]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/kernel/smp.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
[mirror_ubuntu-bionic-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48
49 /*
50 * as from 2.5, kernels no longer have an init_tasks structure
51 * so we need some other way of telling a new secondary core
52 * where to place its SVC stack
53 */
54 struct secondary_data secondary_data;
55
56 /*
57 * control for which core is the next to come out of the secondary
58 * boot "holding pen"
59 */
60 volatile int __cpuinitdata pen_release = -1;
61
62 enum ipi_msg_type {
63 IPI_WAKEUP,
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CALL_FUNC_SINGLE,
68 IPI_CPU_STOP,
69 };
70
71 static DECLARE_COMPLETION(cpu_running);
72
73 static struct smp_operations smp_ops;
74
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 if (ops)
78 smp_ops = *ops;
79 };
80
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 int ret;
84
85 /*
86 * We need to tell the secondary core where to find
87 * its stack and the page tables.
88 */
89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 secondary_data.pgdir = virt_to_phys(idmap_pgd);
91 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94
95 /*
96 * Now bring the CPU into our world.
97 */
98 ret = boot_secondary(cpu, idle);
99 if (ret == 0) {
100 /*
101 * CPU was successfully started, wait for it
102 * to come online or time out.
103 */
104 wait_for_completion_timeout(&cpu_running,
105 msecs_to_jiffies(1000));
106
107 if (!cpu_online(cpu)) {
108 pr_crit("CPU%u: failed to come online\n", cpu);
109 ret = -EIO;
110 }
111 } else {
112 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 }
114
115 secondary_data.stack = NULL;
116 secondary_data.pgdir = 0;
117
118 return ret;
119 }
120
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124 if (smp_ops.smp_init_cpus)
125 smp_ops.smp_init_cpus();
126 }
127
128 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
129 {
130 if (smp_ops.smp_boot_secondary)
131 return smp_ops.smp_boot_secondary(cpu, idle);
132 return -ENOSYS;
133 }
134
135 #ifdef CONFIG_HOTPLUG_CPU
136 static void percpu_timer_stop(void);
137
138 static int platform_cpu_kill(unsigned int cpu)
139 {
140 if (smp_ops.cpu_kill)
141 return smp_ops.cpu_kill(cpu);
142 return 1;
143 }
144
145 static int platform_cpu_disable(unsigned int cpu)
146 {
147 if (smp_ops.cpu_disable)
148 return smp_ops.cpu_disable(cpu);
149
150 /*
151 * By default, allow disabling all CPUs except the first one,
152 * since this is special on a lot of platforms, e.g. because
153 * of clock tick interrupts.
154 */
155 return cpu == 0 ? -EPERM : 0;
156 }
157 /*
158 * __cpu_disable runs on the processor to be shutdown.
159 */
160 int __cpuinit __cpu_disable(void)
161 {
162 unsigned int cpu = smp_processor_id();
163 int ret;
164
165 ret = platform_cpu_disable(cpu);
166 if (ret)
167 return ret;
168
169 /*
170 * Take this CPU offline. Once we clear this, we can't return,
171 * and we must not schedule until we're ready to give up the cpu.
172 */
173 set_cpu_online(cpu, false);
174
175 /*
176 * OK - migrate IRQs away from this CPU
177 */
178 migrate_irqs();
179
180 /*
181 * Stop the local timer for this CPU.
182 */
183 percpu_timer_stop();
184
185 /*
186 * Flush user cache and TLB mappings, and then remove this CPU
187 * from the vm mask set of all processes.
188 *
189 * Caches are flushed to the Level of Unification Inner Shareable
190 * to write-back dirty lines to unified caches shared by all CPUs.
191 */
192 flush_cache_louis();
193 local_flush_tlb_all();
194
195 clear_tasks_mm_cpumask(cpu);
196
197 return 0;
198 }
199
200 static DECLARE_COMPLETION(cpu_died);
201
202 /*
203 * called on the thread which is asking for a CPU to be shutdown -
204 * waits until shutdown has completed, or it is timed out.
205 */
206 void __cpuinit __cpu_die(unsigned int cpu)
207 {
208 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
209 pr_err("CPU%u: cpu didn't die\n", cpu);
210 return;
211 }
212 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
213
214 if (!platform_cpu_kill(cpu))
215 printk("CPU%u: unable to kill\n", cpu);
216 }
217
218 /*
219 * Called from the idle thread for the CPU which has been shutdown.
220 *
221 * Note that we disable IRQs here, but do not re-enable them
222 * before returning to the caller. This is also the behaviour
223 * of the other hotplug-cpu capable cores, so presumably coming
224 * out of idle fixes this.
