]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm/kernel/perf_event.c
ARM: perf: add type field to struct arm_pmu
[mirror_ubuntu-eoan-kernel.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/perf_event.h>
19 #include <linux/platform_device.h>
20 #include <linux/spinlock.h>
21 #include <linux/uaccess.h>
22
23 #include <asm/cputype.h>
24 #include <asm/irq.h>
25 #include <asm/irq_regs.h>
26 #include <asm/pmu.h>
27 #include <asm/stacktrace.h>
28
29 /*
30 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
31 * another platform that supports more, we need to increase this to be the
32 * largest of all platforms.
33 *
34 * ARMv7 supports up to 32 events:
35 * cycle counter CCNT + 31 events counters CNT0..30.
36 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
37 */
38 #define ARMPMU_MAX_HWEVENTS 32
39
40 /* The events for a given CPU. */
41 struct cpu_hw_events {
42 /*
43 * The events that are active on the CPU for the given index.
44 */
45 struct perf_event *events[ARMPMU_MAX_HWEVENTS];
46
47 /*
48 * A 1 bit for an index indicates that the counter is being used for
49 * an event. A 0 means that the counter can be used.
50 */
51 unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
52
53 /*
54 * Hardware lock to serialize accesses to PMU registers. Needed for the
55 * read/modify/write sequences.
56 */
57 raw_spinlock_t pmu_lock;
58 };
59 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
60
61 struct arm_pmu {
62 enum arm_perf_pmu_ids id;
63 enum arm_pmu_type type;
64 cpumask_t active_irqs;
65 const char *name;
66 irqreturn_t (*handle_irq)(int irq_num, void *dev);
67 void (*enable)(struct hw_perf_event *evt, int idx);
68 void (*disable)(struct hw_perf_event *evt, int idx);
69 int (*get_event_idx)(struct cpu_hw_events *cpuc,
70 struct hw_perf_event *hwc);
71 int (*set_event_filter)(struct hw_perf_event *evt,
72 struct perf_event_attr *attr);
73 u32 (*read_counter)(int idx);
74 void (*write_counter)(int idx, u32 val);
75 void (*start)(void);
76 void (*stop)(void);
77 void (*reset)(void *);
78 const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
79 [PERF_COUNT_HW_CACHE_OP_MAX]
80 [PERF_COUNT_HW_CACHE_RESULT_MAX];
81 const unsigned (*event_map)[PERF_COUNT_HW_MAX];
82 u32 raw_event_mask;
83 int num_events;
84 atomic_t active_events;
85 struct mutex reserve_mutex;
86 u64 max_period;
87 struct platform_device *plat_device;
88 struct cpu_hw_events *(*get_hw_events)(void);
89 };
90
91 /* Set at runtime when we know what CPU type we are. */
92 static struct arm_pmu *armpmu;
93
94 enum arm_perf_pmu_ids
95 armpmu_get_pmu_id(void)
96 {
97 int id = -ENODEV;
98
99 if (armpmu != NULL)
100 id = armpmu->id;
101
102 return id;
103 }
104 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
105
106 int
107 armpmu_get_max_events(void)
108 {
109 int max_events = 0;
110
111 if (armpmu != NULL)
112 max_events = armpmu->num_events;
113
114 return max_events;
115 }
116 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
117
118 int perf_num_counters(void)
119 {
120 return armpmu_get_max_events();
121 }
122 EXPORT_SYMBOL_GPL(perf_num_counters);
123
124 #define HW_OP_UNSUPPORTED 0xFFFF
125
126 #define C(_x) \
127 PERF_COUNT_HW_CACHE_##_x
128
129 #define CACHE_OP_UNSUPPORTED 0xFFFF
130
131 static int
132 armpmu_map_cache_event(u64 config)
133 {
134 unsigned int cache_type, cache_op, cache_result, ret;
135
136 cache_type = (config >> 0) & 0xff;
137 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
138 return -EINVAL;
139
140 cache_op = (config >> 8) & 0xff;
141 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
