]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kernel/smp.c
ARM: vfp: fix saving d16-d31 vfp registers on v6+ kernels
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/mach/arch.h>
47
48 /*
49 * as from 2.5, kernels no longer have an init_tasks structure
50 * so we need some other way of telling a new secondary core
51 * where to place its SVC stack
52 */
53 struct secondary_data secondary_data;
54
55 /*
56 * control for which core is the next to come out of the secondary
57 * boot "holding pen"
58 */
59 volatile int __cpuinitdata pen_release = -1;
60
61 enum ipi_msg_type {
62 IPI_WAKEUP,
63 IPI_TIMER,
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CALL_FUNC_SINGLE,
67 IPI_CPU_STOP,
68 };
69
70 static DECLARE_COMPLETION(cpu_running);
71
72 static struct smp_operations smp_ops;
73
74 void __init smp_set_ops(struct smp_operations *ops)
75 {
76 if (ops)
77 smp_ops = *ops;
78 };
79
80 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
81 {
82 int ret;
83
84 /*
85 * We need to tell the secondary core where to find
86 * its stack and the page tables.
87 */
88 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
89 secondary_data.pgdir = virt_to_phys(idmap_pgd);
90 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
91 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
92 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
93
94 /*
95 * Now bring the CPU into our world.
96 */
97 ret = boot_secondary(cpu, idle);
98 if (ret == 0) {
99 /*
100 * CPU was successfully started, wait for it
101 * to come online or time out.
102 */
103 wait_for_completion_timeout(&cpu_running,
104 msecs_to_jiffies(1000));
105
106 if (!cpu_online(cpu)) {
107 pr_crit("CPU%u: failed to come online\n", cpu);
108 ret = -EIO;
109 }
110 } else {
111 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
112 }
113
114 secondary_data.stack = NULL;
115 secondary_data.pgdir = 0;
116
117 return ret;
118 }
119
120 /* platform specific SMP operations */
121 void __init smp_init_cpus(void)
122 {
123 if (smp_ops.smp_init_cpus)
124 smp_ops.smp_init_cpus();
125 }
126
127 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
128 {
129 if (smp_ops.smp_prepare_cpus)
130 smp_ops.smp_prepare_cpus(max_cpus);
131 }
132
133 static void __cpuinit platform_secondary_init(unsigned int cpu)
134 {
135 if (smp_ops.smp_secondary_init)
136 smp_ops.smp_secondary_init(cpu);
137 }
138
139 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
140 {
141 if (smp_ops.smp_boot_secondary)
142 return smp_ops.smp_boot_secondary(cpu, idle);
143 return -ENOSYS;
144 }
145
146 #ifdef CONFIG_HOTPLUG_CPU
147 static void percpu_timer_stop(void);
148
149 static int platform_cpu_kill(unsigned int cpu)
150 {
151 if (smp_ops.cpu_kill)
152 return smp_ops.cpu_kill(cpu);
153 return 1;
154 }
155
156 static void platform_cpu_die(unsigned int cpu)
157 {
158 if (smp_ops.cpu_die)
159 smp_ops.cpu_die(cpu);
160 }
161
162 static int platform_cpu_disable(unsigned int cpu)
163 {
164 if (smp_ops.cpu_disable)
165 return smp_ops.cpu_disable(cpu);
166
167 /*
168 * By default, allow disabling all CPUs except the first one,
169 * since this is special on a lot of platforms, e.g. because
170 * of clock tick interrupts.
171 */
172 return cpu == 0 ? -EPERM : 0;
173 }
174 /*
175 * __cpu_disable runs on the processor to be shutdown.
176 */
177 int __cpuinit __cpu_disable(void)
178 {
179 unsigned int cpu = smp_processor_id();
180 int ret;
181
182 ret = platform_cpu_disable(cpu);
183 if (ret)
184 return ret;
185
186 /*
187 * Take this CPU offline. Once we clear this, we can't return,
188 * and we must not schedule until we're ready to give up the cpu.
189 */
190 set_cpu_online(cpu, false);
191
192 /*
193 * OK - migrate IRQs away from this CPU
194 */
195 migrate_irqs();
196
197 /*
198 * Stop the local timer for this CPU.
199 */
200 percpu_timer_stop();
201
202 /*
203 * Flush user cache and TLB mappings, and then remove this CPU
204 * from the vm mask set of all processes.
205 */
206 flush_cache_all();
207 local_flush_tlb_all();
208
209 clear_tasks_mm_cpumask(cpu);
210
211 return 0;
212 }
213
214 static DECLARE_COMPLETION(cpu_died);
215
216 /*
217 * called on the thread which is asking for a CPU to be shutdown -
218 * waits until shutdown has completed, or it is timed out.
