]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kernel/setup.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kernel / setup.c
1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_iommu.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 #include <linux/psci.h>
35
36 #include <asm/unified.h>
37 #include <asm/cp15.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/elf.h>
41 #include <asm/fixmap.h>
42 #include <asm/procinfo.h>
43 #include <asm/psci.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <asm/smp_plat.h>
47 #include <asm/mach-types.h>
48 #include <asm/cacheflush.h>
49 #include <asm/cachetype.h>
50 #include <asm/tlbflush.h>
51 #include <asm/xen/hypervisor.h>
52
53 #include <asm/prom.h>
54 #include <asm/mach/arch.h>
55 #include <asm/mach/irq.h>
56 #include <asm/mach/time.h>
57 #include <asm/system_info.h>
58 #include <asm/system_misc.h>
59 #include <asm/traps.h>
60 #include <asm/unwind.h>
61 #include <asm/memblock.h>
62 #include <asm/virt.h>
63
64 #include "atags.h"
65
66
67 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68 char fpe_type[8];
69
70 static int __init fpe_setup(char *line)
71 {
72 memcpy(fpe_type, line, 8);
73 return 1;
74 }
75
76 __setup("fpe=", fpe_setup);
77 #endif
78
79 extern void init_default_cache_policy(unsigned long);
80 extern void paging_init(const struct machine_desc *desc);
81 extern void early_paging_init(const struct machine_desc *);
82 extern void sanity_check_meminfo(void);
83 extern enum reboot_mode reboot_mode;
84 extern void setup_dma_zone(const struct machine_desc *desc);
85
86 unsigned int processor_id;
87 EXPORT_SYMBOL(processor_id);
88 unsigned int __machine_arch_type __read_mostly;
89 EXPORT_SYMBOL(__machine_arch_type);
90 unsigned int cacheid __read_mostly;
91 EXPORT_SYMBOL(cacheid);
92
93 unsigned int __atags_pointer __initdata;
94
95 unsigned int system_rev;
96 EXPORT_SYMBOL(system_rev);
97
98 const char *system_serial;
99 EXPORT_SYMBOL(system_serial);
100
101 unsigned int system_serial_low;
102 EXPORT_SYMBOL(system_serial_low);
103
104 unsigned int system_serial_high;
105 EXPORT_SYMBOL(system_serial_high);
106
107 unsigned int elf_hwcap __read_mostly;
108 EXPORT_SYMBOL(elf_hwcap);
109
110 unsigned int elf_hwcap2 __read_mostly;
111 EXPORT_SYMBOL(elf_hwcap2);
112
113
114 #ifdef MULTI_CPU
115 struct processor processor __read_mostly;
116 #endif
117 #ifdef MULTI_TLB
118 struct cpu_tlb_fns cpu_tlb __read_mostly;
119 #endif
120 #ifdef MULTI_USER
121 struct cpu_user_fns cpu_user __read_mostly;
122 #endif
123 #ifdef MULTI_CACHE
124 struct cpu_cache_fns cpu_cache __read_mostly;
125 #endif
126 #ifdef CONFIG_OUTER_CACHE
127 struct outer_cache_fns outer_cache __read_mostly;
128 EXPORT_SYMBOL(outer_cache);
129 #endif
130
131 /*
132 * Cached cpu_architecture() result for use by assembler code.
133 * C code should use the cpu_architecture() function instead of accessing this
134 * variable directly.
