]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kernel/setup.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / arch / arm / kernel / setup.c
1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/efi.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/ioport.h>
15 #include <linux/delay.h>
16 #include <linux/utsname.h>
17 #include <linux/initrd.h>
18 #include <linux/console.h>
19 #include <linux/bootmem.h>
20 #include <linux/seq_file.h>
21 #include <linux/screen_info.h>
22 #include <linux/of_platform.h>
23 #include <linux/init.h>
24 #include <linux/kexec.h>
25 #include <linux/of_fdt.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/proc_fs.h>
30 #include <linux/memblock.h>
31 #include <linux/bug.h>
32 #include <linux/compiler.h>
33 #include <linux/sort.h>
34 #include <linux/psci.h>
35
36 #include <asm/unified.h>
37 #include <asm/cp15.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/efi.h>
41 #include <asm/elf.h>
42 #include <asm/early_ioremap.h>
43 #include <asm/fixmap.h>
44 #include <asm/procinfo.h>
45 #include <asm/psci.h>
46 #include <asm/sections.h>
47 #include <asm/setup.h>
48 #include <asm/smp_plat.h>
49 #include <asm/mach-types.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cachetype.h>
52 #include <asm/tlbflush.h>
53 #include <asm/xen/hypervisor.h>
54
55 #include <asm/prom.h>
56 #include <asm/mach/arch.h>
57 #include <asm/mach/irq.h>
58 #include <asm/mach/time.h>
59 #include <asm/system_info.h>
60 #include <asm/system_misc.h>
61 #include <asm/traps.h>
62 #include <asm/unwind.h>
63 #include <asm/memblock.h>
64 #include <asm/virt.h>
65
66 #include "atags.h"
67
68
69 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
70 char fpe_type[8];
71
72 static int __init fpe_setup(char *line)
73 {
74 memcpy(fpe_type, line, 8);
75 return 1;
76 }
77
78 __setup("fpe=", fpe_setup);
79 #endif
80
81 extern void init_default_cache_policy(unsigned long);
82 extern void paging_init(const struct machine_desc *desc);
83 extern void early_mm_init(const struct machine_desc *);
84 extern void adjust_lowmem_bounds(void);
85 extern enum reboot_mode reboot_mode;
86 extern void setup_dma_zone(const struct machine_desc *desc);
87
88 unsigned int processor_id;
89 EXPORT_SYMBOL(processor_id);
90 unsigned int __machine_arch_type __read_mostly;
91 EXPORT_SYMBOL(__machine_arch_type);
92 unsigned int cacheid __read_mostly;
93 EXPORT_SYMBOL(cacheid);
94
95 unsigned int __atags_pointer __initdata;
96
97 unsigned int system_rev;
98 EXPORT_SYMBOL(system_rev);
99
100 const char *system_serial;
101 EXPORT_SYMBOL(system_serial);
102
103 unsigned int system_serial_low;
104 EXPORT_SYMBOL(system_serial_low);
105
106 unsigned int system_serial_high;
107 EXPORT_SYMBOL(system_serial_high);
108
109 unsigned int elf_hwcap __read_mostly;
110 EXPORT_SYMBOL(elf_hwcap);
111
112 unsigned int elf_hwcap2 __read_mostly;
113 EXPORT_SYMBOL(elf_hwcap2);
114
115
116 #ifdef MULTI_CPU
117 struct processor processor __ro_after_init;
118 #endif
119 #ifdef MULTI_TLB
120 struct cpu_tlb_fns cpu_tlb __ro_after_init;
121 #endif
122 #ifdef MULTI_USER
123 struct cpu_user_fns cpu_user __ro_after_init;
124 #endif
125 #ifdef MULTI_CACHE
126 struct cpu_cache_fns cpu_cache __ro_after_init;
127 #endif
128 #ifdef CONFIG_OUTER_CACHE
129 struct outer_cache_fns outer_cache __ro_after_init;
130 EXPORT_SYMBOL(outer_cache);
131 #endif
132
133 /*
134 * Cached cpu_architecture() result for use by assembler code.
135 * C code should use the cpu_architecture() function instead of accessing this
136 * variable directly.
