]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm/kernel/kprobes.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-eoan-kernel.git] / arch / arm / kernel / kprobes.c
1 /*
2 * arch/arm/kernel/kprobes.c
3 *
4 * Kprobes on ARM
5 *
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
30
31 #define MIN_STACK_SIZE(addr) \
32 min((unsigned long)MAX_STACK_SIZE, \
33 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
34
35 #define flush_insns(addr, cnt) \
36 flush_icache_range((unsigned long)(addr), \
37 (unsigned long)(addr) + \
38 sizeof(kprobe_opcode_t) * (cnt))
39
40 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
41 #define JPROBE_MAGIC_ADDR 0xffffffff
42
43 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
44 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
45
46
47 int __kprobes arch_prepare_kprobe(struct kprobe *p)
48 {
49 kprobe_opcode_t insn;
50 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
51 unsigned long addr = (unsigned long)p->addr;
52 int is;
53
54 if (addr & 0x3 || in_exception_text(addr))
55 return -EINVAL;
56
57 insn = *p->addr;
58 p->opcode = insn;
59 p->ainsn.insn = tmp_insn;
60
61 switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
62 case INSN_REJECTED: /* not supported */
63 return -EINVAL;
64
65 case INSN_GOOD: /* instruction uses slot */
66 p->ainsn.insn = get_insn_slot();
67 if (!p->ainsn.insn)
68 return -ENOMEM;
69 for (is = 0; is < MAX_INSN_SIZE; ++is)
70 p->ainsn.insn[is] = tmp_insn[is];
71 flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
72 break;
73
74 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
75 p->ainsn.insn = NULL;
76 break;
77 }
78
79 return 0;
80 }
81
82 void __kprobes arch_arm_kprobe(struct kprobe *p)
83 {
84 *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
85 flush_insns(p->addr, 1);
86 }
87
88 /*
89 * The actual disarming is done here on each CPU and synchronized using
90 * stop_machine. This synchronization is necessary on SMP to avoid removing
91 * a probe between the moment the 'Undefined Instruction' exception is raised
92 * and the moment the exception handler reads the faulting instruction from
93 * memory.
94 */
95 int __kprobes __arch_disarm_kprobe(void *p)
96 {
97 struct kprobe *kp = p;
98 *kp->addr = kp->opcode;
99 flush_insns(kp->addr, 1);
100 return 0;
101 }
102
103 void __kprobes arch_disarm_kprobe(struct kprobe *p)
104 {
105 stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
106 }
107
108 void __kprobes arch_remove_kprobe(struct kprobe *p)
109 {
110 if (p->ainsn.insn) {
111 free_insn_slot(p->ainsn.insn, 0);
112 p->ainsn.insn = NULL;
113 }
114 }
115
116 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
117 {
118 kcb->prev_kprobe.kp = kprobe_running();
119 kcb->prev_kprobe.status = kcb->kprobe_status;
120 }
121
122 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
123 {
124 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
125 kcb->kprobe_status = kcb->prev_kprobe.status;
126 }
127
128 static void __kprobes set_current_kprobe(struct kprobe *p)
129 {
130 __get_cpu_var(current_kprobe) = p;
131 }
132
133 static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
134 struct kprobe_ctlblk *kcb)
135 {
136 regs->ARM_pc += 4;
137 p->ainsn.insn_handler(p, regs);
138 }
139
140 /*
141 * Called with IRQs disabled. IRQs must remain disabled from that point
142 * all the way until processing this kprobe is complete. The current
143 * kprobes implementation cannot process more than one nested level of
144 * kprobe, and that level is reserved for user kprobe handlers, so we can't
145 * risk encountering a new kprobe in an interrupt handler.
146 */
147 void __kprobes kprobe_handler(struct pt_regs *regs)
148 {
149 struct kprobe *p, *cur;
150 struct kprobe_ctlblk *kcb;
151 kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
152
153 kcb = get_kprobe_ctlblk();
154 cur = kprobe_running();
155 p = get_kprobe(addr);
156
157 if (p) {
158 if (cur) {
159 /* Kprobe is pending, so we're recursing. */
160 switch (kcb->kprobe_status) {
161 case KPROBE_HIT_ACTIVE:
162 case KPROBE_HIT_SSDONE:
163 /* A pre- or post-handler probe got us here. */
164 kprobes_inc_nmissed_count(p);
165 save_previous_kprobe(kcb);
166 set_current_kprobe(p);
167 kcb->kprobe_status = KPROBE_REENTER;
168 singlestep(p, regs, kcb);
169 restore_previous_kprobe(kcb);
170 break;
171 default:
172 /* impossible cases */
173 BUG();
174 }
175 } else {
176 set_current_kprobe(p);
177 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
178
179 /*
180 * If we have no pre-handler or it returned 0, we
181 * continue with normal processing. If we have a
182 * pre-handler and it returned non-zero, it prepped
183 * for calling the break_handler below on re-entry,
184 * so get out doing nothing more here.