135 */
136 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
137
138 struct stack {
139 u32 irq[3];
140 u32 abt[3];
141 u32 und[3];
142 u32 fiq[3];
143 } ____cacheline_aligned;
144
145 #ifndef CONFIG_CPU_V7M
146 static struct stack stacks[NR_CPUS];
147 #endif
148
149 char elf_platform[ELF_PLATFORM_SIZE];
150 EXPORT_SYMBOL(elf_platform);
151
152 static const char *cpu_name;
153 static const char *machine_name;
154 static char __initdata cmd_line[COMMAND_LINE_SIZE];
155 const struct machine_desc *machine_desc __initdata;
156
157 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
158 #define ENDIANNESS ((char)endian_test.l)
159
160 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
161
162 /*
163 * Standard memory resources
164 */
165 static struct resource mem_res[] = {
166 {
167 .name = "Video RAM",
168 .start = 0,
169 .end = 0,
170 .flags = IORESOURCE_MEM
171 },
172 {
173 .name = "Kernel code",
174 .start = 0,
175 .end = 0,
176 .flags = IORESOURCE_MEM
177 },
178 {
179 .name = "Kernel data",
180 .start = 0,
181 .end = 0,
182 .flags = IORESOURCE_MEM
183 }
184 };
185
186 #define video_ram mem_res[0]
187 #define kernel_code mem_res[1]
188 #define kernel_data mem_res[2]
189
190 static struct resource io_res[] = {
191 {
192 .name = "reserved",
193 .start = 0x3bc,
194 .end = 0x3be,
195 .flags = IORESOURCE_IO | IORESOURCE_BUSY
196 },
197 {
198 .name = "reserved",
199 .start = 0x378,
200 .end = 0x37f,
201 .flags = IORESOURCE_IO | IORESOURCE_BUSY
202 },
203 {
204 .name = "reserved",
205 .start = 0x278,
206 .end = 0x27f,
207 .flags = IORESOURCE_IO | IORESOURCE_BUSY
208 }
209 };
210
211 #define lp0 io_res[0]
212 #define lp1 io_res[1]
213 #define lp2 io_res[2]
214
215 static const char *proc_arch[] = {
216 "undefined/unknown",
217 "3",
218 "4",
219 "4T",
220 "5",
221 "5T",
222 "5TE",
223 "5TEJ",
224 "6TEJ",
225 "7",
226 "7M",
227 "?(12)",
228 "?(13)",
229 "?(14)",
230 "?(15)",
231 "?(16)",
232 "?(17)",
233 };
234
235 #ifdef CONFIG_CPU_V7M
236 static int __get_cpu_architecture(void)
237 {
238 return CPU_ARCH_ARMv7M;
239 }
240 #else
241 static int __get_cpu_architecture(void)
242 {
243 int cpu_arch;
244
245 if ((read_cpuid_id() & 0x0008f000) == 0) {
246 cpu_arch = CPU_ARCH_UNKNOWN;
247 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
248 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
249 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
250 cpu_arch = (read_cpuid_id() >> 16) & 7;
251 if (cpu_arch)
252 cpu_arch += CPU_ARCH_ARMv3;
253 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
254 /* Revised CPUID format. Read the Memory Model Feature
255 * Register 0 and check for VMSAv7 or PMSAv7 */
256 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
257 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
258 (mmfr0 & 0x000000f0) >= 0x00000030)
259 cpu_arch = CPU_ARCH_ARMv7;
260 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
261 (mmfr0 & 0x000000f0) == 0x00000020)
262 cpu_arch = CPU_ARCH_ARMv6;
263 else
264 cpu_arch = CPU_ARCH_UNKNOWN;
265 } else
266 cpu_arch = CPU_ARCH_UNKNOWN;
267
268 return cpu_arch;
269 }
270 #endif
271
272 int __pure cpu_architecture(void)
273 {
274 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
275
276 return __cpu_architecture;
277 }
278
279 static int cpu_has_aliasing_icache(unsigned int arch)
280 {
281 int aliasing_icache;
282 unsigned int id_reg, num_sets, line_size;
283
284 /* PIPT caches never alias. */
285 if (icache_is_pipt())
286 return 0;
287
288 /* arch specifies the register format */
289 switch (arch) {
290 case CPU_ARCH_ARMv7:
291 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
292 : /* No output operands */
293 : "r" (1));
294 isb();
295 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
296 : "=r" (id_reg));
297 line_size = 4 << ((id_reg & 0x7) + 2);
298 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
299 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
300 break;
301 case CPU_ARCH_ARMv6:
302 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
303 break;
304 default:
305 /* I-cache aliases will be handled by D-cache aliasing code */
306 aliasing_icache = 0;
307 }
308
309 return aliasing_icache;
310 }
311
312 static void __init cacheid_init(void)
313 {
314 unsigned int arch = cpu_architecture();
315
316 if (arch == CPU_ARCH_ARMv7M) {
317 cacheid = 0;
318 } else if (arch >= CPU_ARCH_ARMv6) {
319 unsigned int cachetype = read_cpuid_cachetype();
320 if ((cachetype & (7 << 29)) == 4 << 29) {
321 /* ARMv7 register format */
322 arch = CPU_ARCH_ARMv7;
323 cacheid = CACHEID_VIPT_NONALIASING;
324 switch (cachetype & (3 << 14)) {
325 case (1 << 14):
326 cacheid |= CACHEID_ASID_TAGGED;
327 break;
328 case (3 << 14):
329 cacheid |= CACHEID_PIPT;
330 break;
331 }
332 } else {
333 arch = CPU_ARCH_ARMv6;
334 if (cachetype & (1 << 23))
335 cacheid = CACHEID_VIPT_ALIASING;
336 else
337 cacheid = CACHEID_VIPT_NONALIASING;
338 }
339 if (cpu_has_aliasing_icache(arch))
340 cacheid |= CACHEID_VIPT_I_ALIASING;
341 } else {
342 cacheid = CACHEID_VIVT;
343 }
344
345 pr_info("CPU: %s data cache, %s instruction cache\n",
346 cache_is_vivt() ? "VIVT" :
347 cache_is_vipt_aliasing() ? "VIPT aliasing" :
348 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
349 cache_is_vivt() ? "VIVT" :
350 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
351 icache_is_vipt_aliasing() ? "VIPT aliasing" :
352 icache_is_pipt() ? "PIPT" :
353 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
354 }
355
356 /*
357 * These functions re-use the assembly code in head.S, which
358 * already provide the required functionality.
359 */
360 extern struct proc_info_list *lookup_processor_type(unsigned int);
361
362 void __init early_print(const char *str, ...)
363 {
364 extern void printascii(const char *);
365 char buf[256];
366 va_list ap;
367
368 va_start(ap, str);
369 vsnprintf(buf, sizeof(buf), str, ap);
370 va_end(ap);
371
372 #ifdef CONFIG_DEBUG_LL
373 printascii(buf);
374 #endif
375 printk("%s", buf);
376 }
377
378 static void __init cpuid_init_hwcaps(void)
379 {
380 int block;
381 u32 isar5;
382
383 if (cpu_architecture() < CPU_ARCH_ARMv7)
384 return;
385
386 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
387 if (block >= 2)
388 elf_hwcap |= HWCAP_IDIVA;
389 if (block >= 1)
390 elf_hwcap |= HWCAP_IDIVT;
391
392 /* LPAE implies atomic ldrd/strd instructions */
393 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
394 if (block >= 5)
395 elf_hwcap |= HWCAP_LPAE;
396
397 /* check for supported v8 Crypto instructions */
398 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
399
400 block = cpuid_feature_extract_field(isar5, 4);
401 if (block >= 2)
402 elf_hwcap2 |= HWCAP2_PMULL;
403 if (block >= 1)
404 elf_hwcap2 |= HWCAP2_AES;
405
406 block = cpuid_feature_extract_field(isar5, 8);
407 if (block >= 1)
408 elf_hwcap2 |= HWCAP2_SHA1;
409
410 block = cpuid_feature_extract_field(isar5, 12);
411 if (block >= 1)
412 elf_hwcap2 |= HWCAP2_SHA2;
413
414 block = cpuid_feature_extract_field(isar5, 16);
415 if (block >= 1)
416 elf_hwcap2 |= HWCAP2_CRC32;
417 }
418
419 static void __init elf_hwcap_fixup(void)
420 {
421 unsigned id = read_cpuid_id();
422
423 /*
424 * HWCAP_TLS is available only on 1136 r1p0 and later,
425 * see also kuser_get_tls_init.
426 */
427 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
428 ((id >> 20) & 3) == 0) {
429 elf_hwcap &= ~HWCAP_TLS;
430 return;
431 }
432
433 /* Verify if CPUID scheme is implemented */
434 if ((id & 0x000f0000) != 0x000f0000)
435 return;
436
437 /*
438 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
439 * avoid advertising SWP; it may not be atomic with
440 * multiprocessing cores.
441 */
442 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
443 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
444 cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
445 elf_hwcap &= ~HWCAP_SWP;
446 }
447
448 /*
449 * cpu_init - initialise one CPU.
450 *
451 * cpu_init sets up the per-CPU stacks.