137 */
138 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
139
140 struct stack {
141 u32 irq[3];
142 u32 abt[3];
143 u32 und[3];
144 u32 fiq[3];
145 } ____cacheline_aligned;
146
147 #ifndef CONFIG_CPU_V7M
148 static struct stack stacks[NR_CPUS];
149 #endif
150
151 char elf_platform[ELF_PLATFORM_SIZE];
152 EXPORT_SYMBOL(elf_platform);
153
154 static const char *cpu_name;
155 static const char *machine_name;
156 static char __initdata cmd_line[COMMAND_LINE_SIZE];
157 const struct machine_desc *machine_desc __initdata;
158
159 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
160 #define ENDIANNESS ((char)endian_test.l)
161
162 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
163
164 /*
165 * Standard memory resources
166 */
167 static struct resource mem_res[] = {
168 {
169 .name = "Video RAM",
170 .start = 0,
171 .end = 0,
172 .flags = IORESOURCE_MEM
173 },
174 {
175 .name = "Kernel code",
176 .start = 0,
177 .end = 0,
178 .flags = IORESOURCE_SYSTEM_RAM
179 },
180 {
181 .name = "Kernel data",
182 .start = 0,
183 .end = 0,
184 .flags = IORESOURCE_SYSTEM_RAM
185 }
186 };
187
188 #define video_ram mem_res[0]
189 #define kernel_code mem_res[1]
190 #define kernel_data mem_res[2]
191
192 static struct resource io_res[] = {
193 {
194 .name = "reserved",
195 .start = 0x3bc,
196 .end = 0x3be,
197 .flags = IORESOURCE_IO | IORESOURCE_BUSY
198 },
199 {
200 .name = "reserved",
201 .start = 0x378,
202 .end = 0x37f,
203 .flags = IORESOURCE_IO | IORESOURCE_BUSY
204 },
205 {
206 .name = "reserved",
207 .start = 0x278,
208 .end = 0x27f,
209 .flags = IORESOURCE_IO | IORESOURCE_BUSY
210 }
211 };
212
213 #define lp0 io_res[0]
214 #define lp1 io_res[1]
215 #define lp2 io_res[2]
216
217 static const char *proc_arch[] = {
218 "undefined/unknown",
219 "3",
220 "4",
221 "4T",
222 "5",
223 "5T",
224 "5TE",
225 "5TEJ",
226 "6TEJ",
227 "7",
228 "7M",
229 "?(12)",
230 "?(13)",
231 "?(14)",
232 "?(15)",
233 "?(16)",
234 "?(17)",
235 };
236
237 #ifdef CONFIG_CPU_V7M
238 static int __get_cpu_architecture(void)
239 {
240 return CPU_ARCH_ARMv7M;
241 }
242 #else
243 static int __get_cpu_architecture(void)
244 {
245 int cpu_arch;
246
247 if ((read_cpuid_id() & 0x0008f000) == 0) {
248 cpu_arch = CPU_ARCH_UNKNOWN;
249 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
250 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
251 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
252 cpu_arch = (read_cpuid_id() >> 16) & 7;
253 if (cpu_arch)
254 cpu_arch += CPU_ARCH_ARMv3;
255 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
256 /* Revised CPUID format. Read the Memory Model Feature
257 * Register 0 and check for VMSAv7 or PMSAv7 */
258 unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
259 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
260 (mmfr0 & 0x000000f0) >= 0x00000030)
261 cpu_arch = CPU_ARCH_ARMv7;
262 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
263 (mmfr0 & 0x000000f0) == 0x00000020)
264 cpu_arch = CPU_ARCH_ARMv6;
265 else
266 cpu_arch = CPU_ARCH_UNKNOWN;
267 } else
268 cpu_arch = CPU_ARCH_UNKNOWN;
269
270 return cpu_arch;
271 }
272 #endif
273
274 int __pure cpu_architecture(void)
275 {
276 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
277
278 return __cpu_architecture;
279 }
280
281 static int cpu_has_aliasing_icache(unsigned int arch)
282 {
283 int aliasing_icache;
284 unsigned int id_reg, num_sets, line_size;
285
286 /* PIPT caches never alias. */
287 if (icache_is_pipt())
288 return 0;
289
290 /* arch specifies the register format */
291 switch (arch) {
292 case CPU_ARCH_ARMv7:
293 set_csselr(CSSELR_ICACHE | CSSELR_L1);
294 isb();
295 id_reg = read_ccsidr();
296 line_size = 4 << ((id_reg & 0x7) + 2);
297 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
298 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
299 break;
300 case CPU_ARCH_ARMv6:
301 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
302 break;
303 default:
304 /* I-cache aliases will be handled by D-cache aliasing code */
305 aliasing_icache = 0;
306 }
307
308 return aliasing_icache;
309 }
310
311 static void __init cacheid_init(void)
312 {
313 unsigned int arch = cpu_architecture();
314
315 if (arch >= CPU_ARCH_ARMv6) {
316 unsigned int cachetype = read_cpuid_cachetype();
317
318 if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) {
319 cacheid = 0;
320 } else if ((cachetype & (7 << 29)) == 4 << 29) {
321 /* ARMv7 register format */
322 arch = CPU_ARCH_ARMv7;
323 cacheid = CACHEID_VIPT_NONALIASING;
324 switch (cachetype & (3 << 14)) {
325 case (1 << 14):
326 cacheid |= CACHEID_ASID_TAGGED;
327 break;
328 case (3 << 14):
329 cacheid |= CACHEID_PIPT;
330 break;
331 }
332 } else {
333 arch = CPU_ARCH_ARMv6;
334 if (cachetype & (1 << 23))
335 cacheid = CACHEID_VIPT_ALIASING;
336 else
337 cacheid = CACHEID_VIPT_NONALIASING;
338 }
339 if (cpu_has_aliasing_icache(arch))
340 cacheid |= CACHEID_VIPT_I_ALIASING;
341 } else {
342 cacheid = CACHEID_VIVT;
343 }
344
345 pr_info("CPU: %s data cache, %s instruction cache\n",
346 cache_is_vivt() ? "VIVT" :
347 cache_is_vipt_aliasing() ? "VIPT aliasing" :
348 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
349 cache_is_vivt() ? "VIVT" :
350 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
351 icache_is_vipt_aliasing() ? "VIPT aliasing" :
352 icache_is_pipt() ? "PIPT" :
353 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
354 }
355
356 /*
357 * These functions re-use the assembly code in head.S, which
358 * already provide the required functionality.
