]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kernel/perf_event.c
Merge tag 'firewire-fix-vt6315' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
19 #include <linux/irq.h>
20 #include <linux/irqdesc.h>
21
22 #include <asm/irq_regs.h>
23 #include <asm/pmu.h>
24 #include <asm/stacktrace.h>
25
26 static int
27 armpmu_map_cache_event(const unsigned (*cache_map)
28 [PERF_COUNT_HW_CACHE_MAX]
29 [PERF_COUNT_HW_CACHE_OP_MAX]
30 [PERF_COUNT_HW_CACHE_RESULT_MAX],
31 u64 config)
32 {
33 unsigned int cache_type, cache_op, cache_result, ret;
34
35 cache_type = (config >> 0) & 0xff;
36 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
37 return -EINVAL;
38
39 cache_op = (config >> 8) & 0xff;
40 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
41 return -EINVAL;
42
43 cache_result = (config >> 16) & 0xff;
44 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
45 return -EINVAL;
46
47 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
48
49 if (ret == CACHE_OP_UNSUPPORTED)
50 return -ENOENT;
51
52 return ret;
53 }
54
55 static int
56 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
57 {
58 int mapping;
59
60 if (config >= PERF_COUNT_HW_MAX)
61 return -EINVAL;
62
63 mapping = (*event_map)[config];
64 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
65 }
66
67 static int
68 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
69 {
70 return (int)(config & raw_event_mask);
71 }
72
73 int
74 armpmu_map_event(struct perf_event *event,
75 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
76 const unsigned (*cache_map)
77 [PERF_COUNT_HW_CACHE_MAX]
78 [PERF_COUNT_HW_CACHE_OP_MAX]
79 [PERF_COUNT_HW_CACHE_RESULT_MAX],
80 u32 raw_event_mask)
81 {
82 u64 config = event->attr.config;
83
84 switch (event->attr.type) {
85 case PERF_TYPE_HARDWARE:
86 return armpmu_map_hw_event(event_map, config);
87 case PERF_TYPE_HW_CACHE:
88 return armpmu_map_cache_event(cache_map, config);
89 case PERF_TYPE_RAW:
90 return armpmu_map_raw_event(raw_event_mask, config);
91 }
92
93 return -ENOENT;
94 }
95
96 int armpmu_event_set_period(struct perf_event *event)
97 {
98 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
99 struct hw_perf_event *hwc = &event->hw;
100 s64 left = local64_read(&hwc->period_left);
101 s64 period = hwc->sample_period;
102 int ret = 0;
103
104 if (unlikely(left <= -period)) {
105 left = period;
106 local64_set(&hwc->period_left, left);
107 hwc->last_period = period;
108 ret = 1;
109 }
110
111 if (unlikely(left <= 0)) {
112 left += period;
113 local64_set(&hwc->period_left, left);
114 hwc->last_period = period;
115 ret = 1;
116 }
117
118 if (left > (s64)armpmu->max_period)
119 left = armpmu->max_period;
120
121 local64_set(&hwc->prev_count, (u64)-left);
122
123 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
124
125 perf_event_update_userpage(event);
126
127 return ret;
128 }
129
130 u64 armpmu_event_update(struct perf_event *event)
131 {
132 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
133 struct hw_perf_event *hwc = &event->hw;
134 u64 delta, prev_raw_count, new_raw_count;
135
136 again:
137 prev_raw_count = local64_read(&hwc->prev_count);
138 new_raw_count = armpmu->read_counter(event);
139
140 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
141 new_raw_count) != prev_raw_count)
142 goto again;
143
144 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
145
146 local64_add(delta, &event->count);
147 local64_sub(delta, &hwc->period_left);
148
149 return new_raw_count;
150 }
151
152 static void
153 armpmu_read(struct perf_event *event)
154 {
155 armpmu_event_update(event);
156 }
157
158 static void
159 armpmu_stop(struct perf_event *event, int flags)
160 {
161 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
162 struct hw_perf_event *hwc = &event->hw;
163
164 /*
165 * ARM pmu always has to update the counter, so ignore
166 * PERF_EF_UPDATE, see comments in armpmu_start().
167 */
168 if (!(hwc->state & PERF_HES_STOPPED)) {
169 armpmu->disable(event);
170 armpmu_event_update(event);
171 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
172 }
173 }
174
175 static void armpmu_start(struct perf_event *event, int flags)
176 {
177 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
178 struct hw_perf_event *hwc = &event->hw;
179
180 /*
181 * ARM pmu always has to reprogram the period, so ignore
182 * PERF_EF_RELOAD, see the comment below.