219 */
220 void __cpuinit __cpu_die(unsigned int cpu)
221 {
222 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
223 pr_err("CPU%u: cpu didn't die\n", cpu);
224 return;
225 }
226 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
227
228 if (!platform_cpu_kill(cpu))
229 printk("CPU%u: unable to kill\n", cpu);
230 }
231
232 /*
233 * Called from the idle thread for the CPU which has been shutdown.
234 *
235 * Note that we disable IRQs here, but do not re-enable them
236 * before returning to the caller. This is also the behaviour
237 * of the other hotplug-cpu capable cores, so presumably coming
238 * out of idle fixes this.
239 */
240 void __ref cpu_die(void)
241 {
242 unsigned int cpu = smp_processor_id();
243
244 idle_task_exit();
245
246 local_irq_disable();
247 mb();
248
249 /* Tell __cpu_die() that this CPU is now safe to dispose of */
250 RCU_NONIDLE(complete(&cpu_died));
251
252 /*
253 * actual CPU shutdown procedure is at least platform (if not
254 * CPU) specific.
255 */
256 platform_cpu_die(cpu);
257
258 /*
259 * Do not return to the idle loop - jump back to the secondary
260 * cpu initialisation. There's some initialisation which needs
261 * to be repeated to undo the effects of taking the CPU offline.
262 */
263 __asm__("mov sp, %0\n"
264 " mov fp, #0\n"
265 " b secondary_start_kernel"
266 :
267 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
268 }
269 #endif /* CONFIG_HOTPLUG_CPU */
270
271 /*
272 * Called by both boot and secondaries to move global data into
273 * per-processor storage.
274 */
275 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
276 {
277 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
278
279 cpu_info->loops_per_jiffy = loops_per_jiffy;
280
281 store_cpu_topology(cpuid);
282 }
283
284 static void percpu_timer_setup(void);
285
286 /*
287 * This is the secondary CPU boot entry. We're using this CPUs
288 * idle thread stack, but a set of temporary page tables.
289 */
290 asmlinkage void __cpuinit secondary_start_kernel(void)
291 {
292 struct mm_struct *mm = &init_mm;
293 unsigned int cpu = smp_processor_id();
294
295 /*
296 * All kernel threads share the same mm context; grab a
297 * reference and switch to it.
298 */
299 atomic_inc(&mm->mm_count);
300 current->active_mm = mm;
301 cpumask_set_cpu(cpu, mm_cpumask(mm));
302 cpu_switch_mm(mm->pgd, mm);
303 enter_lazy_tlb(mm, current);
304 local_flush_tlb_all();
305
306 printk("CPU%u: Booted secondary processor\n", cpu);
307
308 cpu_init();
309 preempt_disable();
310 trace_hardirqs_off();
311
312 /*
313 * Give the platform a chance to do its own initialisation.
314 */
315 platform_secondary_init(cpu);
316
317 notify_cpu_starting(cpu);
318
319 calibrate_delay();
320
321 smp_store_cpu_info(cpu);
322
323 /*
324 * OK, now it's safe to let the boot CPU continue. Wait for
325 * the CPU migration code to notice that the CPU is online
326 * before we continue - which happens after __cpu_up returns.
327 */
328 set_cpu_online(cpu, true);
329 complete(&cpu_running);
330
331 /*
332 * Setup the percpu timer for this CPU.
333 */
334 percpu_timer_setup();
335
336 local_irq_enable();
337 local_fiq_enable();
338
339 /*
340 * OK, it's off to the idle thread for us
341 */
342 cpu_idle();
343 }
344
345 void __init smp_cpus_done(unsigned int max_cpus)
346 {
347 int cpu;
348 unsigned long bogosum = 0;
349
350 for_each_online_cpu(cpu)
351 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
352
353 printk(KERN_INFO "SMP: Total of %d processors activated "
354 "(%lu.%02lu BogoMIPS).\n",
355 num_online_cpus(),
356 bogosum / (500000/HZ),
357 (bogosum / (5000/HZ)) % 100);
358 }
359
360 void __init smp_prepare_boot_cpu(void)
361 {
362 }
363
364 void __init smp_prepare_cpus(unsigned int max_cpus)
365 {
366 unsigned int ncores = num_possible_cpus();
367
368 init_cpu_topology();
369
370 smp_store_cpu_info(smp_processor_id());
371
372 /*
373 * are we trying to boot more cores than exist?