142 return -EINVAL;
143
144 cache_result = (config >> 16) & 0xff;
145 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
146 return -EINVAL;
147
148 ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
149
150 if (ret == CACHE_OP_UNSUPPORTED)
151 return -ENOENT;
152
153 return ret;
154 }
155
156 static int
157 armpmu_map_event(u64 config)
158 {
159 int mapping = (*armpmu->event_map)[config];
160 return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
161 }
162
163 static int
164 armpmu_map_raw_event(u64 config)
165 {
166 return (int)(config & armpmu->raw_event_mask);
167 }
168
169 static int
170 armpmu_event_set_period(struct perf_event *event,
171 struct hw_perf_event *hwc,
172 int idx)
173 {
174 s64 left = local64_read(&hwc->period_left);
175 s64 period = hwc->sample_period;
176 int ret = 0;
177
178 if (unlikely(left <= -period)) {
179 left = period;
180 local64_set(&hwc->period_left, left);
181 hwc->last_period = period;
182 ret = 1;
183 }
184
185 if (unlikely(left <= 0)) {
186 left += period;
187 local64_set(&hwc->period_left, left);
188 hwc->last_period = period;
189 ret = 1;
190 }
191
192 if (left > (s64)armpmu->max_period)
193 left = armpmu->max_period;
194
195 local64_set(&hwc->prev_count, (u64)-left);
196
197 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
198
199 perf_event_update_userpage(event);
200
201 return ret;
202 }
203
204 static u64
205 armpmu_event_update(struct perf_event *event,
206 struct hw_perf_event *hwc,
207 int idx, int overflow)
208 {
209 u64 delta, prev_raw_count, new_raw_count;
210
211 again:
212 prev_raw_count = local64_read(&hwc->prev_count);
213 new_raw_count = armpmu->read_counter(idx);
214
215 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
216 new_raw_count) != prev_raw_count)
217 goto again;
218
219 new_raw_count &= armpmu->max_period;
220 prev_raw_count &= armpmu->max_period;
221
222 if (overflow)
223 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
224 else
225 delta = new_raw_count - prev_raw_count;
226
227 local64_add(delta, &event->count);
228 local64_sub(delta, &hwc->period_left);
229
230 return new_raw_count;
231 }
232
233 static void
234 armpmu_read(struct perf_event *event)
235 {
236 struct hw_perf_event *hwc = &event->hw;
237
238 /* Don't read disabled counters! */
239 if (hwc->idx < 0)
240 return;
241
242 armpmu_event_update(event, hwc, hwc->idx, 0);
243 }
244
245 static void
246 armpmu_stop(struct perf_event *event, int flags)
247 {
248 struct hw_perf_event *hwc = &event->hw;
249
250 /*
251 * ARM pmu always has to update the counter, so ignore
252 * PERF_EF_UPDATE, see comments in armpmu_start().
253 */
254 if (!(hwc->state & PERF_HES_STOPPED)) {
255 armpmu->disable(hwc, hwc->idx);
256 barrier(); /* why? */
257 armpmu_event_update(event, hwc, hwc->idx, 0);
258 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
259 }
260 }
261
262 static void
263 armpmu_start(struct perf_event *event, int flags)
264 {
265 struct hw_perf_event *hwc = &event->hw;
266
267 /*
268 * ARM pmu always has to reprogram the period, so ignore
269 * PERF_EF_RELOAD, see the comment below.
270 */
271 if (flags & PERF_EF_RELOAD)
272 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
273
274 hwc->state = 0;
275 /*
276 * Set the period again. Some counters can't be stopped, so when we
277 * were stopped we simply disabled the IRQ source and the counter
278 * may have been left counting. If we don't do this step then we may
279 * get an interrupt too soon or *way* too late if the overflow has
280 * happened since disabling.