183 */
184 if (flags & PERF_EF_RELOAD)
185 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
186
187 hwc->state = 0;
188 /*
189 * Set the period again. Some counters can't be stopped, so when we
190 * were stopped we simply disabled the IRQ source and the counter
191 * may have been left counting. If we don't do this step then we may
192 * get an interrupt too soon or *way* too late if the overflow has
193 * happened since disabling.
194 */
195 armpmu_event_set_period(event);
196 armpmu->enable(event);
197 }
198
199 static void
200 armpmu_del(struct perf_event *event, int flags)
201 {
202 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
204 struct hw_perf_event *hwc = &event->hw;
205 int idx = hwc->idx;
206
207 armpmu_stop(event, PERF_EF_UPDATE);
208 hw_events->events[idx] = NULL;
209 clear_bit(idx, hw_events->used_mask);
210 if (armpmu->clear_event_idx)
211 armpmu->clear_event_idx(hw_events, event);
212
213 perf_event_update_userpage(event);
214 }
215
216 static int
217 armpmu_add(struct perf_event *event, int flags)
218 {
219 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
220 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
221 struct hw_perf_event *hwc = &event->hw;
222 int idx;
223 int err = 0;
224
225 perf_pmu_disable(event->pmu);
226
227 /* If we don't have a space for the counter then finish early. */
228 idx = armpmu->get_event_idx(hw_events, event);
229 if (idx < 0) {
230 err = idx;
231 goto out;
232 }
233
234 /*
235 * If there is an event in the counter we are going to use then make
236 * sure it is disabled.
237 */
238 event->hw.idx = idx;
239 armpmu->disable(event);
240 hw_events->events[idx] = event;
241
242 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
243 if (flags & PERF_EF_START)
244 armpmu_start(event, PERF_EF_RELOAD);
245
246 /* Propagate our changes to the userspace mapping. */
247 perf_event_update_userpage(event);
248
249 out:
250 perf_pmu_enable(event->pmu);
251 return err;
252 }
253
254 static int
255 validate_event(struct pmu_hw_events *hw_events,
256 struct perf_event *event)
257 {
258 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
259
260 if (is_software_event(event))
261 return 1;
262
263 if (event->state < PERF_EVENT_STATE_OFF)
264 return 1;
265
266 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
267 return 1;
268
269 return armpmu->get_event_idx(hw_events, event) >= 0;
270 }
271
272 static int
273 validate_group(struct perf_event *event)
274 {
275 struct perf_event *sibling, *leader = event->group_leader;
276 struct pmu_hw_events fake_pmu;
277 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
278
279 /*
280 * Initialise the fake PMU. We only need to populate the
281 * used_mask for the purposes of validation.
282 */
283 memset(fake_used_mask, 0, sizeof(fake_used_mask));
284 fake_pmu.used_mask = fake_used_mask;
285
286 if (!validate_event(&fake_pmu, leader))
287 return -EINVAL;
288
289 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
290 if (!validate_event(&fake_pmu, sibling))
291 return -EINVAL;
292 }
293
294 if (!validate_event(&fake_pmu, event))
295 return -EINVAL;
296
297 return 0;
298 }
299
300 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
301 {
302 struct arm_pmu *armpmu;
303 struct platform_device *plat_device;
304 struct arm_pmu_platdata *plat;
305 int ret;
306 u64 start_clock, finish_clock;
307
308 if (irq_is_percpu(irq))
309 dev = *(void **)dev;
310 armpmu = dev;
311 plat_device = armpmu->plat_device;
312 plat = dev_get_platdata(&plat_device->dev);
313
314 start_clock = sched_clock();
315 if (plat && plat->handle_irq)
316 ret = plat->handle_irq(irq, dev, armpmu->handle_irq);
317 else
318 ret = armpmu->handle_irq(irq, dev);
319 finish_clock = sched_clock();
320
321 perf_sample_event_took(finish_clock - start_clock);
322 return ret;
323 }
324
325 static void
326 armpmu_release_hardware(struct arm_pmu *armpmu)
327 {
328 armpmu->free_irq(armpmu);
329 pm_runtime_put_sync(&armpmu->plat_device->dev);
330 }
331
332 static int
333 armpmu_reserve_hardware(struct arm_pmu *armpmu)
334 {
335 int err;
336 struct platform_device *pmu_device = armpmu->plat_device;
337
338 if (!pmu_device)
339 return -ENODEV;
340
341 pm_runtime_get_sync(&pmu_device->dev);
