]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm/kernel/smp.c
00327fa74b010ba7ba63690c98009ed872fc458e
[mirror_ubuntu-hirsute-kernel.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55 * as from 2.5, kernels no longer have an init_tasks structure
56 * so we need some other way of telling a new secondary core
57 * where to place its SVC stack
58 */
59 struct secondary_data secondary_data;
60
61 enum ipi_msg_type {
62 IPI_WAKEUP,
63 IPI_TIMER,
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CPU_STOP,
67 IPI_IRQ_WORK,
68 IPI_COMPLETION,
69 NR_IPI,
70 /*
71 * CPU_BACKTRACE is special and not included in NR_IPI
72 * or tracable with trace_ipi_*
73 */
74 IPI_CPU_BACKTRACE = NR_IPI,
75 /*
76 * SGI8-15 can be reserved by secure firmware, and thus may
77 * not be usable by the kernel. Please keep the above limited
78 * to at most 8 entries.
79 */
80 MAX_IPI
81 };
82
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86
87 static void ipi_setup(int cpu);
88 static void ipi_teardown(int cpu);
89
90 static DECLARE_COMPLETION(cpu_running);
91
92 static struct smp_operations smp_ops __ro_after_init;
93
94 void __init smp_set_ops(const struct smp_operations *ops)
95 {
96 if (ops)
97 smp_ops = *ops;
98 };
99
100 static unsigned long get_arch_pgd(pgd_t *pgd)
101 {
102 #ifdef CONFIG_ARM_LPAE
103 return __phys_to_pfn(virt_to_phys(pgd));
104 #else
105 return virt_to_phys(pgd);
106 #endif
107 }
108
109 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
110 static int secondary_biglittle_prepare(unsigned int cpu)
111 {
112 if (!cpu_vtable[cpu])
113 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
114
115 return cpu_vtable[cpu] ? 0 : -ENOMEM;
116 }
117
118 static void secondary_biglittle_init(void)
119 {
120 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
121 }
122 #else
123 static int secondary_biglittle_prepare(unsigned int cpu)
124 {
125 return 0;
126 }
127
128 static void secondary_biglittle_init(void)
129 {
130 }
131 #endif
132
133 int __cpu_up(unsigned int cpu, struct task_struct *idle)
134 {
135 int ret;
136
137 if (!smp_ops.smp_boot_secondary)
138 return -ENOSYS;
139
140 ret = secondary_biglittle_prepare(cpu);
141 if (ret)
142 return ret;
143
144 /*
145 * We need to tell the secondary core where to find
146 * its stack and the page tables.
147 */
148 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
149 #ifdef CONFIG_ARM_MPU
150 secondary_data.mpu_rgn_info = &mpu_rgn_info;
151 #endif
152
153 #ifdef CONFIG_MMU
154 secondary_data.pgdir = virt_to_phys(idmap_pgd);
155 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
156 #endif
157 sync_cache_w(&secondary_data);
158
159 /*
160 * Now bring the CPU into our world.
161 */
162 ret = smp_ops.smp_boot_secondary(cpu, idle);
163 if (ret == 0) {
164 /*
165 * CPU was successfully started, wait for it
166 * to come online or time out.
167 */
168 wait_for_completion_timeout(&cpu_running,
169 msecs_to_jiffies(1000));
170
171 if (!cpu_online(cpu)) {
172 pr_crit("CPU%u: failed to come online\n", cpu);
173 ret = -EIO;
174 }
175 } else {
176 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177 }
178
179
180 memset(&secondary_data, 0, sizeof(secondary_data));
181 return ret;
182 }
183
184 /* platform specific SMP operations */
185 void __init smp_init_cpus(void)
186 {
187 if (smp_ops.smp_init_cpus)
188 smp_ops.smp_init_cpus();
189 }
190
191 int platform_can_secondary_boot(void)
192 {
193 return !!smp_ops.smp_boot_secondary;
194 }
195
196 int platform_can_cpu_hotplug(void)
197 {
198 #ifdef CONFIG_HOTPLUG_CPU
199 if (smp_ops.cpu_kill)
200 return 1;
201 #endif
202
203 return 0;
204 }
205
206 #ifdef CONFIG_HOTPLUG_CPU
207 static int platform_cpu_kill(unsigned int cpu)
208 {
209 if (smp_ops.cpu_kill)
210 return smp_ops.cpu_kill(cpu);
211 return 1;
212 }
213
214 static int platform_cpu_disable(unsigned int cpu)
215 {
216 if (smp_ops.cpu_disable)
217 return smp_ops.cpu_disable(cpu);
218
219 return 0;
220 }
221
222 int platform_can_hotplug_cpu(unsigned int cpu)
223 {
224 /* cpu_die must be specified to support hotplug */
225 if (!smp_ops.cpu_die)
226 return 0;
227
228 if (smp_ops.cpu_can_disable)
229 return smp_ops.cpu_can_disable(cpu);
230
231 /*
232 * By default, allow disabling all CPUs except the first one,
233 * since this is special on a lot of platforms, e.g. because
234 * of clock tick interrupts.