185 */
186 if (!p->pre_handler || !p->pre_handler(p, regs)) {
187 kcb->kprobe_status = KPROBE_HIT_SS;
188 singlestep(p, regs, kcb);
189 if (p->post_handler) {
190 kcb->kprobe_status = KPROBE_HIT_SSDONE;
191 p->post_handler(p, regs, 0);
192 }
193 reset_current_kprobe();
194 }
195 }
196 } else if (cur) {
197 /* We probably hit a jprobe. Call its break handler. */
198 if (cur->break_handler && cur->break_handler(cur, regs)) {
199 kcb->kprobe_status = KPROBE_HIT_SS;
200 singlestep(cur, regs, kcb);
201 if (cur->post_handler) {
202 kcb->kprobe_status = KPROBE_HIT_SSDONE;
203 cur->post_handler(cur, regs, 0);
204 }
205 }
206 reset_current_kprobe();
207 } else {
208 /*
209 * The probe was removed and a race is in progress.
210 * There is nothing we can do about it. Let's restart
211 * the instruction. By the time we can restart, the
212 * real instruction will be there.
213 */
214 }
215 }
216
217 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
218 {
219 unsigned long flags;
220 local_irq_save(flags);
221 kprobe_handler(regs);
222 local_irq_restore(flags);
223 return 0;
224 }
225
226 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
227 {
228 struct kprobe *cur = kprobe_running();
229 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
230
231 switch (kcb->kprobe_status) {
232 case KPROBE_HIT_SS:
233 case KPROBE_REENTER:
234 /*
235 * We are here because the instruction being single
236 * stepped caused a page fault. We reset the current
237 * kprobe and the PC to point back to the probe address
238 * and allow the page fault handler to continue as a
239 * normal page fault.
240 */
241 regs->ARM_pc = (long)cur->addr;
242 if (kcb->kprobe_status == KPROBE_REENTER) {
243 restore_previous_kprobe(kcb);
244 } else {
245 reset_current_kprobe();
246 }
247 break;
248
249 case KPROBE_HIT_ACTIVE:
250 case KPROBE_HIT_SSDONE:
251 /*
252 * We increment the nmissed count for accounting,
253 * we can also use npre/npostfault count for accounting
254 * these specific fault cases.
255 */
256 kprobes_inc_nmissed_count(cur);
257
258 /*
259 * We come here because instructions in the pre/post
260 * handler caused the page_fault, this could happen
261 * if handler tries to access user space by
262 * copy_from_user(), get_user() etc. Let the
263 * user-specified handler try to fix it.
264 */
265 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
266 return 1;
267 break;
268
269 default:
270 break;
271 }
272
273 return 0;
274 }
275
276 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
277 unsigned long val, void *data)
278 {
279 /*
280 * notify_die() is currently never called on ARM,
281 * so this callback is currently empty.
282 */
283 return NOTIFY_DONE;
284 }
285
286 /*
287 * When a retprobed function returns, trampoline_handler() is called,
288 * calling the kretprobe's handler. We construct a struct pt_regs to
289 * give a view of registers r0-r11 to the user return-handler. This is
290 * not a complete pt_regs structure, but that should be plenty sufficient
291 * for kretprobe handlers which should normally be interested in r0 only
292 * anyway.
293 */
294 void __naked __kprobes kretprobe_trampoline(void)
295 {
296 __asm__ __volatile__ (
297 "stmdb sp!, {r0 - r11} \n\t"
298 "mov r0, sp \n\t"
299 "bl trampoline_handler \n\t"
300 "mov lr, r0 \n\t"
301 "ldmia sp!, {r0 - r11} \n\t"
302 "mov pc, lr \n\t"
303 : : : "memory");
304 }
305
306 /* Called from kretprobe_trampoline */
307 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
308 {
309 struct kretprobe_instance *ri = NULL;
310 struct hlist_head *head, empty_rp;
311 struct hlist_node *node, *tmp;
312 unsigned long flags, orig_ret_address = 0;
313 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
314
315 INIT_HLIST_HEAD(&empty_rp);
316 kretprobe_hash_lock(current, &head, &flags);
317
318 /*
319 * It is possible to have multiple instances associated with a given
320 * task either because multiple functions in the call path have
321 * a return probe installed on them, and/or more than one return
322 * probe was registered for a target function.
