]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kernel/process.c
regulator: arizona: Add regulator specific device tree binding document
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kernel / process.c
1 /*
2 * linux/arch/arm/kernel/process.c
3 *
4 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
5 * Original Copyright (C) 1995 Linus Torvalds
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <stdarg.h>
12
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/interrupt.h>
21 #include <linux/kallsyms.h>
22 #include <linux/init.h>
23 #include <linux/elfcore.h>
24 #include <linux/pm.h>
25 #include <linux/tick.h>
26 #include <linux/utsname.h>
27 #include <linux/uaccess.h>
28 #include <linux/random.h>
29 #include <linux/hw_breakpoint.h>
30 #include <linux/leds.h>
31
32 #include <asm/processor.h>
33 #include <asm/thread_notify.h>
34 #include <asm/stacktrace.h>
35 #include <asm/system_misc.h>
36 #include <asm/mach/time.h>
37 #include <asm/tls.h>
38 #include <asm/vdso.h>
39
40 #ifdef CONFIG_CC_STACKPROTECTOR
41 #include <linux/stackprotector.h>
42 unsigned long __stack_chk_guard __read_mostly;
43 EXPORT_SYMBOL(__stack_chk_guard);
44 #endif
45
46 static const char *processor_modes[] __maybe_unused = {
47 "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
48 "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
49 "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
50 "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
51 };
52
53 static const char *isa_modes[] __maybe_unused = {
54 "ARM" , "Thumb" , "Jazelle", "ThumbEE"
55 };
56
57 /*
58 * This is our default idle handler.
59 */
60
61 void (*arm_pm_idle)(void);
62
63 /*
64 * Called from the core idle loop.
65 */
66
67 void arch_cpu_idle(void)
68 {
69 if (arm_pm_idle)
70 arm_pm_idle();
71 else
72 cpu_do_idle();
73 local_irq_enable();
74 }
75
76 void arch_cpu_idle_prepare(void)
77 {
78 local_fiq_enable();
79 }
80
81 void arch_cpu_idle_enter(void)
82 {
83 ledtrig_cpu(CPU_LED_IDLE_START);
84 #ifdef CONFIG_PL310_ERRATA_769419
85 wmb();
86 #endif
87 }
88
89 void arch_cpu_idle_exit(void)
90 {
91 ledtrig_cpu(CPU_LED_IDLE_END);
92 }
93
94 void __show_regs(struct pt_regs *regs)
95 {
96 unsigned long flags;
97 char buf[64];
98
99 show_regs_print_info(KERN_DEFAULT);
100
101 print_symbol("PC is at %s\n", instruction_pointer(regs));
102 print_symbol("LR is at %s\n", regs->ARM_lr);
103 printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
104 "sp : %08lx ip : %08lx fp : %08lx\n",
105 regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
106 regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
107 printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
108 regs->ARM_r10, regs->ARM_r9,
109 regs->ARM_r8);
110 printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
111 regs->ARM_r7, regs->ARM_r6,
112 regs->ARM_r5, regs->ARM_r4);
113 printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
114 regs->ARM_r3, regs->ARM_r2,
115 regs->ARM_r1, regs->ARM_r0);
116
117 flags = regs->ARM_cpsr;
118 buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
119 buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
120 buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
121 buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
122 buf[4] = '\0';
123
124 #ifndef CONFIG_CPU_V7M
125 {
126 unsigned int domain = get_domain();
127 const char *segment;
128
129 #ifdef CONFIG_CPU_SW_DOMAIN_PAN
130 /*
131 * Get the domain register for the parent context. In user
132 * mode, we don't save the DACR, so lets use what it should
133 * be. For other modes, we place it after the pt_regs struct.