235 */
236 return cpu != 0;
237 }
238
239 /*
240 * __cpu_disable runs on the processor to be shutdown.
241 */
242 int __cpu_disable(void)
243 {
244 unsigned int cpu = smp_processor_id();
245 int ret;
246
247 ret = platform_cpu_disable(cpu);
248 if (ret)
249 return ret;
250
251 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
252 remove_cpu_topology(cpu);
253 #endif
254
255 /*
256 * Take this CPU offline. Once we clear this, we can't return,
257 * and we must not schedule until we're ready to give up the cpu.
258 */
259 set_cpu_online(cpu, false);
260 ipi_teardown(cpu);
261
262 /*
263 * OK - migrate IRQs away from this CPU
264 */
265 irq_migrate_all_off_this_cpu();
266
267 /*
268 * Flush user cache and TLB mappings, and then remove this CPU
269 * from the vm mask set of all processes.
270 *
271 * Caches are flushed to the Level of Unification Inner Shareable
272 * to write-back dirty lines to unified caches shared by all CPUs.
273 */
274 flush_cache_louis();
275 local_flush_tlb_all();
276
277 return 0;
278 }
279
280 /*
281 * called on the thread which is asking for a CPU to be shutdown -
282 * waits until shutdown has completed, or it is timed out.
283 */
284 void __cpu_die(unsigned int cpu)
285 {
286 if (!cpu_wait_death(cpu, 5)) {
287 pr_err("CPU%u: cpu didn't die\n", cpu);
288 return;
289 }
290 pr_debug("CPU%u: shutdown\n", cpu);
291
292 clear_tasks_mm_cpumask(cpu);
293 /*
294 * platform_cpu_kill() is generally expected to do the powering off
295 * and/or cutting of clocks to the dying CPU. Optionally, this may
296 * be done by the CPU which is dying in preference to supporting
297 * this call, but that means there is _no_ synchronisation between
298 * the requesting CPU and the dying CPU actually losing power.
299 */
300 if (!platform_cpu_kill(cpu))
301 pr_err("CPU%u: unable to kill\n", cpu);
302 }
303
304 /*
305 * Called from the idle thread for the CPU which has been shutdown.
306 *
307 * Note that we disable IRQs here, but do not re-enable them
308 * before returning to the caller. This is also the behaviour
309 * of the other hotplug-cpu capable cores, so presumably coming
310 * out of idle fixes this.
311 */
312 void arch_cpu_idle_dead(void)
313 {
314 unsigned int cpu = smp_processor_id();
315
316 idle_task_exit();
317
318 local_irq_disable();
319
320 /*
321 * Flush the data out of the L1 cache for this CPU. This must be
322 * before the completion to ensure that data is safely written out
323 * before platform_cpu_kill() gets called - which may disable
324 * *this* CPU and power down its cache.
325 */
326 flush_cache_louis();
327
328 /*
329 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
330 * this returns, power and/or clocks can be removed at any point
331 * from this CPU and its cache by platform_cpu_kill().
332 */
333 (void)cpu_report_death();
334
335 /*
336 * Ensure that the cache lines associated with that completion are
337 * written out. This covers the case where _this_ CPU is doing the
338 * powering down, to ensure that the completion is visible to the
339 * CPU waiting for this one.
340 */
341 flush_cache_louis();
342
343 /*
344 * The actual CPU shutdown procedure is at least platform (if not
345 * CPU) specific. This may remove power, or it may simply spin.
346 *
347 * Platforms are generally expected *NOT* to return from this call,
348 * although there are some which do because they have no way to
349 * power down the CPU. These platforms are the _only_ reason we
350 * have a return path which uses the fragment of assembly below.
351 *
352 * The return path should not be used for platforms which can
353 * power off the CPU.
354 */
355 if (smp_ops.cpu_die)
356 smp_ops.cpu_die(cpu);
357
358 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
359 cpu);
360
361 /*
362 * Do not return to the idle loop - jump back to the secondary
363 * cpu initialisation. There's some initialisation which needs
364 * to be repeated to undo the effects of taking the CPU offline.