281 */
282 armpmu_event_set_period(event, hwc, hwc->idx);
283 armpmu->enable(hwc, hwc->idx);
284 }
285
286 static void
287 armpmu_del(struct perf_event *event, int flags)
288 {
289 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
290 struct hw_perf_event *hwc = &event->hw;
291 int idx = hwc->idx;
292
293 WARN_ON(idx < 0);
294
295 armpmu_stop(event, PERF_EF_UPDATE);
296 cpuc->events[idx] = NULL;
297 clear_bit(idx, cpuc->used_mask);
298
299 perf_event_update_userpage(event);
300 }
301
302 static int
303 armpmu_add(struct perf_event *event, int flags)
304 {
305 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
306 struct hw_perf_event *hwc = &event->hw;
307 int idx;
308 int err = 0;
309
310 perf_pmu_disable(event->pmu);
311
312 /* If we don't have a space for the counter then finish early. */
313 idx = armpmu->get_event_idx(cpuc, hwc);
314 if (idx < 0) {
315 err = idx;
316 goto out;
317 }
318
319 /*
320 * If there is an event in the counter we are going to use then make
321 * sure it is disabled.
322 */
323 event->hw.idx = idx;
324 armpmu->disable(hwc, idx);
325 cpuc->events[idx] = event;
326
327 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
328 if (flags & PERF_EF_START)
329 armpmu_start(event, PERF_EF_RELOAD);
330
331 /* Propagate our changes to the userspace mapping. */
332 perf_event_update_userpage(event);
333
334 out:
335 perf_pmu_enable(event->pmu);
336 return err;
337 }
338
339 static struct pmu pmu;
340
341 static int
342 validate_event(struct cpu_hw_events *cpuc,
343 struct perf_event *event)
344 {
345 struct hw_perf_event fake_event = event->hw;
346 struct pmu *leader_pmu = event->group_leader->pmu;
347
348 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
349 return 1;
350
351 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
352 }
353
354 static int
355 validate_group(struct perf_event *event)
356 {
357 struct perf_event *sibling, *leader = event->group_leader;
358 struct cpu_hw_events fake_pmu;
359
360 memset(&fake_pmu, 0, sizeof(fake_pmu));
361
362 if (!validate_event(&fake_pmu, leader))
363 return -ENOSPC;
364
365 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
366 if (!validate_event(&fake_pmu, sibling))
367 return -ENOSPC;
368 }
369
370 if (!validate_event(&fake_pmu, event))
371 return -ENOSPC;
372
373 return 0;
374 }
375
376 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
377 {
378 struct platform_device *plat_device = armpmu->plat_device;
379 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
380
381 return plat->handle_irq(irq, dev, armpmu->handle_irq);
382 }
383
384 static void
385 armpmu_release_hardware(void)
386 {
387 int i, irq, irqs;
388 struct platform_device *pmu_device = armpmu->plat_device;
389
390 irqs = min(pmu_device->num_resources, num_possible_cpus());
391
392 for (i = 0; i < irqs; ++i) {
393 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
394 continue;
395 irq = platform_get_irq(pmu_device, i);
396 if (irq >= 0)
397 free_irq(irq, NULL);
398 }
399
400 release_pmu(armpmu->type);
401 }
402
403 static int
404 armpmu_reserve_hardware(void)
405 {
406 struct arm_pmu_platdata *plat;
407 irq_handler_t handle_irq;
408 int i, err, irq, irqs;
409 struct platform_device *pmu_device = armpmu->plat_device;
410
411 err = reserve_pmu(armpmu->type);
412 if (err) {
413 pr_warning("unable to reserve pmu\n");
414 return err;
415 }
416
417 plat = dev_get_platdata(&pmu_device->dev);
418 if (plat && plat->handle_irq)
419 handle_irq = armpmu_platform_irq;
420 else
421 handle_irq = armpmu->handle_irq;
422
423 irqs = min(pmu_device->num_resources, num_possible_cpus());
424 if (irqs < 1) {
425 pr_err("no irqs for PMUs defined\n");
426 return -ENODEV;
427 }
428
429 for (i = 0; i < irqs; ++i) {
430 err = 0;
431 irq = platform_get_irq(pmu_device, i);
432 if (irq < 0)
433 continue;
434
435 /*
436 * If we have a single PMU interrupt that we can't shift,
437 * assume that we're running on a uniprocessor machine and
438 * continue. Otherwise, continue without this interrupt.