359 */
360 extern struct proc_info_list *lookup_processor_type(unsigned int);
361
362 void __init early_print(const char *str, ...)
363 {
364 extern void printascii(const char *);
365 char buf[256];
366 va_list ap;
367
368 va_start(ap, str);
369 vsnprintf(buf, sizeof(buf), str, ap);
370 va_end(ap);
371
372 #ifdef CONFIG_DEBUG_LL
373 printascii(buf);
374 #endif
375 printk("%s", buf);
376 }
377
378 #ifdef CONFIG_ARM_PATCH_IDIV
379
380 static inline u32 __attribute_const__ sdiv_instruction(void)
381 {
382 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
383 /* "sdiv r0, r0, r1" */
384 u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1);
385 return __opcode_to_mem_thumb32(insn);
386 }
387
388 /* "sdiv r0, r0, r1" */
389 return __opcode_to_mem_arm(0xe710f110);
390 }
391
392 static inline u32 __attribute_const__ udiv_instruction(void)
393 {
394 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
395 /* "udiv r0, r0, r1" */
396 u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1);
397 return __opcode_to_mem_thumb32(insn);
398 }
399
400 /* "udiv r0, r0, r1" */
401 return __opcode_to_mem_arm(0xe730f110);
402 }
403
404 static inline u32 __attribute_const__ bx_lr_instruction(void)
405 {
406 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
407 /* "bx lr; nop" */
408 u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0);
409 return __opcode_to_mem_thumb32(insn);
410 }
411
412 /* "bx lr" */
413 return __opcode_to_mem_arm(0xe12fff1e);
414 }
415
416 static void __init patch_aeabi_idiv(void)
417 {
418 extern void __aeabi_uidiv(void);
419 extern void __aeabi_idiv(void);
420 uintptr_t fn_addr;
421 unsigned int mask;
422
423 mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA;
424 if (!(elf_hwcap & mask))
425 return;
426
427 pr_info("CPU: div instructions available: patching division code\n");
428
429 fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1;
430 asm ("" : "+g" (fn_addr));
431 ((u32 *)fn_addr)[0] = udiv_instruction();
432 ((u32 *)fn_addr)[1] = bx_lr_instruction();
433 flush_icache_range(fn_addr, fn_addr + 8);
434
435 fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1;
436 asm ("" : "+g" (fn_addr));
437 ((u32 *)fn_addr)[0] = sdiv_instruction();
438 ((u32 *)fn_addr)[1] = bx_lr_instruction();
439 flush_icache_range(fn_addr, fn_addr + 8);
440 }
441
442 #else
443 static inline void patch_aeabi_idiv(void) { }
444 #endif
445
446 static void __init cpuid_init_hwcaps(void)
447 {
448 int block;
449 u32 isar5;
450
451 if (cpu_architecture() < CPU_ARCH_ARMv7)
452 return;
453
454 block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
455 if (block >= 2)
456 elf_hwcap |= HWCAP_IDIVA;
457 if (block >= 1)
458 elf_hwcap |= HWCAP_IDIVT;
459
460 /* LPAE implies atomic ldrd/strd instructions */
461 block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
462 if (block >= 5)
463 elf_hwcap |= HWCAP_LPAE;
464
465 /* check for supported v8 Crypto instructions */
466 isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
467
468 block = cpuid_feature_extract_field(isar5, 4);
469 if (block >= 2)
470 elf_hwcap2 |= HWCAP2_PMULL;
471 if (block >= 1)
472 elf_hwcap2 |= HWCAP2_AES;
473
474 block = cpuid_feature_extract_field(isar5, 8);
475 if (block >= 1)
476 elf_hwcap2 |= HWCAP2_SHA1;
477
478 block = cpuid_feature_extract_field(isar5, 12);
479 if (block >= 1)
480 elf_hwcap2 |= HWCAP2_SHA2;
481
482 block = cpuid_feature_extract_field(isar5, 16);
483 if (block >= 1)
484 elf_hwcap2 |= HWCAP2_CRC32;
485 }
486
487 static void __init elf_hwcap_fixup(void)
488 {
489 unsigned id = read_cpuid_id();
490
491 /*
492 * HWCAP_TLS is available only on 1136 r1p0 and later,
493 * see also kuser_get_tls_init.