452 */
453 void notrace cpu_init(void)
454 {
455 #ifndef CONFIG_CPU_V7M
456 unsigned int cpu = smp_processor_id();
457 struct stack *stk = &stacks[cpu];
458
459 if (cpu >= NR_CPUS) {
460 pr_crit("CPU%u: bad primary CPU number\n", cpu);
461 BUG();
462 }
463
464 /*
465 * This only works on resume and secondary cores. For booting on the
466 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
467 */
468 set_my_cpu_offset(per_cpu_offset(cpu));
469
470 cpu_proc_init();
471
472 /*
473 * Define the placement constraint for the inline asm directive below.
474 * In Thumb-2, msr with an immediate value is not allowed.
475 */
476 #ifdef CONFIG_THUMB2_KERNEL
477 #define PLC "r"
478 #else
479 #define PLC "I"
480 #endif
481
482 /*
483 * setup stacks for re-entrant exception handlers
484 */
485 __asm__ (
486 "msr cpsr_c, %1\n\t"
487 "add r14, %0, %2\n\t"
488 "mov sp, r14\n\t"
489 "msr cpsr_c, %3\n\t"
490 "add r14, %0, %4\n\t"
491 "mov sp, r14\n\t"
492 "msr cpsr_c, %5\n\t"
493 "add r14, %0, %6\n\t"
494 "mov sp, r14\n\t"
495 "msr cpsr_c, %7\n\t"
496 "add r14, %0, %8\n\t"
497 "mov sp, r14\n\t"
498 "msr cpsr_c, %9"
499 :
500 : "r" (stk),
501 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
502 "I" (offsetof(struct stack, irq[0])),
503 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
504 "I" (offsetof(struct stack, abt[0])),
505 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
506 "I" (offsetof(struct stack, und[0])),
507 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
508 "I" (offsetof(struct stack, fiq[0])),
509 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
510 : "r14");
511 #endif
512 }
513
514 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
515
516 void __init smp_setup_processor_id(void)
517 {
518 int i;
519 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
520 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
521
522 cpu_logical_map(0) = cpu;
523 for (i = 1; i < nr_cpu_ids; ++i)
524 cpu_logical_map(i) = i == cpu ? 0 : i;
525
526 /*
527 * clear __my_cpu_offset on boot CPU to avoid hang caused by
528 * using percpu variable early, for example, lockdep will
529 * access percpu variable inside lock_release
530 */
531 set_my_cpu_offset(0);
532
533 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
534 }
535
536 struct mpidr_hash mpidr_hash;
537 #ifdef CONFIG_SMP
538 /**
539 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
540 * level in order to build a linear index from an
541 * MPIDR value. Resulting algorithm is a collision
542 * free hash carried out through shifting and ORing
543 */
544 static void __init smp_build_mpidr_hash(void)
545 {
546 u32 i, affinity;
547 u32 fs[3], bits[3], ls, mask = 0;
548 /*
549 * Pre-scan the list of MPIDRS and filter out bits that do
550 * not contribute to affinity levels, ie they never toggle.
551 */
552 for_each_possible_cpu(i)
553 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
554 pr_debug("mask of set bits 0x%x\n", mask);
555 /*
556 * Find and stash the last and first bit set at all affinity levels to
557 * check how many bits are required to represent them.
558 */
559 for (i = 0; i < 3; i++) {
560 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
561 /*
562 * Find the MSB bit and LSB bits position
563 * to determine how many bits are required
564 * to express the affinity level.
565 */
566 ls = fls(affinity);
567 fs[i] = affinity ? ffs(affinity) - 1 : 0;
568 bits[i] = ls - fs[i];
569 }
570 /*
571 * An index can be created from the MPIDR by isolating the
572 * significant bits at each affinity level and by shifting
573 * them in order to compress the 24 bits values space to a
574 * compressed set of values. This is equivalent to hashing
575 * the MPIDR through shifting and ORing. It is a collision free
576 * hash though not minimal since some levels might contain a number
577 * of CPUs that is not an exact power of 2 and their bit
578 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
579 */
580 mpidr_hash.shift_aff[0] = fs[0];
581 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
582 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
583 (bits[1] + bits[0]);
584 mpidr_hash.mask = mask;
585 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
586 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
587 mpidr_hash.shift_aff[0],
588 mpidr_hash.shift_aff[1],
589 mpidr_hash.shift_aff[2],
590 mpidr_hash.mask,
591 mpidr_hash.bits);
592 /*
593 * 4x is an arbitrary value used to warn on a hash table much bigger
594 * than expected on most systems.