342 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
343 if (err) {
344 armpmu_release_hardware(armpmu);
345 return err;
346 }
347
348 return 0;
349 }
350
351 static void
352 hw_perf_event_destroy(struct perf_event *event)
353 {
354 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
355 atomic_t *active_events = &armpmu->active_events;
356 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
357
358 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
359 armpmu_release_hardware(armpmu);
360 mutex_unlock(pmu_reserve_mutex);
361 }
362 }
363
364 static int
365 event_requires_mode_exclusion(struct perf_event_attr *attr)
366 {
367 return attr->exclude_idle || attr->exclude_user ||
368 attr->exclude_kernel || attr->exclude_hv;
369 }
370
371 static int
372 __hw_perf_event_init(struct perf_event *event)
373 {
374 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375 struct hw_perf_event *hwc = &event->hw;
376 int mapping;
377
378 mapping = armpmu->map_event(event);
379
380 if (mapping < 0) {
381 pr_debug("event %x:%llx not supported\n", event->attr.type,
382 event->attr.config);
383 return mapping;
384 }
385
386 /*
387 * We don't assign an index until we actually place the event onto
388 * hardware. Use -1 to signify that we haven't decided where to put it
389 * yet. For SMP systems, each core has it's own PMU so we can't do any
390 * clever allocation or constraints checking at this point.
391 */
392 hwc->idx = -1;
393 hwc->config_base = 0;
394 hwc->config = 0;
395 hwc->event_base = 0;
396
397 /*
398 * Check whether we need to exclude the counter from certain modes.
399 */
400 if ((!armpmu->set_event_filter ||
401 armpmu->set_event_filter(hwc, &event->attr)) &&
402 event_requires_mode_exclusion(&event->attr)) {
403 pr_debug("ARM performance counters do not support "
404 "mode exclusion\n");
405 return -EOPNOTSUPP;
406 }
407
408 /*
409 * Store the event encoding into the config_base field.
410 */
411 hwc->config_base |= (unsigned long)mapping;
412
413 if (!is_sampling_event(event)) {
414 /*
415 * For non-sampling runs, limit the sample_period to half
416 * of the counter width. That way, the new counter value
417 * is far less likely to overtake the previous one unless
418 * you have some serious IRQ latency issues.
419 */
420 hwc->sample_period = armpmu->max_period >> 1;
421 hwc->last_period = hwc->sample_period;
422 local64_set(&hwc->period_left, hwc->sample_period);
423 }
424
425 if (event->group_leader != event) {
426 if (validate_group(event) != 0)
427 return -EINVAL;
428 }
429
430 return 0;
431 }
432
433 static int armpmu_event_init(struct perf_event *event)
434 {
435 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
436 int err = 0;
437 atomic_t *active_events = &armpmu->active_events;
438
439 /* does not support taken branch sampling */
440 if (has_branch_stack(event))
441 return -EOPNOTSUPP;
442
443 if (armpmu->map_event(event) == -ENOENT)
444 return -ENOENT;
445
446 event->destroy = hw_perf_event_destroy;
447
448 if (!atomic_inc_not_zero(active_events)) {
449 mutex_lock(&armpmu->reserve_mutex);
450 if (atomic_read(active_events) == 0)
451 err = armpmu_reserve_hardware(armpmu);
452
453 if (!err)
454 atomic_inc(active_events);
455 mutex_unlock(&armpmu->reserve_mutex);
456 }
457
458 if (err)
459 return err;
460
461 err = __hw_perf_event_init(event);
462 if (err)
463 hw_perf_event_destroy(event);
464
465 return err;
466 }
467
468 static void armpmu_enable(struct pmu *pmu)
469 {
470 struct arm_pmu *armpmu = to_arm_pmu(pmu);
471 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
472 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
473
474 if (enabled)
475 armpmu->start(armpmu);
476 }
477
478 static void armpmu_disable(struct pmu *pmu)
479 {
480 struct arm_pmu *armpmu = to_arm_pmu(pmu);
481 armpmu->stop(armpmu);
482 }
483
484 #ifdef CONFIG_PM_RUNTIME
485 static int armpmu_runtime_resume(struct device *dev)
486 {
487 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
488
489 if (plat && plat->runtime_resume)
490 return plat->runtime_resume(dev);
491
492 return 0;
493 }
494
495 static int armpmu_runtime_suspend(struct device *dev)
496 {
497 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