134 */
135 if (user_mode(regs))
136 domain = DACR_UACCESS_ENABLE;
137 else
138 domain = *(unsigned int *)(regs + 1);
139 #endif
140
141 if ((domain & domain_mask(DOMAIN_USER)) ==
142 domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
143 segment = "none";
144 else if (get_fs() == get_ds())
145 segment = "kernel";
146 else
147 segment = "user";
148
149 printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
150 buf, interrupts_enabled(regs) ? "n" : "ff",
151 fast_interrupts_enabled(regs) ? "n" : "ff",
152 processor_modes[processor_mode(regs)],
153 isa_modes[isa_mode(regs)], segment);
154 }
155 #else
156 printk("xPSR: %08lx\n", regs->ARM_cpsr);
157 #endif
158
159 #ifdef CONFIG_CPU_CP15
160 {
161 unsigned int ctrl;
162
163 buf[0] = '\0';
164 #ifdef CONFIG_CPU_CP15_MMU
165 {
166 unsigned int transbase, dac = get_domain();
167 asm("mrc p15, 0, %0, c2, c0\n\t"
168 : "=r" (transbase));
169 snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
170 transbase, dac);
171 }
172 #endif
173 asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
174
175 printk("Control: %08x%s\n", ctrl, buf);
176 }
177 #endif
178 }
179
180 void show_regs(struct pt_regs * regs)
181 {
182 __show_regs(regs);
183 dump_stack();
184 }
185
186 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
187
188 EXPORT_SYMBOL_GPL(thread_notify_head);
189
190 /*
191 * Free current thread data structures etc..
192 */
193 void exit_thread(void)
194 {
195 thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
196 }
197
198 void flush_thread(void)
199 {
200 struct thread_info *thread = current_thread_info();
201 struct task_struct *tsk = current;
202
203 flush_ptrace_hw_breakpoint(tsk);
204
205 memset(thread->used_cp, 0, sizeof(thread->used_cp));
206 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
207 memset(&thread->fpstate, 0, sizeof(union fp_state));
208
209 flush_tls();
210
211 thread_notify(THREAD_NOTIFY_FLUSH, thread);
212 }
213
214 void release_thread(struct task_struct *dead_task)
215 {
216 }
217
218 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
219
220 int
221 copy_thread(unsigned long clone_flags, unsigned long stack_start,
222 unsigned long stk_sz, struct task_struct *p)
223 {
224 struct thread_info *thread = task_thread_info(p);
225 struct pt_regs *childregs = task_pt_regs(p);
226
227 memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
228
229 /*
230 * Copy the initial value of the domain access control register
231 * from the current thread: thread->addr_limit will have been
232 * copied from the current thread via setup_thread_stack() in
233 * kernel/fork.c
234 */
235 thread->cpu_domain = get_domain();
236
237 if (likely(!(p->flags & PF_KTHREAD))) {
238 *childregs = *current_pt_regs();
239 childregs->ARM_r0 = 0;
240 if (stack_start)
241 childregs->ARM_sp = stack_start;
242 } else {
243 memset(childregs, 0, sizeof(struct pt_regs));
244 thread->cpu_context.r4 = stk_sz;
245 thread->cpu_context.r5 = stack_start;
246 childregs->ARM_cpsr = SVC_MODE;
247 }
248 thread->cpu_context.pc = (unsigned long)ret_from_fork;
249 thread->cpu_context.sp = (unsigned long)childregs;
250
251 clear_ptrace_hw_breakpoint(p);
252
253 if (clone_flags & CLONE_SETTLS)
254 thread->tp_value[0] = childregs->ARM_r3;
255 thread->tp_value[1] = get_tpuser();
256
257 thread_notify(THREAD_NOTIFY_COPY, thread);
258
259 return 0;
260 }
261
262 /*
263 * Fill in the task's elfregs structure for a core dump.
264 */
265 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
266 {
267 elf_core_copy_regs(elfregs, task_pt_regs(t));
268 return 1;
269 }
270
271 /*
272 * fill in the fpe structure for a core dump...