494 */
495 if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
496 ((id >> 20) & 3) == 0) {
497 elf_hwcap &= ~HWCAP_TLS;
498 return;
499 }
500
501 /* Verify if CPUID scheme is implemented */
502 if ((id & 0x000f0000) != 0x000f0000)
503 return;
504
505 /*
506 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
507 * avoid advertising SWP; it may not be atomic with
508 * multiprocessing cores.
509 */
510 if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
511 (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
512 cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3))
513 elf_hwcap &= ~HWCAP_SWP;
514 }
515
516 /*
517 * cpu_init - initialise one CPU.
518 *
519 * cpu_init sets up the per-CPU stacks.
520 */
521 void notrace cpu_init(void)
522 {
523 #ifndef CONFIG_CPU_V7M
524 unsigned int cpu = smp_processor_id();
525 struct stack *stk = &stacks[cpu];
526
527 if (cpu >= NR_CPUS) {
528 pr_crit("CPU%u: bad primary CPU number\n", cpu);
529 BUG();
530 }
531
532 /*
533 * This only works on resume and secondary cores. For booting on the
534 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
535 */
536 set_my_cpu_offset(per_cpu_offset(cpu));
537
538 cpu_proc_init();
539
540 /*
541 * Define the placement constraint for the inline asm directive below.
542 * In Thumb-2, msr with an immediate value is not allowed.
543 */
544 #ifdef CONFIG_THUMB2_KERNEL
545 #define PLC "r"
546 #else
547 #define PLC "I"
548 #endif
549
550 /*
551 * setup stacks for re-entrant exception handlers
552 */
553 __asm__ (
554 "msr cpsr_c, %1\n\t"
555 "add r14, %0, %2\n\t"
556 "mov sp, r14\n\t"
557 "msr cpsr_c, %3\n\t"
558 "add r14, %0, %4\n\t"
559 "mov sp, r14\n\t"
560 "msr cpsr_c, %5\n\t"
561 "add r14, %0, %6\n\t"
562 "mov sp, r14\n\t"
563 "msr cpsr_c, %7\n\t"
564 "add r14, %0, %8\n\t"
565 "mov sp, r14\n\t"
566 "msr cpsr_c, %9"
567 :
568 : "r" (stk),
569 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
570 "I" (offsetof(struct stack, irq[0])),
571 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
572 "I" (offsetof(struct stack, abt[0])),
573 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
574 "I" (offsetof(struct stack, und[0])),
575 PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
576 "I" (offsetof(struct stack, fiq[0])),
577 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
578 : "r14");
579 #endif
580 }
581
582 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
583
584 void __init smp_setup_processor_id(void)
585 {
586 int i;
587 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
588 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
589
590 cpu_logical_map(0) = cpu;
591 for (i = 1; i < nr_cpu_ids; ++i)
592 cpu_logical_map(i) = i == cpu ? 0 : i;
593
594 /*
595 * clear __my_cpu_offset on boot CPU to avoid hang caused by
596 * using percpu variable early, for example, lockdep will
597 * access percpu variable inside lock_release
598 */
599 set_my_cpu_offset(0);
600
601 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
602 }
603
604 struct mpidr_hash mpidr_hash;
605 #ifdef CONFIG_SMP
606 /**
607 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
608 * level in order to build a linear index from an
609 * MPIDR value. Resulting algorithm is a collision
610 * free hash carried out through shifting and ORing
611 */
612 static void __init smp_build_mpidr_hash(void)
613 {
614 u32 i, affinity;
615 u32 fs[3], bits[3], ls, mask = 0;
616 /*
617 * Pre-scan the list of MPIDRS and filter out bits that do
618 * not contribute to affinity levels, ie they never toggle.
619 */
620 for_each_possible_cpu(i)
621 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
622 pr_debug("mask of set bits 0x%x\n", mask);
623 /*
624 * Find and stash the last and first bit set at all affinity levels to
625 * check how many bits are required to represent them.
626 */
627 for (i = 0; i < 3; i++) {
628 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
629 /*
630 * Find the MSB bit and LSB bits position
631 * to determine how many bits are required
632 * to express the affinity level.
633 */
634 ls = fls(affinity);
635 fs[i] = affinity ? ffs(affinity) - 1 : 0;
636 bits[i] = ls - fs[i];
637 }
638 /*
639 * An index can be created from the MPIDR by isolating the
640 * significant bits at each affinity level and by shifting
641 * them in order to compress the 24 bits values space to a
642 * compressed set of values. This is equivalent to hashing
643 * the MPIDR through shifting and ORing. It is a collision free
644 * hash though not minimal since some levels might contain a number
645 * of CPUs that is not an exact power of 2 and their bit
646 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
647 */
648 mpidr_hash.shift_aff[0] = fs[0];
649 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
650 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
651 (bits[1] + bits[0]);
652 mpidr_hash.mask = mask;
653 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
654 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
655 mpidr_hash.shift_aff[0],
656 mpidr_hash.shift_aff[1],
657 mpidr_hash.shift_aff[2],
658 mpidr_hash.mask,
659 mpidr_hash.bits);
660 /*
661 * 4x is an arbitrary value used to warn on a hash table much bigger
662 * than expected on most systems.