439 */
440 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
441 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
442 irq, i);
443 continue;
444 }
445
446 err = request_irq(irq, handle_irq,
447 IRQF_DISABLED | IRQF_NOBALANCING,
448 "arm-pmu", NULL);
449 if (err) {
450 pr_err("unable to request IRQ%d for ARM PMU counters\n",
451 irq);
452 armpmu_release_hardware();
453 return err;
454 }
455
456 cpumask_set_cpu(i, &armpmu->active_irqs);
457 }
458
459 return 0;
460 }
461
462 static void
463 hw_perf_event_destroy(struct perf_event *event)
464 {
465 atomic_t *active_events = &armpmu->active_events;
466 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
467
468 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
469 armpmu_release_hardware();
470 mutex_unlock(pmu_reserve_mutex);
471 }
472 }
473
474 static int
475 event_requires_mode_exclusion(struct perf_event_attr *attr)
476 {
477 return attr->exclude_idle || attr->exclude_user ||
478 attr->exclude_kernel || attr->exclude_hv;
479 }
480
481 static int
482 __hw_perf_event_init(struct perf_event *event)
483 {
484 struct hw_perf_event *hwc = &event->hw;
485 int mapping, err;
486
487 /* Decode the generic type into an ARM event identifier. */
488 if (PERF_TYPE_HARDWARE == event->attr.type) {
489 mapping = armpmu_map_event(event->attr.config);
490 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
491 mapping = armpmu_map_cache_event(event->attr.config);
492 } else if (PERF_TYPE_RAW == event->attr.type) {
493 mapping = armpmu_map_raw_event(event->attr.config);
494 } else {
495 pr_debug("event type %x not supported\n", event->attr.type);
496 return -EOPNOTSUPP;
497 }
498
499 if (mapping < 0) {
500 pr_debug("event %x:%llx not supported\n", event->attr.type,
501 event->attr.config);
502 return mapping;
503 }
504
505 /*
506 * We don't assign an index until we actually place the event onto
507 * hardware. Use -1 to signify that we haven't decided where to put it
508 * yet. For SMP systems, each core has it's own PMU so we can't do any
509 * clever allocation or constraints checking at this point.
510 */
511 hwc->idx = -1;
512 hwc->config_base = 0;
513 hwc->config = 0;
514 hwc->event_base = 0;
515
516 /*
517 * Check whether we need to exclude the counter from certain modes.
518 */
519 if ((!armpmu->set_event_filter ||
520 armpmu->set_event_filter(hwc, &event->attr)) &&
521 event_requires_mode_exclusion(&event->attr)) {
522 pr_debug("ARM performance counters do not support "
523 "mode exclusion\n");
524 return -EPERM;
525 }
526
527 /*
528 * Store the event encoding into the config_base field.