225 */
226 void __ref cpu_die(void)
227 {
228 unsigned int cpu = smp_processor_id();
229
230 idle_task_exit();
231
232 local_irq_disable();
233 mb();
234
235 /* Tell __cpu_die() that this CPU is now safe to dispose of */
236 RCU_NONIDLE(complete(&cpu_died));
237
238 /*
239 * actual CPU shutdown procedure is at least platform (if not
240 * CPU) specific.
241 */
242 if (smp_ops.cpu_die)
243 smp_ops.cpu_die(cpu);
244
245 /*
246 * Do not return to the idle loop - jump back to the secondary
247 * cpu initialisation. There's some initialisation which needs
248 * to be repeated to undo the effects of taking the CPU offline.
249 */
250 __asm__("mov sp, %0\n"
251 " mov fp, #0\n"
252 " b secondary_start_kernel"
253 :
254 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
255 }
256 #endif /* CONFIG_HOTPLUG_CPU */
257
258 /*
259 * Called by both boot and secondaries to move global data into
260 * per-processor storage.
261 */
262 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
263 {
264 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
265
266 cpu_info->loops_per_jiffy = loops_per_jiffy;
267 cpu_info->cpuid = read_cpuid_id();
268
269 store_cpu_topology(cpuid);
270 }
271
272 static void percpu_timer_setup(void);
273
274 /*
275 * This is the secondary CPU boot entry. We're using this CPUs
276 * idle thread stack, but a set of temporary page tables.
277 */
278 asmlinkage void __cpuinit secondary_start_kernel(void)
279 {
280 struct mm_struct *mm = &init_mm;
281 unsigned int cpu;
282
283 /*
284 * The identity mapping is uncached (strongly ordered), so
285 * switch away from it before attempting any exclusive accesses.
286 */
287 cpu_switch_mm(mm->pgd, mm);
288 enter_lazy_tlb(mm, current);
289 local_flush_tlb_all();
290
291 /*
292 * All kernel threads share the same mm context; grab a
293 * reference and switch to it.
294 */
295 cpu = smp_processor_id();
296 atomic_inc(&mm->mm_count);
297 current->active_mm = mm;
298 cpumask_set_cpu(cpu, mm_cpumask(mm));
299
300 cpu_init();
301
302 printk("CPU%u: Booted secondary processor\n", cpu);
303
304 preempt_disable();
305 trace_hardirqs_off();
306
307 /*
308 * Give the platform a chance to do its own initialisation.
309 */
310 if (smp_ops.smp_secondary_init)
311 smp_ops.smp_secondary_init(cpu);
312
313 notify_cpu_starting(cpu);
314
315 calibrate_delay();
316
317 smp_store_cpu_info(cpu);
318
319 /*
320 * OK, now it's safe to let the boot CPU continue. Wait for
321 * the CPU migration code to notice that the CPU is online
322 * before we continue - which happens after __cpu_up returns.
323 */
324 set_cpu_online(cpu, true);
325 complete(&cpu_running);
326
327 /*
328 * Setup the percpu timer for this CPU.
329 */
330 percpu_timer_setup();
331
332 local_irq_enable();
333 local_fiq_enable();
334
335 /*
336 * OK, it's off to the idle thread for us
337 */
338 cpu_idle();
339 }
340
341 void __init smp_cpus_done(unsigned int max_cpus)
342 {
343 int cpu;
344 unsigned long bogosum = 0;
345
346 for_each_online_cpu(cpu)
347 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
348
349 printk(KERN_INFO "SMP: Total of %d processors activated "
350 "(%lu.%02lu BogoMIPS).\n",
351 num_online_cpus(),
352 bogosum / (500000/HZ),
353 (bogosum / (5000/HZ)) % 100);
354
355 hyp_mode_check();
356 }
357
358 void __init smp_prepare_boot_cpu(void)
359 {
360 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
361 }
362
363 void __init smp_prepare_cpus(unsigned int max_cpus)
364 {
365 unsigned int ncores = num_possible_cpus();
366
367 init_cpu_topology();
368
369 smp_store_cpu_info(smp_processor_id());
370
371 /*
372 * are we trying to boot more cores than exist?
373 */
374 if (max_cpus > ncores)
375 max_cpus = ncores;
376 if (ncores > 1 && max_cpus) {
377 /*
378 * Enable the local timer or broadcast device for the
379 * boot CPU, but only if we have more than one CPU.