595 */
596 if (mpidr_hash_size() > 4 * num_possible_cpus())
597 pr_warn("Large number of MPIDR hash buckets detected\n");
598 sync_cache_w(&mpidr_hash);
599 }
600 #endif
601
602 static void __init setup_processor(void)
603 {
604 struct proc_info_list *list;
605
606 /*
607 * locate processor in the list of supported processor
608 * types. The linker builds this table for us from the
609 * entries in arch/arm/mm/proc-*.S
610 */
611 list = lookup_processor_type(read_cpuid_id());
612 if (!list) {
613 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
614 read_cpuid_id());
615 while (1);
616 }
617
618 cpu_name = list->cpu_name;
619 __cpu_architecture = __get_cpu_architecture();
620
621 #ifdef MULTI_CPU
622 processor = *list->proc;
623 #endif
624 #ifdef MULTI_TLB
625 cpu_tlb = *list->tlb;
626 #endif
627 #ifdef MULTI_USER
628 cpu_user = *list->user;
629 #endif
630 #ifdef MULTI_CACHE
631 cpu_cache = *list->cache;
632 #endif
633
634 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
635 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
636 proc_arch[cpu_architecture()], get_cr());
637
638 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
639 list->arch_name, ENDIANNESS);
640 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
641 list->elf_name, ENDIANNESS);
642 elf_hwcap = list->elf_hwcap;
643
644 cpuid_init_hwcaps();
645
646 #ifndef CONFIG_ARM_THUMB
647 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
648 #endif
649 #ifdef CONFIG_MMU
650 init_default_cache_policy(list->__cpu_mm_mmu_flags);
651 #endif
652 erratum_a15_798181_init();
653
654 elf_hwcap_fixup();
655
656 cacheid_init();
657 cpu_init();
658 }
659
660 void __init dump_machine_table(void)
661 {
662 const struct machine_desc *p;
663
664 early_print("Available machine support:\n\nID (hex)\tNAME\n");
665 for_each_machine_desc(p)
666 early_print("%08x\t%s\n", p->nr, p->name);
667
668 early_print("\nPlease check your kernel config and/or bootloader.\n");
669
670 while (true)
671 /* can't use cpu_relax() here as it may require MMU setup */;
672 }
673
674 int __init arm_add_memory(u64 start, u64 size)
675 {
676 u64 aligned_start;
677
678 /*
679 * Ensure that start/size are aligned to a page boundary.
680 * Size is rounded down, start is rounded up.
681 */
682 aligned_start = PAGE_ALIGN(start);
683 if (aligned_start > start + size)
684 size = 0;
685 else
686 size -= aligned_start - start;
687
688 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
689 if (aligned_start > ULONG_MAX) {
690 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
691 (long long)start);
692 return -EINVAL;
693 }
694
695 if (aligned_start + size > ULONG_MAX) {
696 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
697 (long long)start);
698 /*
699 * To ensure bank->start + bank->size is representable in
700 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
701 * This means we lose a page after masking.
702 */
703 size = ULONG_MAX - aligned_start;
704 }
705 #endif
706
707 if (aligned_start < PHYS_OFFSET) {
708 if (aligned_start + size <= PHYS_OFFSET) {
709 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
710 aligned_start, aligned_start + size);
711 return -EINVAL;
712 }
713
714 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
715 aligned_start, (u64)PHYS_OFFSET);
716
717 size -= PHYS_OFFSET - aligned_start;
718 aligned_start = PHYS_OFFSET;
719 }
720
721 start = aligned_start;
722 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
723
724 /*
725 * Check whether this memory region has non-zero size or
726 * invalid node number.
727 */
728 if (size == 0)
729 return -EINVAL;
730
731 memblock_add(start, size);
732 return 0;
733 }
734
735 /*
736 * Pick out the memory size. We look for mem=size@start,
737 * where start and size are "size[KkMm]"
738 */
739
740 static int __init early_mem(char *p)
741 {
742 static int usermem __initdata = 0;
743 u64 size;
744 u64 start;
745 char *endp;
746
747 /*
748 * If the user specifies memory size, we
749 * blow away any automatically generated
750 * size.