663 */
664 if (mpidr_hash_size() > 4 * num_possible_cpus())
665 pr_warn("Large number of MPIDR hash buckets detected\n");
666 sync_cache_w(&mpidr_hash);
667 }
668 #endif
669
670 static void __init setup_processor(void)
671 {
672 struct proc_info_list *list;
673
674 /*
675 * locate processor in the list of supported processor
676 * types. The linker builds this table for us from the
677 * entries in arch/arm/mm/proc-*.S
678 */
679 list = lookup_processor_type(read_cpuid_id());
680 if (!list) {
681 pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
682 read_cpuid_id());
683 while (1);
684 }
685
686 cpu_name = list->cpu_name;
687 __cpu_architecture = __get_cpu_architecture();
688
689 #ifdef MULTI_CPU
690 processor = *list->proc;
691 #endif
692 #ifdef MULTI_TLB
693 cpu_tlb = *list->tlb;
694 #endif
695 #ifdef MULTI_USER
696 cpu_user = *list->user;
697 #endif
698 #ifdef MULTI_CACHE
699 cpu_cache = *list->cache;
700 #endif
701
702 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
703 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
704 proc_arch[cpu_architecture()], get_cr());
705
706 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
707 list->arch_name, ENDIANNESS);
708 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
709 list->elf_name, ENDIANNESS);
710 elf_hwcap = list->elf_hwcap;
711
712 cpuid_init_hwcaps();
713 patch_aeabi_idiv();
714
715 #ifndef CONFIG_ARM_THUMB
716 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
717 #endif
718 #ifdef CONFIG_MMU
719 init_default_cache_policy(list->__cpu_mm_mmu_flags);
720 #endif
721 erratum_a15_798181_init();
722
723 elf_hwcap_fixup();
724
725 cacheid_init();
726 cpu_init();
727 }
728
729 void __init dump_machine_table(void)
730 {
731 const struct machine_desc *p;
732
733 early_print("Available machine support:\n\nID (hex)\tNAME\n");
734 for_each_machine_desc(p)
735 early_print("%08x\t%s\n", p->nr, p->name);
736
737 early_print("\nPlease check your kernel config and/or bootloader.\n");
738
739 while (true)
740 /* can't use cpu_relax() here as it may require MMU setup */;
741 }
742
743 int __init arm_add_memory(u64 start, u64 size)
744 {
745 u64 aligned_start;
746
747 /*
748 * Ensure that start/size are aligned to a page boundary.
749 * Size is rounded down, start is rounded up.
750 */
751 aligned_start = PAGE_ALIGN(start);
752 if (aligned_start > start + size)
753 size = 0;
754 else
755 size -= aligned_start - start;
756
757 #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
758 if (aligned_start > ULONG_MAX) {
759 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
760 (long long)start);
761 return -EINVAL;
762 }
763
764 if (aligned_start + size > ULONG_MAX) {
765 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
766 (long long)start);
767 /*
768 * To ensure bank->start + bank->size is representable in
769 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
770 * This means we lose a page after masking.
771 */
772 size = ULONG_MAX - aligned_start;
773 }
774 #endif
775
776 if (aligned_start < PHYS_OFFSET) {
777 if (aligned_start + size <= PHYS_OFFSET) {
778 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
779 aligned_start, aligned_start + size);
780 return -EINVAL;
781 }
782
783 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
784 aligned_start, (u64)PHYS_OFFSET);
785
786 size -= PHYS_OFFSET - aligned_start;
787 aligned_start = PHYS_OFFSET;
788 }
789
790 start = aligned_start;
791 size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
792
793 /*
794 * Check whether this memory region has non-zero size or
795 * invalid node number.
796 */
797 if (size == 0)
798 return -EINVAL;
799
800 memblock_add(start, size);
801 return 0;
802 }
803
804 /*
805 * Pick out the memory size. We look for mem=size@start,
806 * where start and size are "size[KkMm]"
807 */
808
809 static int __init early_mem(char *p)
810 {
811 static int usermem __initdata = 0;
812 u64 size;
813 u64 start;
814 char *endp;
815
816 /*
817 * If the user specifies memory size, we
818 * blow away any automatically generated
819 * size.