380 */
381 percpu_timer_setup();
382
383 /*
384 * Initialise the present map, which describes the set of CPUs
385 * actually populated at the present time. A platform should
386 * re-initialize the map in the platforms smp_prepare_cpus()
387 * if present != possible (e.g. physical hotplug).
388 */
389 init_cpu_present(cpu_possible_mask);
390
391 /*
392 * Initialise the SCU if there are more than one CPU
393 * and let them know where to start.
394 */
395 if (smp_ops.smp_prepare_cpus)
396 smp_ops.smp_prepare_cpus(max_cpus);
397 }
398 }
399
400 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
401
402 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
403 {
404 if (!smp_cross_call)
405 smp_cross_call = fn;
406 }
407
408 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
409 {
410 smp_cross_call(mask, IPI_CALL_FUNC);
411 }
412
413 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
414 {
415 smp_cross_call(mask, IPI_WAKEUP);
416 }
417
418 void arch_send_call_function_single_ipi(int cpu)
419 {
420 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
421 }
422
423 static const char *ipi_types[NR_IPI] = {
424 #define S(x,s) [x] = s
425 S(IPI_WAKEUP, "CPU wakeup interrupts"),
426 S(IPI_TIMER, "Timer broadcast interrupts"),
427 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
428 S(IPI_CALL_FUNC, "Function call interrupts"),
429 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
430 S(IPI_CPU_STOP, "CPU stop interrupts"),
431 };
432
433 void show_ipi_list(struct seq_file *p, int prec)
434 {
435 unsigned int cpu, i;
436
437 for (i = 0; i < NR_IPI; i++) {
438 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
439
440 for_each_online_cpu(cpu)
441 seq_printf(p, "%10u ",
442 __get_irq_stat(cpu, ipi_irqs[i]));
443
444 seq_printf(p, " %s\n", ipi_types[i]);
445 }
446 }
447
448 u64 smp_irq_stat_cpu(unsigned int cpu)
449 {
450 u64 sum = 0;
451 int i;
452
453 for (i = 0; i < NR_IPI; i++)
454 sum += __get_irq_stat(cpu, ipi_irqs[i]);
455
456 return sum;
457 }
458
459 /*
460 * Timer (local or broadcast) support
461 */
462 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
463
464 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
465 void tick_broadcast(const struct cpumask *mask)
466 {
467 smp_cross_call(mask, IPI_TIMER);
468 }
469 #else
470 #define smp_timer_broadcast NULL
471 #endif
472
473 static void broadcast_timer_set_mode(enum clock_event_mode mode,
474 struct clock_event_device *evt)
475 {
476 }
477
478 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
479 {
480 evt->name = "dummy_timer";
481 evt->features = CLOCK_EVT_FEAT_ONESHOT |
482 CLOCK_EVT_FEAT_PERIODIC |
483 CLOCK_EVT_FEAT_DUMMY;
484 evt->rating = 400;
485 evt->mult = 1;
486 evt->set_mode = broadcast_timer_set_mode;
487
488 clockevents_register_device(evt);
489 }
490
491 static struct local_timer_ops *lt_ops;
492
493 #ifdef CONFIG_LOCAL_TIMERS
494 int local_timer_register(struct local_timer_ops *ops)
495 {
496 if (!is_smp() || !setup_max_cpus)
497 return -ENXIO;
498
499 if (lt_ops)
500 return -EBUSY;
501
502 lt_ops = ops;
503 return 0;
504 }
505 #endif
506
507 static void __cpuinit percpu_timer_setup(void)
508 {
509 unsigned int cpu = smp_processor_id();
510 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
511
512 evt->cpumask = cpumask_of(cpu);
513
514 if (!lt_ops || lt_ops->setup(evt))
515 broadcast_timer_setup(evt);
516 }
517
518 #ifdef CONFIG_HOTPLUG_CPU
519 /*
520 * The generic clock events code purposely does not stop the local timer
521 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
522 * manually here.