751 */
752 if (usermem == 0) {
753 usermem = 1;
754 memblock_remove(memblock_start_of_DRAM(),
755 memblock_end_of_DRAM() - memblock_start_of_DRAM());
756 }
757
758 start = PHYS_OFFSET;
759 size = memparse(p, &endp);
760 if (*endp == '@')
761 start = memparse(endp + 1, NULL);
762
763 arm_add_memory(start, size);
764
765 return 0;
766 }
767 early_param("mem", early_mem);
768
769 static void __init request_standard_resources(const struct machine_desc *mdesc)
770 {
771 struct memblock_region *region;
772 struct resource *res;
773
774 kernel_code.start = virt_to_phys(_text);
775 kernel_code.end = virt_to_phys(_etext - 1);
776 kernel_data.start = virt_to_phys(_sdata);
777 kernel_data.end = virt_to_phys(_end - 1);
778
779 for_each_memblock(memory, region) {
780 res = memblock_virt_alloc(sizeof(*res), 0);
781 res->name = "System RAM";
782 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
783 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
784 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
785
786 request_resource(&iomem_resource, res);
787
788 if (kernel_code.start >= res->start &&
789 kernel_code.end <= res->end)
790 request_resource(res, &kernel_code);
791 if (kernel_data.start >= res->start &&
792 kernel_data.end <= res->end)
793 request_resource(res, &kernel_data);
794 }
795
796 if (mdesc->video_start) {
797 video_ram.start = mdesc->video_start;
798 video_ram.end = mdesc->video_end;
799 request_resource(&iomem_resource, &video_ram);
800 }
801
802 /*
803 * Some machines don't have the possibility of ever
804 * possessing lp0, lp1 or lp2
805 */
806 if (mdesc->reserve_lp0)
807 request_resource(&ioport_resource, &lp0);
808 if (mdesc->reserve_lp1)
809 request_resource(&ioport_resource, &lp1);
810 if (mdesc->reserve_lp2)
811 request_resource(&ioport_resource, &lp2);
812 }
813
814 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
815 struct screen_info screen_info = {
816 .orig_video_lines = 30,
817 .orig_video_cols = 80,
818 .orig_video_mode = 0,
819 .orig_video_ega_bx = 0,
820 .orig_video_isVGA = 1,
821 .orig_video_points = 8
822 };
823 #endif
824
825 static int __init customize_machine(void)
826 {
827 /*
828 * customizes platform devices, or adds new ones
829 * On DT based machines, we fall back to populating the
830 * machine from the device tree, if no callback is provided,
831 * otherwise we would always need an init_machine callback.
832 */
833 of_iommu_init();
834 if (machine_desc->init_machine)
835 machine_desc->init_machine();
836 #ifdef CONFIG_OF
837 else
838 of_platform_populate(NULL, of_default_bus_match_table,
839 NULL, NULL);
840 #endif
841 return 0;
842 }
843 arch_initcall(customize_machine);
844
845 static int __init init_machine_late(void)
846 {
847 struct device_node *root;
848 int ret;
849
850 if (machine_desc->init_late)
851 machine_desc->init_late();
852
853 root = of_find_node_by_path("/");
854 if (root) {
855 ret = of_property_read_string(root, "serial-number",
856 &system_serial);
857 if (ret)
858 system_serial = NULL;
859 }
860
861 if (!system_serial)
862 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
863 system_serial_high,
864 system_serial_low);
865
866 return 0;
867 }
868 late_initcall(init_machine_late);
869
870 #ifdef CONFIG_KEXEC
871 static inline unsigned long long get_total_mem(void)
872 {
873 unsigned long total;
874
875 total = max_low_pfn - min_low_pfn;
876 return total << PAGE_SHIFT;
877 }
878
879 /**
880 * reserve_crashkernel() - reserves memory are for crash kernel
881 *
882 * This function reserves memory area given in "crashkernel=" kernel command
883 * line parameter. The memory reserved is used by a dump capture kernel when
884 * primary kernel is crashing.
