
[mirror_ubuntu-bionic-kernel.git] / arch / arm / include / asm / pgtable.h
1 /*
2 * arch/arm/include/asm/pgtable.h
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
12
13 #include <linux/const.h>
14 #include <asm/proc-fns.h>
15
16 #ifndef CONFIG_MMU
17
18 #include <asm-generic/4level-fixup.h>
19 #include <asm/pgtable-nommu.h>
20
21 #else
22
23 #define __ARCH_USE_5LEVEL_HACK
24 #include <asm-generic/pgtable-nopud.h>
25 #include <asm/memory.h>
26 #include <asm/pgtable-hwdef.h>
27
28
29 #include <asm/tlbflush.h>
30
31 #ifdef CONFIG_ARM_LPAE
32 #include <asm/pgtable-3level.h>
33 #else
34 #include <asm/pgtable-2level.h>
35 #endif
36
37 /*
38 * Just any arbitrary offset to the start of the vmalloc VM area: the
39 * current 8MB value just means that there will be a 8MB "hole" after the
40 * physical memory until the kernel virtual memory starts. That means that
41 * any out-of-bounds memory accesses will hopefully be caught.
42 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
43 * area for the same reason. ;)
44 */
45 #define VMALLOC_OFFSET (8*1024*1024)
46 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
47 #define VMALLOC_END 0xff800000UL
48
49 #define LIBRARY_TEXT_START 0x0c000000
50
51 #ifndef __ASSEMBLY__
52 extern void __pte_error(const char *file, int line, pte_t);
53 extern void __pmd_error(const char *file, int line, pmd_t);
54 extern void __pgd_error(const char *file, int line, pgd_t);
55
56 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
57 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
58 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
59
60 /*
61 * This is the lowest virtual address we can permit any user space
62 * mapping to be mapped at. This is particularly important for
63 * non-high vector CPUs.
64 */
65 #define FIRST_USER_ADDRESS (PAGE_SIZE * 2)
66
67 /*
68 * Use TASK_SIZE as the ceiling argument for free_pgtables() and
69 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd
70 * page shared between user and kernel).
71 */
72 #ifdef CONFIG_ARM_LPAE
73 #define USER_PGTABLES_CEILING TASK_SIZE
74 #endif
75
76 /*
77 * The pgprot_* and protection_map entries will be fixed up in runtime
78 * to include the cachable and bufferable bits based on memory policy,
79 * as well as any architecture dependent bits like global/ASID and SMP
80 * shared mapping bits.
81 */
82 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
83
84 extern pgprot_t pgprot_user;
85 extern pgprot_t pgprot_kernel;
86 extern pgprot_t pgprot_hyp_device;
87 extern pgprot_t pgprot_s2;
88 extern pgprot_t pgprot_s2_device;
89
90 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
91
92 #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
93 #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
94 #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
95 #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
96 #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
97 #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
98 #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
99 #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
100 #define PAGE_KERNEL_EXEC pgprot_kernel
101 #define PAGE_HYP _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_XN)
102 #define PAGE_HYP_EXEC _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY)
103 #define PAGE_HYP_RO _MOD_PROT(pgprot_kernel, L_PTE_HYP | L_PTE_RDONLY | L_PTE_XN)
104 #define PAGE_HYP_DEVICE _MOD_PROT(pgprot_hyp_device, L_PTE_HYP)
105 #define PAGE_S2 _MOD_PROT(pgprot_s2, L_PTE_S2_RDONLY)
106 #define PAGE_S2_DEVICE _MOD_PROT(pgprot_s2_device, L_PTE_S2_RDONLY)
107
108 #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
109 #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
110 #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
111 #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
112 #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
113 #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
114 #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
115
116 #define __pgprot_modify(prot,mask,bits) \
117 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
118
119 #define pgprot_noncached(prot) \
120 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
121
122 #define pgprot_writecombine(prot) \
123 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
124
125 #define pgprot_stronglyordered(prot) \
126 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
127
128 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
129 #define pgprot_dmacoherent(prot) \
130 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
131 #define __HAVE_PHYS_MEM_ACCESS_PROT
132 struct file;
133 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
134 unsigned long size, pgprot_t vma_prot);
135 #else
136 #define pgprot_dmacoherent(prot) \
137 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
138 #endif
139
140 #endif /* __ASSEMBLY__ */
141
142 /*
143 * The table below defines the page protection levels that we insert into our
144 * Linux page table version. These get translated into the best that the
145 * architecture can perform. Note that on most ARM hardware:
146 * 1) We cannot do execute protection
147 * 2) If we could do execute protection, then read is implied
148 * 3) write implies read permissions
149 */
150 #define __P000 __PAGE_NONE
151 #define __P001 __PAGE_READONLY
152 #define __P010 __PAGE_COPY
153 #define __P011 __PAGE_COPY
154 #define __P100 __PAGE_READONLY_EXEC
155 #define __P101 __PAGE_READONLY_EXEC
156 #define __P110 __PAGE_COPY_EXEC
157 #define __P111 __PAGE_COPY_EXEC
158
159 #define __S000 __PAGE_NONE
160 #define __S001 __PAGE_READONLY
161 #define __S010 __PAGE_SHARED
162 #define __S011 __PAGE_SHARED
163 #define __S100 __PAGE_READONLY_EXEC
164 #define __S101 __PAGE_READONLY_EXEC
165 #define __S110 __PAGE_SHARED_EXEC
166 #define __S111 __PAGE_SHARED_EXEC
167
168 #ifndef __ASSEMBLY__
169 /*
170 * ZERO_PAGE is a global shared page that is always zero: used
171 * for zero-mapped memory areas etc..