365 */
366 __asm__("mov sp, %0\n"
367 " mov fp, #0\n"
368 " b secondary_start_kernel"
369 :
370 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
371 }
372 #endif /* CONFIG_HOTPLUG_CPU */
373
374 /*
375 * Called by both boot and secondaries to move global data into
376 * per-processor storage.
377 */
378 static void smp_store_cpu_info(unsigned int cpuid)
379 {
380 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
381
382 cpu_info->loops_per_jiffy = loops_per_jiffy;
383 cpu_info->cpuid = read_cpuid_id();
384
385 store_cpu_topology(cpuid);
386 check_cpu_icache_size(cpuid);
387 }
388
389 /*
390 * This is the secondary CPU boot entry. We're using this CPUs
391 * idle thread stack, but a set of temporary page tables.
392 */
393 asmlinkage void secondary_start_kernel(void)
394 {
395 struct mm_struct *mm = &init_mm;
396 unsigned int cpu;
397
398 secondary_biglittle_init();
399
400 /*
401 * The identity mapping is uncached (strongly ordered), so
402 * switch away from it before attempting any exclusive accesses.
403 */
404 cpu_switch_mm(mm->pgd, mm);
405 local_flush_bp_all();
406 enter_lazy_tlb(mm, current);
407 local_flush_tlb_all();
408
409 /*
410 * All kernel threads share the same mm context; grab a
411 * reference and switch to it.
412 */
413 cpu = smp_processor_id();
414 mmgrab(mm);
415 current->active_mm = mm;
416 cpumask_set_cpu(cpu, mm_cpumask(mm));
417
418 cpu_init();
419
420 #ifndef CONFIG_MMU
421 setup_vectors_base();
422 #endif
423 pr_debug("CPU%u: Booted secondary processor\n", cpu);
424
425 preempt_disable();
426 trace_hardirqs_off();
427
428 /*
429 * Give the platform a chance to do its own initialisation.
430 */
431 if (smp_ops.smp_secondary_init)
432 smp_ops.smp_secondary_init(cpu);
433
434 notify_cpu_starting(cpu);
435
436 ipi_setup(cpu);
437
438 calibrate_delay();
439
440 smp_store_cpu_info(cpu);
441
442 /*
443 * OK, now it's safe to let the boot CPU continue. Wait for
444 * the CPU migration code to notice that the CPU is online
445 * before we continue - which happens after __cpu_up returns.
446 */
447 set_cpu_online(cpu, true);
448
449 check_other_bugs();
450
451 complete(&cpu_running);
452
453 local_irq_enable();
454 local_fiq_enable();
455 local_abt_enable();
456
457 /*
458 * OK, it's off to the idle thread for us
459 */
460 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
461 }
462
463 void __init smp_cpus_done(unsigned int max_cpus)
464 {
465 int cpu;
466 unsigned long bogosum = 0;
467
468 for_each_online_cpu(cpu)
469 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
470
471 printk(KERN_INFO "SMP: Total of %d processors activated "
472 "(%lu.%02lu BogoMIPS).\n",
473 num_online_cpus(),
474 bogosum / (500000/HZ),
475 (bogosum / (5000/HZ)) % 100);
476
477 hyp_mode_check();
478 }
479
480 void __init smp_prepare_boot_cpu(void)
481 {
482 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
483 }
484
485 void __init smp_prepare_cpus(unsigned int max_cpus)
486 {
487 unsigned int ncores = num_possible_cpus();
488
489 init_cpu_topology();
490
491 smp_store_cpu_info(smp_processor_id());
492
493 /*
494 * are we trying to boot more cores than exist?
495 */
496 if (max_cpus > ncores)
497 max_cpus = ncores;
498 if (ncores > 1 && max_cpus) {
499 /*
500 * Initialise the present map, which describes the set of CPUs
501 * actually populated at the present time. A platform should
502 * re-initialize the map in the platforms smp_prepare_cpus()
503 * if present != possible (e.g. physical hotplug).
504 */
505 init_cpu_present(cpu_possible_mask);
506
507 /*
508 * Initialise the SCU if there are more than one CPU
509 * and let them know where to start.