529 */
530 hwc->config_base |= (unsigned long)mapping;
531
532 if (!hwc->sample_period) {
533 hwc->sample_period = armpmu->max_period;
534 hwc->last_period = hwc->sample_period;
535 local64_set(&hwc->period_left, hwc->sample_period);
536 }
537
538 err = 0;
539 if (event->group_leader != event) {
540 err = validate_group(event);
541 if (err)
542 return -EINVAL;
543 }
544
545 return err;
546 }
547
548 static int armpmu_event_init(struct perf_event *event)
549 {
550 int err = 0;
551 atomic_t *active_events = &armpmu->active_events;
552
553 switch (event->attr.type) {
554 case PERF_TYPE_RAW:
555 case PERF_TYPE_HARDWARE:
556 case PERF_TYPE_HW_CACHE:
557 break;
558
559 default:
560 return -ENOENT;
561 }
562
563 event->destroy = hw_perf_event_destroy;
564
565 if (!atomic_inc_not_zero(active_events)) {
566 mutex_lock(&armpmu->reserve_mutex);
567 if (atomic_read(active_events) == 0)
568 err = armpmu_reserve_hardware();
569
570 if (!err)
571 atomic_inc(active_events);
572 mutex_unlock(&armpmu->reserve_mutex);
573 }
574
575 if (err)
576 return err;
577
578 err = __hw_perf_event_init(event);
579 if (err)
580 hw_perf_event_destroy(event);
581
582 return err;
583 }
584
585 static void armpmu_enable(struct pmu *pmu)
586 {
587 /* Enable all of the perf events on hardware. */
588 int idx, enabled = 0;
589 struct cpu_hw_events *cpuc = armpmu->get_hw_events();
590
591 for (idx = 0; idx < armpmu->num_events; ++idx) {
592 struct perf_event *event = cpuc->events[idx];
593
594 if (!event)
595 continue;
596
597 armpmu->enable(&event->hw, idx);
598 enabled = 1;
599 }
600
601 if (enabled)
602 armpmu->start();
603 }
604
605 static void armpmu_disable(struct pmu *pmu)
606 {
607 armpmu->stop();
608 }
609
610 static struct pmu pmu = {
611 .pmu_enable = armpmu_enable,
612 .pmu_disable = armpmu_disable,
613 .event_init = armpmu_event_init,
614 .add = armpmu_add,
615 .del = armpmu_del,
616 .start = armpmu_start,
617 .stop = armpmu_stop,
618 .read = armpmu_read,
619 };
620
621 static void __init armpmu_init(struct arm_pmu *armpmu)
622 {
623 atomic_set(&armpmu->active_events, 0);
624 mutex_init(&armpmu->reserve_mutex);
625 }
626
627 /* Include the PMU-specific implementations. */
628 #include "perf_event_xscale.c"
629 #include "perf_event_v6.c"
630 #include "perf_event_v7.c"
631
632 /*
633 * Ensure the PMU has sane values out of reset.
634 * This requires SMP to be available, so exists as a separate initcall.
635 */
636 static int __init
637 armpmu_reset(void)
638 {
639 if (armpmu && armpmu->reset)
640 return on_each_cpu(armpmu->reset, NULL, 1);
641 return 0;
642 }
643 arch_initcall(armpmu_reset);
644
645 /*
646 * PMU platform driver and devicetree bindings.
647 */
648 static struct of_device_id armpmu_of_device_ids[] = {
649 {.compatible = "arm,cortex-a9-pmu"},
650 {.compatible = "arm,cortex-a8-pmu"},
651 {.compatible = "arm,arm1136-pmu"},
652 {.compatible = "arm,arm1176-pmu"},
653 {},
654 };
655
656 static struct platform_device_id armpmu_plat_device_ids[] = {
657 {.name = "arm-pmu"},
658 {},
659 };
660
661 static int __devinit armpmu_device_probe(struct platform_device *pdev)
662 {
663 armpmu->plat_device = pdev;
664 return 0;
665 }
666
667 static struct platform_driver armpmu_driver = {
668 .driver = {
669 .name = "arm-pmu",
670 .of_match_table = armpmu_of_device_ids,
671 },
672 .probe = armpmu_device_probe,
673 .id_table = armpmu_plat_device_ids,
674 };
675
676 static int __init register_pmu_driver(void)
677 {
678 return platform_driver_register(&armpmu_driver);
679 }
680 device_initcall(register_pmu_driver);
681
682 static struct cpu_hw_events *armpmu_get_cpu_events(void)
683 {
684 return &__get_cpu_var(cpu_hw_events);
685 }
686
687 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
688 {
689 int cpu;
690 for_each_possible_cpu(cpu) {
691 struct cpu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
692 raw_spin_lock_init(&events->pmu_lock);
693 }
694 armpmu->get_hw_events = armpmu_get_cpu_events;
695 armpmu->type = ARM_PMU_DEVICE_CPU;
696 }
697
698 /*
699 * CPU PMU identification and registration.