498
499 if (plat && plat->runtime_suspend)
500 return plat->runtime_suspend(dev);
501
502 return 0;
503 }
504 #endif
505
506 const struct dev_pm_ops armpmu_dev_pm_ops = {
507 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
508 };
509
510 static void armpmu_init(struct arm_pmu *armpmu)
511 {
512 atomic_set(&armpmu->active_events, 0);
513 mutex_init(&armpmu->reserve_mutex);
514
515 armpmu->pmu = (struct pmu) {
516 .pmu_enable = armpmu_enable,
517 .pmu_disable = armpmu_disable,
518 .event_init = armpmu_event_init,
519 .add = armpmu_add,
520 .del = armpmu_del,
521 .start = armpmu_start,
522 .stop = armpmu_stop,
523 .read = armpmu_read,
524 };
525 }
526
527 int armpmu_register(struct arm_pmu *armpmu, int type)
528 {
529 armpmu_init(armpmu);
530 pm_runtime_enable(&armpmu->plat_device->dev);
531 pr_info("enabled with %s PMU driver, %d counters available\n",
532 armpmu->name, armpmu->num_events);
533 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
534 }
535
536 /*
537 * Callchain handling code.
538 */
539
540 /*
541 * The registers we're interested in are at the end of the variable
542 * length saved register structure. The fp points at the end of this
543 * structure so the address of this struct is:
544 * (struct frame_tail *)(xxx->fp)-1
545 *
546 * This code has been adapted from the ARM OProfile support.
547 */
548 struct frame_tail {
549 struct frame_tail __user *fp;
550 unsigned long sp;
551 unsigned long lr;
552 } __attribute__((packed));
553
554 /*
555 * Get the return address for a single stackframe and return a pointer to the
556 * next frame tail.
557 */
558 static struct frame_tail __user *
559 user_backtrace(struct frame_tail __user *tail,
560 struct perf_callchain_entry *entry)
561 {
562 struct frame_tail buftail;
563
564 /* Also check accessibility of one struct frame_tail beyond */
565 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
566 return NULL;
567 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
568 return NULL;
569
570 perf_callchain_store(entry, buftail.lr);
571
572 /*
573 * Frame pointers should strictly progress back up the stack
574 * (towards higher addresses).
575 */
576 if (tail + 1 >= buftail.fp)
577 return NULL;
578
579 return buftail.fp - 1;
580 }
581
582 void
583 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
584 {
585 struct frame_tail __user *tail;
586
587 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
588 /* We don't support guest os callchain now */
589 return;
590 }
591
592 perf_callchain_store(entry, regs->ARM_pc);
593 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
594
595 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
596 tail && !((unsigned long)tail & 0x3))
597 tail = user_backtrace(tail, entry);
598 }
599
600 /*
601 * Gets called by walk_stackframe() for every stackframe. This will be called
602 * whist unwinding the stackframe and is like a subroutine return so we use
603 * the PC.
604 */
605 static int
606 callchain_trace(struct stackframe *fr,
607 void *data)
608 {
609 struct perf_callchain_entry *entry = data;
610 perf_callchain_store(entry, fr->pc);
611 return 0;
612 }
613
614 void
615 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
616 {
617 struct stackframe fr;
618
619 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
620 /* We don't support guest os callchain now */
621 return;
622 }
623
624 fr.fp = regs->ARM_fp;
625 fr.sp = regs->ARM_sp;
626 fr.lr = regs->ARM_lr;
627 fr.pc = regs->ARM_pc;
628 walk_stackframe(&fr, callchain_trace, entry);
629 }
630
631 unsigned long perf_instruction_pointer(struct pt_regs *regs)
632 {
633 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
634 return perf_guest_cbs->get_guest_ip();
635
636 return instruction_pointer(regs);
637 }
638
639 unsigned long perf_misc_flags(struct pt_regs *regs)
640 {
641 int misc = 0;
642
643 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
644 if (perf_guest_cbs->is_user_mode())
645 misc |= PERF_RECORD_MISC_GUEST_USER;
646 else
647 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
648 } else {
649 if (user_mode(regs))
650 misc |= PERF_RECORD_MISC_USER;
651 else
652 misc |= PERF_RECORD_MISC_KERNEL;
653 }
654
655 return misc;
656 }