273 */
274 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
275 {
276 struct thread_info *thread = current_thread_info();
277 int used_math = thread->used_cp[1] | thread->used_cp[2];
278
279 if (used_math)
280 memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
281
282 return used_math != 0;
283 }
284 EXPORT_SYMBOL(dump_fpu);
285
286 unsigned long get_wchan(struct task_struct *p)
287 {
288 struct stackframe frame;
289 unsigned long stack_page;
290 int count = 0;
291 if (!p || p == current || p->state == TASK_RUNNING)
292 return 0;
293
294 frame.fp = thread_saved_fp(p);
295 frame.sp = thread_saved_sp(p);
296 frame.lr = 0; /* recovered from the stack */
297 frame.pc = thread_saved_pc(p);
298 stack_page = (unsigned long)task_stack_page(p);
299 do {
300 if (frame.sp < stack_page ||
301 frame.sp >= stack_page + THREAD_SIZE ||
302 unwind_frame(&frame) < 0)
303 return 0;
304 if (!in_sched_functions(frame.pc))
305 return frame.pc;
306 } while (count ++ < 16);
307 return 0;
308 }
309
310 unsigned long arch_randomize_brk(struct mm_struct *mm)
311 {
312 unsigned long range_end = mm->brk + 0x02000000;
313 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
314 }
315
316 #ifdef CONFIG_MMU
317 #ifdef CONFIG_KUSER_HELPERS
318 /*
319 * The vectors page is always readable from user space for the
320 * atomic helpers. Insert it into the gate_vma so that it is visible
321 * through ptrace and /proc/<pid>/mem.
322 */
323 static struct vm_area_struct gate_vma = {
324 .vm_start = 0xffff0000,
325 .vm_end = 0xffff0000 + PAGE_SIZE,
326 .vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
327 };
328
329 static int __init gate_vma_init(void)
330 {
331 gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
332 return 0;
333 }
334 arch_initcall(gate_vma_init);
335
336 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
337 {
338 return &gate_vma;
339 }
340
341 int in_gate_area(struct mm_struct *mm, unsigned long addr)
342 {
343 return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
344 }
345
346 int in_gate_area_no_mm(unsigned long addr)
347 {
348 return in_gate_area(NULL, addr);
349 }
350 #define is_gate_vma(vma) ((vma) == &gate_vma)
351 #else
352 #define is_gate_vma(vma) 0
353 #endif
354
355 const char *arch_vma_name(struct vm_area_struct *vma)
356 {
357 return is_gate_vma(vma) ? "[vectors]" : NULL;
358 }
359
360 /* If possible, provide a placement hint at a random offset from the
361 * stack for the sigpage and vdso pages.
362 */
363 static unsigned long sigpage_addr(const struct mm_struct *mm,
364 unsigned int npages)
365 {
366 unsigned long offset;
367 unsigned long first;
368 unsigned long last;
369 unsigned long addr;
370 unsigned int slots;
371
372 first = PAGE_ALIGN(mm->start_stack);
373
374 last = TASK_SIZE - (npages << PAGE_SHIFT);
375
376 /* No room after stack? */
377 if (first > last)
378 return 0;
379
380 /* Just enough room? */
381 if (first == last)
382 return first;
383
384 slots = ((last - first) >> PAGE_SHIFT) + 1;
385
386 offset = get_random_int() % slots;
387
388 addr = first + (offset << PAGE_SHIFT);
389
390 return addr;
391 }
392
393 static struct page *signal_page;
394 extern struct page *get_signal_page(void);
395
396 static const struct vm_special_mapping sigpage_mapping = {
397 .name = "[sigpage]",
398 .pages = &signal_page,
399 };
400
401 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
402 {
403 struct mm_struct *mm = current->mm;
404 struct vm_area_struct *vma;
405 unsigned long npages;
406 unsigned long addr;
407 unsigned long hint;
408 int ret = 0;
409
410 if (!signal_page)
411 signal_page = get_signal_page();
412 if (!signal_page)
413 return -ENOMEM;
414
415 npages = 1; /* for sigpage */
416 npages += vdso_total_pages;
417
418 down_write(&mm->mmap_sem);
419 hint = sigpage_addr(mm, npages);
420 addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
421 if (IS_ERR_VALUE(addr)) {
422 ret = addr;
423 goto up_fail;
424 }
425
426 vma = _install_special_mapping(mm, addr, PAGE_SIZE,
427 VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
428 &sigpage_mapping);
429
430 if (IS_ERR(vma)) {
431 ret = PTR_ERR(vma);
432 goto up_fail;
433 }
434
435 mm->context.sigpage = addr;
436
437 /* Unlike the sigpage, failure to install the vdso is unlikely
438 * to be fatal to the process, so no error check needed
439 * here.
440 */
441 arm_install_vdso(mm, addr + PAGE_SIZE);
442
443 up_fail:
444 up_write(&mm->mmap_sem);
445 return ret;
446 }
447 #endif