374 */
375 if (max_cpus > ncores)
376 max_cpus = ncores;
377 if (ncores > 1 && max_cpus) {
378 /*
379 * Enable the local timer or broadcast device for the
380 * boot CPU, but only if we have more than one CPU.
381 */
382 percpu_timer_setup();
383
384 /*
385 * Initialise the present map, which describes the set of CPUs
386 * actually populated at the present time. A platform should
387 * re-initialize the map in platform_smp_prepare_cpus() if
388 * present != possible (e.g. physical hotplug).
389 */
390 init_cpu_present(cpu_possible_mask);
391
392 /*
393 * Initialise the SCU if there are more than one CPU
394 * and let them know where to start.
395 */
396 platform_smp_prepare_cpus(max_cpus);
397 }
398 }
399
400 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
401
402 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
403 {
404 smp_cross_call = fn;
405 }
406
407 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
408 {
409 smp_cross_call(mask, IPI_CALL_FUNC);
410 }
411
412 void arch_send_call_function_single_ipi(int cpu)
413 {
414 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
415 }
416
417 static const char *ipi_types[NR_IPI] = {
418 #define S(x,s) [x] = s
419 S(IPI_WAKEUP, "CPU wakeup interrupts"),
420 S(IPI_TIMER, "Timer broadcast interrupts"),
421 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
422 S(IPI_CALL_FUNC, "Function call interrupts"),
423 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
424 S(IPI_CPU_STOP, "CPU stop interrupts"),
425 };
426
427 void show_ipi_list(struct seq_file *p, int prec)
428 {
429 unsigned int cpu, i;
430
431 for (i = 0; i < NR_IPI; i++) {
432 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
433
434 for_each_present_cpu(cpu)
435 seq_printf(p, "%10u ",
436 __get_irq_stat(cpu, ipi_irqs[i]));
437
438 seq_printf(p, " %s\n", ipi_types[i]);
439 }
440 }
441
442 u64 smp_irq_stat_cpu(unsigned int cpu)
443 {
444 u64 sum = 0;
445 int i;
446
447 for (i = 0; i < NR_IPI; i++)
448 sum += __get_irq_stat(cpu, ipi_irqs[i]);
449
450 return sum;
451 }
452
453 /*
454 * Timer (local or broadcast) support
455 */
456 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
457
458 static void ipi_timer(void)
459 {
460 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
461 evt->event_handler(evt);
462 }
463
464 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
465 static void smp_timer_broadcast(const struct cpumask *mask)
466 {
467 smp_cross_call(mask, IPI_TIMER);
468 }
469 #else
470 #define smp_timer_broadcast NULL
471 #endif
472
473 static void broadcast_timer_set_mode(enum clock_event_mode mode,
474 struct clock_event_device *evt)
475 {
476 }
477
478 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
479 {
480 evt->name = "dummy_timer";
481 evt->features = CLOCK_EVT_FEAT_ONESHOT |
482 CLOCK_EVT_FEAT_PERIODIC |
483 CLOCK_EVT_FEAT_DUMMY;
484 evt->rating = 400;
485 evt->mult = 1;
486 evt->set_mode = broadcast_timer_set_mode;
487
488 clockevents_register_device(evt);
489 }
490
491 static struct local_timer_ops *lt_ops;
492
493 #ifdef CONFIG_LOCAL_TIMERS
494 int local_timer_register(struct local_timer_ops *ops)
495 {
496 if (!is_smp() || !setup_max_cpus)
497 return -ENXIO;
498
499 if (lt_ops)
500 return -EBUSY;
501
502 lt_ops = ops;
503 return 0;
504 }
505 #endif
506
507 static void __cpuinit percpu_timer_setup(void)
508 {
509 unsigned int cpu = smp_processor_id();
510 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
511
512 evt->cpumask = cpumask_of(cpu);
513 evt->broadcast = smp_timer_broadcast;
514
515 if (!lt_ops || lt_ops->setup(evt))
516 broadcast_timer_setup(evt);
517 }
518
519 #ifdef CONFIG_HOTPLUG_CPU
520 /*
521 * The generic clock events code purposely does not stop the local timer
522 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
523 * manually here.