700 */
701 static int __init
702 init_hw_perf_events(void)
703 {
704 unsigned long cpuid = read_cpuid_id();
705 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
706 unsigned long part_number = (cpuid & 0xFFF0);
707
708 /* ARM Ltd CPUs. */
709 if (0x41 == implementor) {
710 switch (part_number) {
711 case 0xB360: /* ARM1136 */
712 case 0xB560: /* ARM1156 */
713 case 0xB760: /* ARM1176 */
714 armpmu = armv6pmu_init();
715 break;
716 case 0xB020: /* ARM11mpcore */
717 armpmu = armv6mpcore_pmu_init();
718 break;
719 case 0xC080: /* Cortex-A8 */
720 armpmu = armv7_a8_pmu_init();
721 break;
722 case 0xC090: /* Cortex-A9 */
723 armpmu = armv7_a9_pmu_init();
724 break;
725 case 0xC050: /* Cortex-A5 */
726 armpmu = armv7_a5_pmu_init();
727 break;
728 case 0xC0F0: /* Cortex-A15 */
729 armpmu = armv7_a15_pmu_init();
730 break;
731 }
732 /* Intel CPUs [xscale]. */
733 } else if (0x69 == implementor) {
734 part_number = (cpuid >> 13) & 0x7;
735 switch (part_number) {
736 case 1:
737 armpmu = xscale1pmu_init();
738 break;
739 case 2:
740 armpmu = xscale2pmu_init();
741 break;
742 }
743 }
744
745 if (armpmu) {
746 pr_info("enabled with %s PMU driver, %d counters available\n",
747 armpmu->name, armpmu->num_events);
748 cpu_pmu_init(armpmu);
749 armpmu_init(armpmu);
750 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
751 } else {
752 pr_info("no hardware support available\n");
753 }
754
755 return 0;
756 }
757 early_initcall(init_hw_perf_events);
758
759 /*
760 * Callchain handling code.
761 */
762
763 /*
764 * The registers we're interested in are at the end of the variable
765 * length saved register structure. The fp points at the end of this
766 * structure so the address of this struct is:
767 * (struct frame_tail *)(xxx->fp)-1
768 *
769 * This code has been adapted from the ARM OProfile support.
770 */
771 struct frame_tail {
772 struct frame_tail __user *fp;
773 unsigned long sp;
774 unsigned long lr;
775 } __attribute__((packed));
776
777 /*
778 * Get the return address for a single stackframe and return a pointer to the
779 * next frame tail.
780 */
781 static struct frame_tail __user *
782 user_backtrace(struct frame_tail __user *tail,
783 struct perf_callchain_entry *entry)
784 {
785 struct frame_tail buftail;
786
787 /* Also check accessibility of one struct frame_tail beyond */
788 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
789 return NULL;
790 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
791 return NULL;
792
793 perf_callchain_store(entry, buftail.lr);
794
795 /*
796 * Frame pointers should strictly progress back up the stack
797 * (towards higher addresses).
798 */
799 if (tail + 1 >= buftail.fp)
800 return NULL;
801
802 return buftail.fp - 1;
803 }
804
805 void
806 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
807 {
808 struct frame_tail __user *tail;
809
810
811 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
812
813 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
814 tail && !((unsigned long)tail & 0x3))
815 tail = user_backtrace(tail, entry);
816 }
817
818 /*
819 * Gets called by walk_stackframe() for every stackframe. This will be called
820 * whist unwinding the stackframe and is like a subroutine return so we use
821 * the PC.
822 */
823 static int
824 callchain_trace(struct stackframe *fr,
825 void *data)
826 {
827 struct perf_callchain_entry *entry = data;
828 perf_callchain_store(entry, fr->pc);
829 return 0;
830 }
831
832 void
833 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
834 {
835 struct stackframe fr;
836
837 fr.fp = regs->ARM_fp;
838 fr.sp = regs->ARM_sp;
839 fr.lr = regs->ARM_lr;
840 fr.pc = regs->ARM_pc;
841 walk_stackframe(&fr, callchain_trace, entry);
842 }