885 */
886 static void __init reserve_crashkernel(void)
887 {
888 unsigned long long crash_size, crash_base;
889 unsigned long long total_mem;
890 int ret;
891
892 total_mem = get_total_mem();
893 ret = parse_crashkernel(boot_command_line, total_mem,
894 &crash_size, &crash_base);
895 if (ret)
896 return;
897
898 ret = memblock_reserve(crash_base, crash_size);
899 if (ret < 0) {
900 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
901 (unsigned long)crash_base);
902 return;
903 }
904
905 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
906 (unsigned long)(crash_size >> 20),
907 (unsigned long)(crash_base >> 20),
908 (unsigned long)(total_mem >> 20));
909
910 crashk_res.start = crash_base;
911 crashk_res.end = crash_base + crash_size - 1;
912 insert_resource(&iomem_resource, &crashk_res);
913 }
914 #else
915 static inline void reserve_crashkernel(void) {}
916 #endif /* CONFIG_KEXEC */
917
918 void __init hyp_mode_check(void)
919 {
920 #ifdef CONFIG_ARM_VIRT_EXT
921 sync_boot_mode();
922
923 if (is_hyp_mode_available()) {
924 pr_info("CPU: All CPU(s) started in HYP mode.\n");
925 pr_info("CPU: Virtualization extensions available.\n");
926 } else if (is_hyp_mode_mismatched()) {
927 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
928 __boot_cpu_mode & MODE_MASK);
929 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
930 } else
931 pr_info("CPU: All CPU(s) started in SVC mode.\n");
932 #endif
933 }
934
935 void __init setup_arch(char **cmdline_p)
936 {
937 const struct machine_desc *mdesc;
938
939 setup_processor();
940 mdesc = setup_machine_fdt(__atags_pointer);
941 if (!mdesc)
942 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
943 machine_desc = mdesc;
944 machine_name = mdesc->name;
945 dump_stack_set_arch_desc("%s", mdesc->name);
946
947 if (mdesc->reboot_mode != REBOOT_HARD)
948 reboot_mode = mdesc->reboot_mode;
949
950 init_mm.start_code = (unsigned long) _text;
951 init_mm.end_code = (unsigned long) _etext;
952 init_mm.end_data = (unsigned long) _edata;
953 init_mm.brk = (unsigned long) _end;
954
955 /* populate cmd_line too for later use, preserving boot_command_line */
956 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
957 *cmdline_p = cmd_line;
958
959 if (IS_ENABLED(CONFIG_FIX_EARLYCON_MEM))
960 early_fixmap_init();
961
962 parse_early_param();
963
964 #ifdef CONFIG_MMU
965 early_paging_init(mdesc);
966 #endif
967 setup_dma_zone(mdesc);
968 sanity_check_meminfo();
969 arm_memblock_init(mdesc);
970
971 paging_init(mdesc);
972 request_standard_resources(mdesc);
973
974 if (mdesc->restart)
975 arm_pm_restart = mdesc->restart;
976
977 unflatten_device_tree();
978
979 arm_dt_init_cpu_maps();
980 psci_dt_init();
981 xen_early_init();
982 #ifdef CONFIG_SMP
983 if (is_smp()) {
984 if (!mdesc->smp_init || !mdesc->smp_init()) {
985 if (psci_smp_available())
986 smp_set_ops(&psci_smp_ops);
987 else if (mdesc->smp)
988 smp_set_ops(mdesc->smp);
989 }
990 smp_init_cpus();
991 smp_build_mpidr_hash();
992 }
993 #endif
994
995 if (!is_smp())
996 hyp_mode_check();
997
998 reserve_crashkernel();
999
1000 #ifdef CONFIG_MULTI_IRQ_HANDLER
1001 handle_arch_irq = mdesc->handle_irq;
1002 #endif
1003
1004 #ifdef CONFIG_VT
1005 #if defined(CONFIG_VGA_CONSOLE)
1006 conswitchp = &vga_con;
1007 #elif defined(CONFIG_DUMMY_CONSOLE)
1008 conswitchp = &dummy_con;
1009 #endif
1010 #endif
1011
1012 if (mdesc->init_early)
1013 mdesc->init_early();
1014 }
1015
1016
1017 static int __init topology_init(void)
1018 {
1019 int cpu;
1020
1021 for_each_possible_cpu(cpu) {