510 */
511 if (smp_ops.smp_prepare_cpus)
512 smp_ops.smp_prepare_cpus(max_cpus);
513 }
514 }
515
516 static const char *ipi_types[NR_IPI] __tracepoint_string = {
517 #define S(x,s) [x] = s
518 S(IPI_WAKEUP, "CPU wakeup interrupts"),
519 S(IPI_TIMER, "Timer broadcast interrupts"),
520 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
521 S(IPI_CALL_FUNC, "Function call interrupts"),
522 S(IPI_CPU_STOP, "CPU stop interrupts"),
523 S(IPI_IRQ_WORK, "IRQ work interrupts"),
524 S(IPI_COMPLETION, "completion interrupts"),
525 };
526
527 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
528
529 void show_ipi_list(struct seq_file *p, int prec)
530 {
531 unsigned int cpu, i;
532
533 for (i = 0; i < NR_IPI; i++) {
534 unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
535 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
536
537 for_each_online_cpu(cpu)
538 seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
539
540 seq_printf(p, " %s\n", ipi_types[i]);
541 }
542 }
543
544 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
545 {
546 smp_cross_call(mask, IPI_CALL_FUNC);
547 }
548
549 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
550 {
551 smp_cross_call(mask, IPI_WAKEUP);
552 }
553
554 void arch_send_call_function_single_ipi(int cpu)
555 {
556 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
557 }
558
559 #ifdef CONFIG_IRQ_WORK
560 void arch_irq_work_raise(void)
561 {
562 if (arch_irq_work_has_interrupt())
563 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
564 }
565 #endif
566
567 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
568 void tick_broadcast(const struct cpumask *mask)
569 {
570 smp_cross_call(mask, IPI_TIMER);
571 }
572 #endif
573
574 static DEFINE_RAW_SPINLOCK(stop_lock);
575
576 /*
577 * ipi_cpu_stop - handle IPI from smp_send_stop()
578 */
579 static void ipi_cpu_stop(unsigned int cpu)
580 {
581 if (system_state <= SYSTEM_RUNNING) {
582 raw_spin_lock(&stop_lock);
583 pr_crit("CPU%u: stopping\n", cpu);
584 dump_stack();
585 raw_spin_unlock(&stop_lock);
586 }
587
588 set_cpu_online(cpu, false);
589
590 local_fiq_disable();
591 local_irq_disable();
592
593 while (1) {
594 cpu_relax();
595 wfe();
596 }
597 }
598
599 static DEFINE_PER_CPU(struct completion *, cpu_completion);
600
601 int register_ipi_completion(struct completion *completion, int cpu)
602 {
603 per_cpu(cpu_completion, cpu) = completion;
604 return IPI_COMPLETION;
605 }
606
607 static void ipi_complete(unsigned int cpu)
608 {
609 complete(per_cpu(cpu_completion, cpu));
610 }
611
612 /*
613 * Main handler for inter-processor interrupts
614 */
615 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
616 {
617 handle_IPI(ipinr, regs);
618 }
619
620 static void do_handle_IPI(int ipinr)
621 {
622 unsigned int cpu = smp_processor_id();
623
624 if ((unsigned)ipinr < NR_IPI)
625 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
626
627 switch (ipinr) {
628 case IPI_WAKEUP:
629 break;
630
631 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
632 case IPI_TIMER:
633 tick_receive_broadcast();
634 break;
635 #endif
636
637 case IPI_RESCHEDULE:
638 scheduler_ipi();
639 break;
640
641 case IPI_CALL_FUNC:
642 generic_smp_call_function_interrupt();
643 break;
644
645 case IPI_CPU_STOP:
646 ipi_cpu_stop(cpu);
647 break;
648
649 #ifdef CONFIG_IRQ_WORK
650 case IPI_IRQ_WORK:
651 irq_work_run();
652 break;
653 #endif
654
655 case IPI_COMPLETION:
656 ipi_complete(cpu);
657 break;
658
659 case IPI_CPU_BACKTRACE:
660 printk_nmi_enter();
661 nmi_cpu_backtrace(get_irq_regs());
662 printk_nmi_exit();
663 break;
664
665 default:
666 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
667 cpu, ipinr);
668 break;
669 }
670
671 if ((unsigned)ipinr < NR_IPI)
672 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
673 }
674
675 /* Legacy version, should go away once all irqchips have been converted */
676 void handle_IPI(int ipinr, struct pt_regs *regs)
677 {
678 struct pt_regs *old_regs = set_irq_regs(regs);
679
680 irq_enter();
681 do_handle_IPI(ipinr);
682 irq_exit();
683
684 set_irq_regs(old_regs);
685 }
686
687 static irqreturn_t ipi_handler(int irq, void *data)
688 {
689 do_handle_IPI(irq - ipi_irq_base);
690 return IRQ_HANDLED;
691 }
692
