]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm/kernel/smp.c
facd4240ca02c776716a2e1e14c803c359967cc8
[mirror_ubuntu-jammy-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57
58 /*
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
62 */
63 struct secondary_data secondary_data;
64
65 enum ipi_msg_type {
66 IPI_WAKEUP,
67 IPI_TIMER,
68 IPI_RESCHEDULE,
69 IPI_CALL_FUNC,
70 IPI_CPU_STOP,
71 IPI_IRQ_WORK,
72 IPI_COMPLETION,
73 IPI_CPU_BACKTRACE,
74 /*
75 * SGI8-15 can be reserved by secure firmware, and thus may
76 * not be usable by the kernel. Please keep the above limited
77 * to at most 8 entries.
78 */
79 };
80
81 static DECLARE_COMPLETION(cpu_running);
82
83 static struct smp_operations smp_ops __ro_after_init;
84
85 void __init smp_set_ops(const struct smp_operations *ops)
86 {
87 if (ops)
88 smp_ops = *ops;
89 };
90
91 static unsigned long get_arch_pgd(pgd_t *pgd)
92 {
93 #ifdef CONFIG_ARM_LPAE
94 return __phys_to_pfn(virt_to_phys(pgd));
95 #else
96 return virt_to_phys(pgd);
97 #endif
98 }
99
100 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
101 static int secondary_biglittle_prepare(unsigned int cpu)
102 {
103 if (!cpu_vtable[cpu])
104 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
105
106 return cpu_vtable[cpu] ? 0 : -ENOMEM;
107 }
108
109 static void secondary_biglittle_init(void)
110 {
111 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
112 }
113 #else
114 static int secondary_biglittle_prepare(unsigned int cpu)
115 {
116 return 0;
117 }
118
119 static void secondary_biglittle_init(void)
120 {
121 }
122 #endif
123
124 int __cpu_up(unsigned int cpu, struct task_struct *idle)
125 {
126 int ret;
127
128 if (!smp_ops.smp_boot_secondary)
129 return -ENOSYS;
130
131 ret = secondary_biglittle_prepare(cpu);
132 if (ret)
133 return ret;
134
135 /*
136 * We need to tell the secondary core where to find
137 * its stack and the page tables.
138 */
139 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
140 #ifdef CONFIG_ARM_MPU
141 secondary_data.mpu_rgn_info = &mpu_rgn_info;
142 #endif
143
144 #ifdef CONFIG_MMU
145 secondary_data.pgdir = virt_to_phys(idmap_pgd);
146 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
147 #endif
148 sync_cache_w(&secondary_data);
149
150 /*
151 * Now bring the CPU into our world.
152 */
153 ret = smp_ops.smp_boot_secondary(cpu, idle);
154 if (ret == 0) {
155 /*
156 * CPU was successfully started, wait for it
157 * to come online or time out.
158 */
159 wait_for_completion_timeout(&cpu_running,
160 msecs_to_jiffies(1000));
161
162 if (!cpu_online(cpu)) {
163 pr_crit("CPU%u: failed to come online\n", cpu);
164 ret = -EIO;
165 }
166 } else {
167 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
168 }
169
170
171 memset(&secondary_data, 0, sizeof(secondary_data));
172 return ret;
173 }
174
175 /* platform specific SMP operations */
176 void __init smp_init_cpus(void)
177 {
178 if (smp_ops.smp_init_cpus)
179 smp_ops.smp_init_cpus();
180 }
181
182 int platform_can_secondary_boot(void)
183 {
184 return !!smp_ops.smp_boot_secondary;
185 }
186
187 int platform_can_cpu_hotplug(void)
188 {
189 #ifdef CONFIG_HOTPLUG_CPU
190 if (smp_ops.cpu_kill)
191 return 1;
192 #endif
193
194 return 0;
195 }
196
197 #ifdef CONFIG_HOTPLUG_CPU
198 static int platform_cpu_kill(unsigned int cpu)
199 {
200 if (smp_ops.cpu_kill)
201 return smp_ops.cpu_kill(cpu);
202 return 1;
203 }
204
205 static int platform_cpu_disable(unsigned int cpu)
206 {
207 if (smp_ops.cpu_disable)
208 return smp_ops.cpu_disable(cpu);
209
210 return 0;
211 }
212
213 int platform_can_hotplug_cpu(unsigned int cpu)
214 {
215 /* cpu_die must be specified to support hotplug */
216 if (!smp_ops.cpu_die)
217 return 0;
218
219 if (smp_ops.cpu_can_disable)
220 return smp_ops.cpu_can_disable(cpu);
221
222 /*
223 * By default, allow disabling all CPUs except the first one,
224 * since this is special on a lot of platforms, e.g. because
225 * of clock tick interrupts.
226 */
227 return cpu != 0;
228 }
229
230 /*
231 * __cpu_disable runs on the processor to be shutdown.