820 */
821 if (usermem == 0) {
822 usermem = 1;
823 memblock_remove(memblock_start_of_DRAM(),
824 memblock_end_of_DRAM() - memblock_start_of_DRAM());
825 }
826
827 start = PHYS_OFFSET;
828 size = memparse(p, &endp);
829 if (*endp == '@')
830 start = memparse(endp + 1, NULL);
831
832 arm_add_memory(start, size);
833
834 return 0;
835 }
836 early_param("mem", early_mem);
837
838 static void __init request_standard_resources(const struct machine_desc *mdesc)
839 {
840 struct memblock_region *region;
841 struct resource *res;
842
843 kernel_code.start = virt_to_phys(_text);
844 kernel_code.end = virt_to_phys(__init_begin - 1);
845 kernel_data.start = virt_to_phys(_sdata);
846 kernel_data.end = virt_to_phys(_end - 1);
847
848 for_each_memblock(memory, region) {
849 phys_addr_t start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
850 phys_addr_t end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
851 unsigned long boot_alias_start;
852
853 /*
854 * Some systems have a special memory alias which is only
855 * used for booting. We need to advertise this region to
856 * kexec-tools so they know where bootable RAM is located.
857 */
858 boot_alias_start = phys_to_idmap(start);
859 if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) {
860 res = memblock_virt_alloc(sizeof(*res), 0);
861 res->name = "System RAM (boot alias)";
862 res->start = boot_alias_start;
863 res->end = phys_to_idmap(end);
864 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
865 request_resource(&iomem_resource, res);
866 }
867
868 res = memblock_virt_alloc(sizeof(*res), 0);
869 res->name = "System RAM";
870 res->start = start;
871 res->end = end;
872 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
873
874 request_resource(&iomem_resource, res);
875
876 if (kernel_code.start >= res->start &&
877 kernel_code.end <= res->end)
878 request_resource(res, &kernel_code);
879 if (kernel_data.start >= res->start &&
880 kernel_data.end <= res->end)
881 request_resource(res, &kernel_data);
882 }
883
884 if (mdesc->video_start) {
885 video_ram.start = mdesc->video_start;
886 video_ram.end = mdesc->video_end;
887 request_resource(&iomem_resource, &video_ram);
888 }
889
890 /*
891 * Some machines don't have the possibility of ever
892 * possessing lp0, lp1 or lp2
893 */
894 if (mdesc->reserve_lp0)
895 request_resource(&ioport_resource, &lp0);
896 if (mdesc->reserve_lp1)
897 request_resource(&ioport_resource, &lp1);
898 if (mdesc->reserve_lp2)
899 request_resource(&ioport_resource, &lp2);
900 }
901
902 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
903 defined(CONFIG_EFI)
904 struct screen_info screen_info = {
905 .orig_video_lines = 30,
906 .orig_video_cols = 80,
907 .orig_video_mode = 0,
908 .orig_video_ega_bx = 0,
909 .orig_video_isVGA = 1,
910 .orig_video_points = 8
911 };
912 #endif
913
914 static int __init customize_machine(void)
915 {
916 /*
917 * customizes platform devices, or adds new ones
918 * On DT based machines, we fall back to populating the
919 * machine from the device tree, if no callback is provided,
920 * otherwise we would always need an init_machine callback.
921 */
922 if (machine_desc->init_machine)
923 machine_desc->init_machine();
924
925 return 0;
926 }
927 arch_initcall(customize_machine);
928
929 static int __init init_machine_late(void)
930 {
931 struct device_node *root;
932 int ret;
933
934 if (machine_desc->init_late)
935 machine_desc->init_late();
936
937 root = of_find_node_by_path("/");
938 if (root) {
939 ret = of_property_read_string(root, "serial-number",
940 &system_serial);
941 if (ret)
942 system_serial = NULL;
943 }
944
945 if (!system_serial)
946 system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
947 system_serial_high,
948 system_serial_low);
949
950 return 0;
951 }
952 late_initcall(init_machine_late);
953
954 #ifdef CONFIG_KEXEC
955 /*
956 * The crash region must be aligned to 128MB to avoid
957 * zImage relocating below the reserved region.
958 */
959 #define CRASH_ALIGN (128 << 20)
960
961 static inline unsigned long long get_total_mem(void)
962 {
963 unsigned long total;
964
965 total = max_low_pfn - min_low_pfn;
966 return total << PAGE_SHIFT;
967 }
968
969 /**
970 * reserve_crashkernel() - reserves memory are for crash kernel
971 *
972 * This function reserves memory area given in "crashkernel=" kernel command
973 * line parameter. The memory reserved is used by a dump capture kernel when
974 * primary kernel is crashing.