524 */
525 static void percpu_timer_stop(void)
526 {
527 unsigned int cpu = smp_processor_id();
528 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
529
530 if (lt_ops)
531 lt_ops->stop(evt);
532 }
533 #endif
534
535 static DEFINE_RAW_SPINLOCK(stop_lock);
536
537 /*
538 * ipi_cpu_stop - handle IPI from smp_send_stop()
539 */
540 static void ipi_cpu_stop(unsigned int cpu)
541 {
542 if (system_state == SYSTEM_BOOTING ||
543 system_state == SYSTEM_RUNNING) {
544 raw_spin_lock(&stop_lock);
545 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
546 dump_stack();
547 raw_spin_unlock(&stop_lock);
548 }
549
550 set_cpu_online(cpu, false);
551
552 local_fiq_disable();
553 local_irq_disable();
554
555 while (1)
556 cpu_relax();
557 }
558
559 /*
560 * Main handler for inter-processor interrupts
561 */
562 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
563 {
564 handle_IPI(ipinr, regs);
565 }
566
567 void handle_IPI(int ipinr, struct pt_regs *regs)
568 {
569 unsigned int cpu = smp_processor_id();
570 struct pt_regs *old_regs = set_irq_regs(regs);
571
572 if (ipinr < NR_IPI)
573 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
574
575 switch (ipinr) {
576 case IPI_WAKEUP:
577 break;
578
579 case IPI_TIMER:
580 irq_enter();
581 ipi_timer();
582 irq_exit();
583 break;
584
585 case IPI_RESCHEDULE:
586 scheduler_ipi();
587 break;
588
589 case IPI_CALL_FUNC:
590 irq_enter();
591 generic_smp_call_function_interrupt();
592 irq_exit();
593 break;
594
595 case IPI_CALL_FUNC_SINGLE:
596 irq_enter();
597 generic_smp_call_function_single_interrupt();
598 irq_exit();
599 break;
600
601 case IPI_CPU_STOP:
602 irq_enter();
603 ipi_cpu_stop(cpu);
604 irq_exit();
605 break;
606
607 default:
608 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
609 cpu, ipinr);
610 break;
611 }
612 set_irq_regs(old_regs);
613 }
614
615 void smp_send_reschedule(int cpu)
616 {
617 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
618 }
619
620 #ifdef CONFIG_HOTPLUG_CPU
621 static void smp_kill_cpus(cpumask_t *mask)
622 {
623 unsigned int cpu;
624 for_each_cpu(cpu, mask)
625 platform_cpu_kill(cpu);
626 }
627 #else
628 static void smp_kill_cpus(cpumask_t *mask) { }
629 #endif
630
631 void smp_send_stop(void)
632 {
633 unsigned long timeout;
634 struct cpumask mask;
635
636 cpumask_copy(&mask, cpu_online_mask);
637 cpumask_clear_cpu(smp_processor_id(), &mask);
638 if (!cpumask_empty(&mask))
639 smp_cross_call(&mask, IPI_CPU_STOP);
640
641 /* Wait up to one second for other CPUs to stop */
642 timeout = USEC_PER_SEC;
643 while (num_online_cpus() > 1 && timeout--)
644 udelay(1);
645
646 if (num_online_cpus() > 1)
647 pr_warning("SMP: failed to stop secondary CPUs\n");
648
649 smp_kill_cpus(&mask);
650 }
651
652 /*
653 * not supported here
654 */
655 int setup_profiling_timer(unsigned int multiplier)
656 {
657 return -EINVAL;
658 }
659
660 #ifdef CONFIG_CPU_FREQ
661
662 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
663 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
664 static unsigned long global_l_p_j_ref;
665 static unsigned long global_l_p_j_ref_freq;
666
667 static int cpufreq_callback(struct notifier_block *nb,
668 unsigned long val, void *data)
669 {
670 struct cpufreq_freqs *freq = data;
671 int cpu = freq->cpu;
672
673 if (freq->flags & CPUFREQ_CONST_LOOPS)
674 return NOTIFY_OK;
675
676 if (!per_cpu(l_p_j_ref, cpu)) {
677 per_cpu(l_p_j_ref, cpu) =
678 per_cpu(cpu_data, cpu).loops_per_jiffy;
679 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
680 if (!global_l_p_j_ref) {
681 global_l_p_j_ref = loops_per_jiffy;
682 global_l_p_j_ref_freq = freq->old;
683 }
684 }
685
686 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
687 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
688 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
689 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
690 global_l_p_j_ref_freq,
691 freq->new);
692 per_cpu(cpu_data, cpu).loops_per_jiffy =
693 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
694 per_cpu(l_p_j_ref_freq, cpu),
695 freq->new);
696 }
697 return NOTIFY_OK;
698 }
699
700 static struct notifier_block cpufreq_notifier = {
701 .notifier_call = cpufreq_callback,
702 };
703
704 static int __init register_cpufreq_notifier(void)
705 {
706 return cpufreq_register_notifier(&cpufreq_notifier,
707 CPUFREQ_TRANSITION_NOTIFIER);
708 }
709 core_initcall(register_cpufreq_notifier);
710
711 #endif