323 *
324 * We can handle this because:
325 * - instances are always inserted at the head of the list
326 * - when multiple return probes are registered for the same
327 * function, the first instance's ret_addr will point to the
328 * real return address, and all the rest will point to
329 * kretprobe_trampoline
330 */
331 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
332 if (ri->task != current)
333 /* another task is sharing our hash bucket */
334 continue;
335
336 if (ri->rp && ri->rp->handler) {
337 __get_cpu_var(current_kprobe) = &ri->rp->kp;
338 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
339 ri->rp->handler(ri, regs);
340 __get_cpu_var(current_kprobe) = NULL;
341 }
342
343 orig_ret_address = (unsigned long)ri->ret_addr;
344 recycle_rp_inst(ri, &empty_rp);
345
346 if (orig_ret_address != trampoline_address)
347 /*
348 * This is the real return address. Any other
349 * instances associated with this task are for
350 * other calls deeper on the call stack
351 */
352 break;
353 }
354
355 kretprobe_assert(ri, orig_ret_address, trampoline_address);
356 kretprobe_hash_unlock(current, &flags);
357
358 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
359 hlist_del(&ri->hlist);
360 kfree(ri);
361 }
362
363 return (void *)orig_ret_address;
364 }
365
366 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
367 struct pt_regs *regs)
368 {
369 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
370
371 /* Replace the return addr with trampoline addr. */
372 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
373 }
374
375 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
376 {
377 struct jprobe *jp = container_of(p, struct jprobe, kp);
378 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
379 long sp_addr = regs->ARM_sp;
380
381 kcb->jprobe_saved_regs = *regs;
382 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
383 regs->ARM_pc = (long)jp->entry;
384 regs->ARM_cpsr |= PSR_I_BIT;
385 preempt_disable();
386 return 1;
387 }
388
389 void __kprobes jprobe_return(void)
390 {
391 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
392
393 __asm__ __volatile__ (
394 /*
395 * Setup an empty pt_regs. Fill SP and PC fields as
396 * they're needed by longjmp_break_handler.
397 */
398 "sub sp, %0, %1 \n\t"
399 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
400 "str %0, [sp, %2] \n\t"
401 "str r0, [sp, %3] \n\t"
402 "mov r0, sp \n\t"
403 "bl kprobe_handler \n\t"
404
405 /*
406 * Return to the context saved by setjmp_pre_handler
407 * and restored by longjmp_break_handler.
408 */
409 "ldr r0, [sp, %4] \n\t"
410 "msr cpsr_cxsf, r0 \n\t"
411 "ldmia sp, {r0 - pc} \n\t"
412 :
413 : "r" (kcb->jprobe_saved_regs.ARM_sp),
414 "I" (sizeof(struct pt_regs)),
415 "J" (offsetof(struct pt_regs, ARM_sp)),
416 "J" (offsetof(struct pt_regs, ARM_pc)),
417 "J" (offsetof(struct pt_regs, ARM_cpsr))
418 : "memory", "cc");
419 }
420
421 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
422 {
423 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
424 long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
425 long orig_sp = regs->ARM_sp;
426 struct jprobe *jp = container_of(p, struct jprobe, kp);
427
428 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
429 if (orig_sp != stack_addr) {
430 struct pt_regs *saved_regs =
431 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
432 printk("current sp %lx does not match saved sp %lx\n",
433 orig_sp, stack_addr);
434 printk("Saved registers for jprobe %p\n", jp);
435 show_regs(saved_regs);
436 printk("Current registers\n");
437 show_regs(regs);
438 BUG();
439 }
440 *regs = kcb->jprobe_saved_regs;
441 memcpy((void *)stack_addr, kcb->jprobes_stack,
442 MIN_STACK_SIZE(stack_addr));
443 preempt_enable_no_resched();
444 return 1;
445 }
446 return 0;
447 }
448
449 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
450 {
451 return 0;
452 }
453
454 static struct undef_hook kprobes_break_hook = {
455 .instr_mask = 0xffffffff,
456 .instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
457 .cpsr_mask = MODE_MASK,
458 .cpsr_val = SVC_MODE,
459 .fn = kprobe_trap_handler,
460 };
461
462 int __init arch_init_kprobes()
463 {
464 arm_kprobe_decode_init();
465 register_undef_hook(&kprobes_break_hook);
466 return 0;
467 }