975 */
976 static void __init reserve_crashkernel(void)
977 {
978 unsigned long long crash_size, crash_base;
979 unsigned long long total_mem;
980 int ret;
981
982 total_mem = get_total_mem();
983 ret = parse_crashkernel(boot_command_line, total_mem,
984 &crash_size, &crash_base);
985 if (ret)
986 return;
987
988 if (crash_base <= 0) {
989 unsigned long long crash_max = idmap_to_phys((u32)~0);
990 crash_base = memblock_find_in_range(CRASH_ALIGN, crash_max,
991 crash_size, CRASH_ALIGN);
992 if (!crash_base) {
993 pr_err("crashkernel reservation failed - No suitable area found.\n");
994 return;
995 }
996 } else {
997 unsigned long long start;
998
999 start = memblock_find_in_range(crash_base,
1000 crash_base + crash_size,
1001 crash_size, SECTION_SIZE);
1002 if (start != crash_base) {
1003 pr_err("crashkernel reservation failed - memory is in use.\n");
1004 return;
1005 }
1006 }
1007
1008 ret = memblock_reserve(crash_base, crash_size);
1009 if (ret < 0) {
1010 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1011 (unsigned long)crash_base);
1012 return;
1013 }
1014
1015 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1016 (unsigned long)(crash_size >> 20),
1017 (unsigned long)(crash_base >> 20),
1018 (unsigned long)(total_mem >> 20));
1019
1020 /* The crashk resource must always be located in normal mem */
1021 crashk_res.start = crash_base;
1022 crashk_res.end = crash_base + crash_size - 1;
1023 insert_resource(&iomem_resource, &crashk_res);
1024
1025 if (arm_has_idmap_alias()) {
1026 /*
1027 * If we have a special RAM alias for use at boot, we
1028 * need to advertise to kexec tools where the alias is.
1029 */
1030 static struct resource crashk_boot_res = {
1031 .name = "Crash kernel (boot alias)",
1032 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
1033 };
1034
1035 crashk_boot_res.start = phys_to_idmap(crash_base);
1036 crashk_boot_res.end = crashk_boot_res.start + crash_size - 1;
1037 insert_resource(&iomem_resource, &crashk_boot_res);
1038 }
1039 }
1040 #else
1041 static inline void reserve_crashkernel(void) {}
1042 #endif /* CONFIG_KEXEC */
1043
1044 void __init hyp_mode_check(void)
1045 {
1046 #ifdef CONFIG_ARM_VIRT_EXT
1047 sync_boot_mode();
1048
1049 if (is_hyp_mode_available()) {
1050 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1051 pr_info("CPU: Virtualization extensions available.\n");
1052 } else if (is_hyp_mode_mismatched()) {
1053 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1054 __boot_cpu_mode & MODE_MASK);
1055 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1056 } else
1057 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1058 #endif
1059 }
1060
1061 void __init setup_arch(char **cmdline_p)
1062 {
1063 const struct machine_desc *mdesc;
1064
1065 setup_processor();
1066 mdesc = setup_machine_fdt(__atags_pointer);
1067 if (!mdesc)
1068 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
1069 machine_desc = mdesc;
1070 machine_name = mdesc->name;
1071 dump_stack_set_arch_desc("%s", mdesc->name);
1072
1073 if (mdesc->reboot_mode != REBOOT_HARD)
1074 reboot_mode = mdesc->reboot_mode;
1075
1076 init_mm.start_code = (unsigned long) _text;
1077 init_mm.end_code = (unsigned long) _etext;
1078 init_mm.end_data = (unsigned long) _edata;
1079 init_mm.brk = (unsigned long) _end;
1080
1081 /* populate cmd_line too for later use, preserving boot_command_line */
1082 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
1083 *cmdline_p = cmd_line;
1084
1085 early_fixmap_init();
1086 early_ioremap_init();
1087
1088 parse_early_param();
1089
1090 #ifdef CONFIG_MMU
1091 early_mm_init(mdesc);
1092 #endif
1093 setup_dma_zone(mdesc);
1094 xen_early_init();
1095 efi_init();
1096 /*
1097 * Make sure the calculation for lowmem/highmem is set appropriately
1098 * before reserving/allocating any mmeory
1099 */
1100 adjust_lowmem_bounds();
1101 arm_memblock_init(mdesc);
1102 /* Memory may have been removed so recalculate the bounds. */
1103 adjust_lowmem_bounds();
1104
1105 early_ioremap_reset();
1106
1107 paging_init(mdesc);
1108 request_standard_resources(mdesc);
1109
1110 if (mdesc->restart)
1111 arm_pm_restart = mdesc->restart;
1112
1113 unflatten_device_tree();
1114
1115 arm_dt_init_cpu_maps();
1116 psci_dt_init();
1117 #ifdef CONFIG_SMP
1118 if (is_smp()) {