693 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
694 {
695 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
696 __ipi_send_mask(ipi_desc[ipinr], target);
697 }
698
699 static void ipi_setup(int cpu)
700 {
701 int i;
702
703 if (WARN_ON_ONCE(!ipi_irq_base))
704 return;
705
706 for (i = 0; i < nr_ipi; i++)
707 enable_percpu_irq(ipi_irq_base + i, 0);
708 }
709
710 static void ipi_teardown(int cpu)
711 {
712 int i;
713
714 if (WARN_ON_ONCE(!ipi_irq_base))
715 return;
716
717 for (i = 0; i < nr_ipi; i++)
718 disable_percpu_irq(ipi_irq_base + i);
719 }
720
721 void __init set_smp_ipi_range(int ipi_base, int n)
722 {
723 int i;
724
725 WARN_ON(n < MAX_IPI);
726 nr_ipi = min(n, MAX_IPI);
727
728 for (i = 0; i < nr_ipi; i++) {
729 int err;
730
731 err = request_percpu_irq(ipi_base + i, ipi_handler,
732 "IPI", &irq_stat);
733 WARN_ON(err);
734
735 ipi_desc[i] = irq_to_desc(ipi_base + i);
736 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
737 }
738
739 ipi_irq_base = ipi_base;
740
741 /* Setup the boot CPU immediately */
742 ipi_setup(smp_processor_id());
743 }
744
745 void smp_send_reschedule(int cpu)
746 {
747 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
748 }
749
750 void smp_send_stop(void)
751 {
752 unsigned long timeout;
753 struct cpumask mask;
754
755 cpumask_copy(&mask, cpu_online_mask);
756 cpumask_clear_cpu(smp_processor_id(), &mask);
757 if (!cpumask_empty(&mask))
758 smp_cross_call(&mask, IPI_CPU_STOP);
759
760 /* Wait up to one second for other CPUs to stop */
761 timeout = USEC_PER_SEC;
762 while (num_online_cpus() > 1 && timeout--)
763 udelay(1);
764
765 if (num_online_cpus() > 1)
766 pr_warn("SMP: failed to stop secondary CPUs\n");
767 }
768
769 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
770 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
771 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
772 * kdump fails. So split out the panic_smp_self_stop() and add
773 * set_cpu_online(smp_processor_id(), false).
774 */
775 void panic_smp_self_stop(void)
776 {
777 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
778 smp_processor_id());
779 set_cpu_online(smp_processor_id(), false);
780 while (1)
781 cpu_relax();
782 }
783
784 /*
785 * not supported here
786 */
787 int setup_profiling_timer(unsigned int multiplier)
788 {
789 return -EINVAL;
790 }
791
792 #ifdef CONFIG_CPU_FREQ
793
794 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
795 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
796 static unsigned long global_l_p_j_ref;
797 static unsigned long global_l_p_j_ref_freq;
798
799 static int cpufreq_callback(struct notifier_block *nb,
800 unsigned long val, void *data)
801 {
802 struct cpufreq_freqs *freq = data;
803 struct cpumask *cpus = freq->policy->cpus;
804 int cpu, first = cpumask_first(cpus);
805 unsigned int lpj;
806
807 if (freq->flags & CPUFREQ_CONST_LOOPS)
808 return NOTIFY_OK;
809
810 if (!per_cpu(l_p_j_ref, first)) {
811 for_each_cpu(cpu, cpus) {
812 per_cpu(l_p_j_ref, cpu) =
813 per_cpu(cpu_data, cpu).loops_per_jiffy;
814 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
815 }
816
817 if (!global_l_p_j_ref) {
818 global_l_p_j_ref = loops_per_jiffy;
819 global_l_p_j_ref_freq = freq->old;
820 }
821 }
822
823 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
824 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
825 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
826 global_l_p_j_ref_freq,
827 freq->new);
828
829 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
830 per_cpu(l_p_j_ref_freq, first), freq->new);
831 for_each_cpu(cpu, cpus)
832 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
833 }
834 return NOTIFY_OK;
835 }
836
837 static struct notifier_block cpufreq_notifier = {
838 .notifier_call = cpufreq_callback,
839 };
840
841 static int __init register_cpufreq_notifier(void)
842 {
843 return cpufreq_register_notifier(&cpufreq_notifier,
844 CPUFREQ_TRANSITION_NOTIFIER);
845 }
846 core_initcall(register_cpufreq_notifier);
847
848 #endif
849
850 static void raise_nmi(cpumask_t *mask)
851 {
852 __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
853 }
854
855 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
856 {
857 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
858 }