523 */
524 static void percpu_timer_stop(void)
525 {
526 unsigned int cpu = smp_processor_id();
527 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
528
529 if (lt_ops)
530 lt_ops->stop(evt);
531 }
532 #endif
533
534 static DEFINE_RAW_SPINLOCK(stop_lock);
535
536 /*
537 * ipi_cpu_stop - handle IPI from smp_send_stop()
538 */
539 static void ipi_cpu_stop(unsigned int cpu)
540 {
541 if (system_state == SYSTEM_BOOTING ||
542 system_state == SYSTEM_RUNNING) {
543 raw_spin_lock(&stop_lock);
544 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
545 dump_stack();
546 raw_spin_unlock(&stop_lock);
547 }
548
549 set_cpu_online(cpu, false);
550
551 local_fiq_disable();
552 local_irq_disable();
553
554 while (1)
555 cpu_relax();
556 }
557
558 /*
559 * Main handler for inter-processor interrupts
560 */
561 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
562 {
563 handle_IPI(ipinr, regs);
564 }
565
566 void handle_IPI(int ipinr, struct pt_regs *regs)
567 {
568 unsigned int cpu = smp_processor_id();
569 struct pt_regs *old_regs = set_irq_regs(regs);
570
571 if (ipinr < NR_IPI)
572 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
573
574 switch (ipinr) {
575 case IPI_WAKEUP:
576 break;
577
578 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
579 case IPI_TIMER:
580 irq_enter();
581 tick_receive_broadcast();
582 irq_exit();
583 break;
584 #endif
585
586 case IPI_RESCHEDULE:
587 scheduler_ipi();
588 break;
589
590 case IPI_CALL_FUNC:
591 irq_enter();
592 generic_smp_call_function_interrupt();
593 irq_exit();
594 break;
595
596 case IPI_CALL_FUNC_SINGLE:
597 irq_enter();
598 generic_smp_call_function_single_interrupt();
599 irq_exit();
600 break;
601
602 case IPI_CPU_STOP:
603 irq_enter();
604 ipi_cpu_stop(cpu);
605 irq_exit();
606 break;
607
608 default:
609 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
610 cpu, ipinr);
611 break;
612 }
613 set_irq_regs(old_regs);
614 }
615
616 void smp_send_reschedule(int cpu)
617 {
618 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
619 }
620
621 #ifdef CONFIG_HOTPLUG_CPU
622 static void smp_kill_cpus(cpumask_t *mask)
623 {
624 unsigned int cpu;
625 for_each_cpu(cpu, mask)
626 platform_cpu_kill(cpu);
627 }
628 #else
629 static void smp_kill_cpus(cpumask_t *mask) { }
630 #endif
631
632 void smp_send_stop(void)
633 {
634 unsigned long timeout;
635 struct cpumask mask;
636
637 cpumask_copy(&mask, cpu_online_mask);
638 cpumask_clear_cpu(smp_processor_id(), &mask);
639 if (!cpumask_empty(&mask))
640 smp_cross_call(&mask, IPI_CPU_STOP);
641
642 /* Wait up to one second for other CPUs to stop */
643 timeout = USEC_PER_SEC;
644 while (num_online_cpus() > 1 && timeout--)
645 udelay(1);
646
647 if (num_online_cpus() > 1)
648 pr_warning("SMP: failed to stop secondary CPUs\n");
649
650 smp_kill_cpus(&mask);
651 }
652
653 /*
654 * not supported here
655 */
656 int setup_profiling_timer(unsigned int multiplier)
657 {
658 return -EINVAL;
659 }
660
661 #ifdef CONFIG_CPU_FREQ
662
663 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
664 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
665 static unsigned long global_l_p_j_ref;
666 static unsigned long global_l_p_j_ref_freq;
667
668 static int cpufreq_callback(struct notifier_block *nb,
669 unsigned long val, void *data)
670 {
671 struct cpufreq_freqs *freq = data;
672 int cpu = freq->cpu;
673
674 if (freq->flags & CPUFREQ_CONST_LOOPS)
675 return NOTIFY_OK;
676
677 if (!per_cpu(l_p_j_ref, cpu)) {
678 per_cpu(l_p_j_ref, cpu) =
679 per_cpu(cpu_data, cpu).loops_per_jiffy;
680 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
681 if (!global_l_p_j_ref) {
682 global_l_p_j_ref = loops_per_jiffy;
683 global_l_p_j_ref_freq = freq->old;
684 }
685 }
686
687 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
688 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
689 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
690 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
691 global_l_p_j_ref_freq,
692 freq->new);
693 per_cpu(cpu_data, cpu).loops_per_jiffy =
694 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
695 per_cpu(l_p_j_ref_freq, cpu),
696 freq->new);
697 }
698 return NOTIFY_OK;
699 }
700
701 static struct notifier_block cpufreq_notifier = {
702 .notifier_call = cpufreq_callback,
703 };
704
705 static int __init register_cpufreq_notifier(void)
706 {
707 return cpufreq_register_notifier(&cpufreq_notifier,
708 CPUFREQ_TRANSITION_NOTIFIER);
709 }
710 core_initcall(register_cpufreq_notifier);
711
712 #endif