1119 if (!mdesc->smp_init || !mdesc->smp_init()) {
1120 if (psci_smp_available())
1121 smp_set_ops(&psci_smp_ops);
1122 else if (mdesc->smp)
1123 smp_set_ops(mdesc->smp);
1124 }
1125 smp_init_cpus();
1126 smp_build_mpidr_hash();
1127 }
1128 #endif
1129
1130 if (!is_smp())
1131 hyp_mode_check();
1132
1133 reserve_crashkernel();
1134
1135 #ifdef CONFIG_MULTI_IRQ_HANDLER
1136 handle_arch_irq = mdesc->handle_irq;
1137 #endif
1138
1139 #ifdef CONFIG_VT
1140 #if defined(CONFIG_VGA_CONSOLE)
1141 conswitchp = &vga_con;
1142 #elif defined(CONFIG_DUMMY_CONSOLE)
1143 conswitchp = &dummy_con;
1144 #endif
1145 #endif
1146
1147 if (mdesc->init_early)
1148 mdesc->init_early();
1149 }
1150
1151
1152 static int __init topology_init(void)
1153 {
1154 int cpu;
1155
1156 for_each_possible_cpu(cpu) {
1157 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
1158 cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu);
1159 register_cpu(&cpuinfo->cpu, cpu);
1160 }
1161
1162 return 0;
1163 }
1164 subsys_initcall(topology_init);
1165
1166 #ifdef CONFIG_HAVE_PROC_CPU
1167 static int __init proc_cpu_init(void)
1168 {
1169 struct proc_dir_entry *res;
1170
1171 res = proc_mkdir("cpu", NULL);
1172 if (!res)
1173 return -ENOMEM;
1174 return 0;
1175 }
1176 fs_initcall(proc_cpu_init);
1177 #endif
1178
1179 static const char *hwcap_str[] = {
1180 "swp",
1181 "half",
1182 "thumb",
1183 "26bit",
1184 "fastmult",
1185 "fpa",
1186 "vfp",
1187 "edsp",
1188 "java",
1189 "iwmmxt",
1190 "crunch",
1191 "thumbee",
1192 "neon",
1193 "vfpv3",
1194 "vfpv3d16",
1195 "tls",
1196 "vfpv4",
1197 "idiva",
1198 "idivt",
1199 "vfpd32",
1200 "lpae",
1201 "evtstrm",
1202 NULL
1203 };
1204
1205 static const char *hwcap2_str[] = {
1206 "aes",
1207 "pmull",
1208 "sha1",
1209 "sha2",
1210 "crc32",
1211 NULL
1212 };
1213
1214 static int c_show(struct seq_file *m, void *v)
1215 {
1216 int i, j;
1217 u32 cpuid;
1218
1219 for_each_online_cpu(i) {
1220 /*
1221 * glibc reads /proc/cpuinfo to determine the number of
1222 * online processors, looking for lines beginning with
1223 * "processor". Give glibc what it expects.
1224 */
1225 seq_printf(m, "processor\t: %d\n", i);
1226 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
1227 seq_printf(m, "model name\t: %s rev %d (%s)\n",
1228 cpu_name, cpuid & 15, elf_platform);
1229
1230 #if defined(CONFIG_SMP)
1231 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1232 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
1233 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
1234 #else
1235 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1236 loops_per_jiffy / (500000/HZ),
1237 (loops_per_jiffy / (5000/HZ)) % 100);
1238 #endif
1239 /* dump out the processor features */
1240 seq_puts(m, "Features\t: ");
1241
1242 for (j = 0; hwcap_str[j]; j++)
1243 if (elf_hwcap & (1 << j))
1244 seq_printf(m, "%s ", hwcap_str[j]);
1245
1246 for (j = 0; hwcap2_str[j]; j++)
1247 if (elf_hwcap2 & (1 << j))
1248 seq_printf(m, "%s ", hwcap2_str[j]);
1249
1250 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1251 seq_printf(m, "CPU architecture: %s\n",
1252 proc_arch[cpu_architecture()]);
1253
1254 if ((cpuid & 0x0008f000) == 0x00000000) {
1255 /* pre-ARM7 */
1256 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1257 } else {
1258 if ((cpuid & 0x0008f000) == 0x00007000) {
1259 /* ARM7 */
1260 seq_printf(m, "CPU variant\t: 0x%02x\n",
1261 (cpuid >> 16) & 127);
1262 } else {
1263 /* post-ARM7 */
1264 seq_printf(m, "CPU variant\t: 0x%x\n",
1265 (cpuid >> 20) & 15);
1266 }
1267 seq_printf(m, "CPU part\t: 0x%03x\n",
1268 (cpuid >> 4) & 0xfff);
1269 }
1270 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1271 }
1272
1273 seq_printf(m, "Hardware\t: %s\n", machine_name);
1274 seq_printf(m, "Revision\t: %04x\n", system_rev);
1275 seq_printf(m, "Serial\t\t: %s\n", system_serial);
1276
1277 return 0;
1278 }
1279
1280 static void *c_start(struct seq_file *m, loff_t *pos)
1281 {
1282 return *pos < 1 ? (void *)1 : NULL;
1283 }
1284
1285 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1286 {
1287 ++*pos;
1288 return NULL;
1289 }
1290
1291 static void c_stop(struct seq_file *m, void *v)
1292 {
1293 }
1294
1295 const struct seq_operations cpuinfo_op = {
1296 .start = c_start,
1297 .next = c_next,
1298 .stop = c_stop,
1299 .show = c_show
1300 };