172 */
173 extern struct page *empty_zero_page;
174 #define ZERO_PAGE(vaddr) (empty_zero_page)
175
176
177 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
178
179 /* to find an entry in a page-table-directory */
180 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
181
182 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
183
184 /* to find an entry in a kernel page-table-directory */
185 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
186
187 #define pmd_none(pmd) (!pmd_val(pmd))
188
189 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
190 {
191 return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
192 }
193
194 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
195
196 #ifndef CONFIG_HIGHPTE
197 #define __pte_map(pmd) pmd_page_vaddr(*(pmd))
198 #define __pte_unmap(pte) do { } while (0)
199 #else
200 #define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
201 #define __pte_unmap(pte) kunmap_atomic(pte)
202 #endif
203
204 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
205
206 #define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
207
208 #define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
209 #define pte_unmap(pte) __pte_unmap(pte)
210
211 #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
212 #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
213
214 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
215 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
216
217 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
218
219 #define pte_isset(pte, val) ((u32)(val) == (val) ? pte_val(pte) & (val) \
220 : !!(pte_val(pte) & (val)))
221 #define pte_isclear(pte, val) (!(pte_val(pte) & (val)))
222
223 #define pte_none(pte) (!pte_val(pte))
224 #define pte_present(pte) (pte_isset((pte), L_PTE_PRESENT))
225 #define pte_valid(pte) (pte_isset((pte), L_PTE_VALID))
226 #define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
227 #define pte_write(pte) (pte_isclear((pte), L_PTE_RDONLY))
228 #define pte_dirty(pte) (pte_isset((pte), L_PTE_DIRTY))
229 #define pte_young(pte) (pte_isset((pte), L_PTE_YOUNG))
230 #define pte_exec(pte) (pte_isclear((pte), L_PTE_XN))
231
232 #define pte_valid_user(pte) \
233 (pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte))
234
235 #if __LINUX_ARM_ARCH__ < 6
236 static inline void __sync_icache_dcache(pte_t pteval)
237 {
238 }
239 #else
240 extern void __sync_icache_dcache(pte_t pteval);
241 #endif
242
243 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
244 pte_t *ptep, pte_t pteval)
245 {
246 unsigned long ext = 0;
247
248 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
249 if (!pte_special(pteval))
250 __sync_icache_dcache(pteval);
251 ext |= PTE_EXT_NG;
252 }
253
254 set_pte_ext(ptep, pteval, ext);
255 }
256
257 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
258 {
259 pte_val(pte) &= ~pgprot_val(prot);
260 return pte;
261 }
262
263 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
264 {
265 pte_val(pte) |= pgprot_val(prot);
266 return pte;
267 }
268
269 static inline pte_t pte_wrprotect(pte_t pte)
270 {
271 return set_pte_bit(pte, __pgprot(L_PTE_RDONLY));
272 }
273
274 static inline pte_t pte_mkwrite(pte_t pte)
275 {
276 return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY));
277 }
278
279 static inline pte_t pte_mkclean(pte_t pte)
280 {
281 return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY));
282 }
283
284 static inline pte_t pte_mkdirty(pte_t pte)
285 {
286 return set_pte_bit(pte, __pgprot(L_PTE_DIRTY));
287 }
288
289 static inline pte_t pte_mkold(pte_t pte)
290 {
291 return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG));
292 }
293
294 static inline pte_t pte_mkyoung(pte_t pte)
295 {
296 return set_pte_bit(pte, __pgprot(L_PTE_YOUNG));
297 }
298
299 static inline pte_t pte_mkexec(pte_t pte)
300 {
301 return clear_pte_bit(pte, __pgprot(L_PTE_XN));
302 }
303
304 static inline pte_t pte_mknexec(pte_t pte)
305 {
306 return set_pte_bit(pte, __pgprot(L_PTE_XN));
307 }
308
309 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
310 {
311 const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER |
312 L_PTE_NONE | L_PTE_VALID;
313 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
314 return pte;
315 }
316
317 /*
318 * Encode and decode a swap entry. Swap entries are stored in the Linux
319 * page tables as follows:
320 *
321 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
322 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
323 * <--------------- offset ------------------------> < type -> 0 0
324 *
325 * This gives us up to 31 swap files and 128GB per swap file. Note that
326 * the offset field is always non-zero.
327 */
328 #define __SWP_TYPE_SHIFT 2
329 #define __SWP_TYPE_BITS 5
330 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
331 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
332
333 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
334 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
335 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
336
337 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
338 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
339
340 /*
341 * It is an error for the kernel to have more swap files than we can
342 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
343 * is increased beyond what we presently support.
344 */
345 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
346
347 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
348 /* FIXME: this is not correct */
349 #define kern_addr_valid(addr) (1)
350
351 #include <asm-generic/pgtable.h>
352
353 /*
354 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
355 */
356 #define HAVE_ARCH_UNMAPPED_AREA
357 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
358
359 #define pgtable_cache_init() do { } while (0)
360
361 #endif /* !__ASSEMBLY__ */
362
363 #endif /* CONFIG_MMU */
364
365 #endif /* _ASMARM_PGTABLE_H */