1022 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1023 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1024 register_cpu(&cpuinfo->cpu, cpu);
1025 }
1026
1027 return 0;
1028 }
1029 subsys_initcall(topology_init);
1030
1031 #ifdef CONFIG_HAVE_PROC_CPU
1032 static int __init proc_cpu_init(void)
1033 {
1034 struct proc_dir_entry *res;
1035
1036 res = proc_mkdir("cpu", NULL);
1037 if (!res)
1038 return -ENOMEM;
1039 return 0;
1040 }
1041 fs_initcall(proc_cpu_init);
1042 #endif
1043
1044 static const char *hwcap_str[] = {
1045 "swp",
1046 "half",
1047 "thumb",
1048 "26bit",
1049 "fastmult",
1050 "fpa",
1051 "vfp",
1052 "edsp",
1053 "java",
1054 "iwmmxt",
1055 "crunch",
1056 "thumbee",
1057 "neon",
1058 "vfpv3",
1059 "vfpv3d16",
1060 "tls",
1061 "vfpv4",
1062 "idiva",
1063 "idivt",
1064 "vfpd32",
1065 "lpae",
1066 "evtstrm",
1067 NULL
1068 };
1069
1070 static const char *hwcap2_str[] = {
1071 "aes",
1072 "pmull",
1073 "sha1",
1074 "sha2",
1075 "crc32",
1076 NULL
1077 };
1078
1079 static int c_show(struct seq_file *m, void *v)
1080 {
1081 int i, j;
1082 u32 cpuid;
1083
1084 for_each_online_cpu(i) {
1085 /*
1086 * glibc reads /proc/cpuinfo to determine the number of
1087 * online processors, looking for lines beginning with
1088 * "processor". Give glibc what it expects.
1089 */
1090 seq_printf(m, "processor\t: %d\n", i);
1091 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1092 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1093 cpu_name, cpuid & 15, elf_platform);
1094
1095 #if defined(CONFIG_SMP)
1096 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1097 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1098 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1099 #else
1100 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1101 loops_per_jiffy / (500000/HZ),
1102 (loops_per_jiffy / (5000/HZ)) % 100);
1103 #endif
1104 /* dump out the processor features */
1105 seq_puts(m, "Features\t: ");
1106
1107 for (j = 0; hwcap_str[j]; j++)
1108 if (elf_hwcap & (1 << j))
1109 seq_printf(m, "%s ", hwcap_str[j]);
1110
1111 for (j = 0; hwcap2_str[j]; j++)
1112 if (elf_hwcap2 & (1 << j))
1113 seq_printf(m, "%s ", hwcap2_str[j]);
1114
1115 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1116 seq_printf(m, "CPU architecture: %s\n",
1117 proc_arch[cpu_architecture()]);
1118
1119 if ((cpuid & 0x0008f000) == 0x00000000) {
1120 /* pre-ARM7 */
1121 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1122 } else {
1123 if ((cpuid & 0x0008f000) == 0x00007000) {
1124 /* ARM7 */
1125 seq_printf(m, "CPU variant\t: 0x%02x\n",
1126 (cpuid >> 16) & 127);
1127 } else {
1128 /* post-ARM7 */
1129 seq_printf(m, "CPU variant\t: 0x%x\n",
1130 (cpuid >> 20) & 15);
1131 }
1132 seq_printf(m, "CPU part\t: 0x%03x\n",
1133 (cpuid >> 4) & 0xfff);
1134 }
1135 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1136 }
1137
1138 seq_printf(m, "Hardware\t: %s\n", machine_name);
1139 seq_printf(m, "Revision\t: %04x\n", system_rev);
1140 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1141
1142 return 0;
1143 }
1144
1145 static void *c_start(struct seq_file *m, loff_t *pos)
1146 {
1147 return *pos < 1 ? (void *)1 : NULL;
1148 }
1149
1150 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1151 {
1152 ++*pos;
1153 return NULL;
1154 }
1155
1156 static void c_stop(struct seq_file *m, void *v)
1157 {
1158 }
1159
1160 const struct seq_operations cpuinfo_op = {
1161 .start = c_start,
1162 .next = c_next,
1163 .stop = c_stop,
1164 .show = c_show
1165 };