232 */
233 int __cpu_disable(void)
234 {
235 unsigned int cpu = smp_processor_id();
236 int ret;
237
238 ret = platform_cpu_disable(cpu);
239 if (ret)
240 return ret;
241
242 /*
243 * Take this CPU offline. Once we clear this, we can't return,
244 * and we must not schedule until we're ready to give up the cpu.
245 */
246 set_cpu_online(cpu, false);
247
248 /*
249 * OK - migrate IRQs away from this CPU
250 */
251 irq_migrate_all_off_this_cpu();
252
253 /*
254 * Flush user cache and TLB mappings, and then remove this CPU
255 * from the vm mask set of all processes.
256 *
257 * Caches are flushed to the Level of Unification Inner Shareable
258 * to write-back dirty lines to unified caches shared by all CPUs.
259 */
260 flush_cache_louis();
261 local_flush_tlb_all();
262
263 return 0;
264 }
265
266 static DECLARE_COMPLETION(cpu_died);
267
268 /*
269 * called on the thread which is asking for a CPU to be shutdown -
270 * waits until shutdown has completed, or it is timed out.
271 */
272 void __cpu_die(unsigned int cpu)
273 {
274 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
275 pr_err("CPU%u: cpu didn't die\n", cpu);
276 return;
277 }
278 pr_debug("CPU%u: shutdown\n", cpu);
279
280 clear_tasks_mm_cpumask(cpu);
281 /*
282 * platform_cpu_kill() is generally expected to do the powering off
283 * and/or cutting of clocks to the dying CPU. Optionally, this may
284 * be done by the CPU which is dying in preference to supporting
285 * this call, but that means there is _no_ synchronisation between
286 * the requesting CPU and the dying CPU actually losing power.
287 */
288 if (!platform_cpu_kill(cpu))
289 pr_err("CPU%u: unable to kill\n", cpu);
290 }
291
292 /*
293 * Called from the idle thread for the CPU which has been shutdown.
294 *
295 * Note that we disable IRQs here, but do not re-enable them
296 * before returning to the caller. This is also the behaviour
297 * of the other hotplug-cpu capable cores, so presumably coming
298 * out of idle fixes this.
299 */
300 void arch_cpu_idle_dead(void)
301 {
302 unsigned int cpu = smp_processor_id();
303
304 idle_task_exit();
305
306 local_irq_disable();
307
308 /*
309 * Flush the data out of the L1 cache for this CPU. This must be
310 * before the completion to ensure that data is safely written out
311 * before platform_cpu_kill() gets called - which may disable
312 * *this* CPU and power down its cache.
313 */
314 flush_cache_louis();
315
316 /*
317 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
318 * this returns, power and/or clocks can be removed at any point
319 * from this CPU and its cache by platform_cpu_kill().
320 */
321 complete(&cpu_died);
322
323 /*
324 * Ensure that the cache lines associated with that completion are
325 * written out. This covers the case where _this_ CPU is doing the
326 * powering down, to ensure that the completion is visible to the
327 * CPU waiting for this one.
328 */
329 flush_cache_louis();
330
331 /*
332 * The actual CPU shutdown procedure is at least platform (if not
333 * CPU) specific. This may remove power, or it may simply spin.
334 *
335 * Platforms are generally expected *NOT* to return from this call,
336 * although there are some which do because they have no way to
337 * power down the CPU. These platforms are the _only_ reason we
338 * have a return path which uses the fragment of assembly below.
339 *
340 * The return path should not be used for platforms which can
341 * power off the CPU.
342 */
343 if (smp_ops.cpu_die)
344 smp_ops.cpu_die(cpu);
345
346 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
347 cpu);
348
349 /*
350 * Do not return to the idle loop - jump back to the secondary
351 * cpu initialisation. There's some initialisation which needs
352 * to be repeated to undo the effects of taking the CPU offline.
353 */
354 __asm__("mov sp, %0\n"
355 " mov fp, #0\n"
356 " b secondary_start_kernel"
357 :
358 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
359 }
360 #endif /* CONFIG_HOTPLUG_CPU */
361
362 /*
363 * Called by both boot and secondaries to move global data into
364 * per-processor storage.
365 */
366 static void smp_store_cpu_info(unsigned int cpuid)
367 {
368 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
369
370 cpu_info->loops_per_jiffy = loops_per_jiffy;
371 cpu_info->cpuid = read_cpuid_id();
372
373 store_cpu_topology(cpuid);
374 }
375
376 /*
377 * This is the secondary CPU boot entry. We're using this CPUs
378 * idle thread stack, but a set of temporary page tables.
379 */
380 asmlinkage void secondary_start_kernel(void)
381 {
382 struct mm_struct *mm = &init_mm;
383 unsigned int cpu;
384
385 secondary_biglittle_init();
386
387 /*
388 * The identity mapping is uncached (strongly ordered), so
389 * switch away from it before attempting any exclusive accesses.
390 */
391 cpu_switch_mm(mm->pgd, mm);
392 local_flush_bp_all();
393 enter_lazy_tlb(mm, current);
394 local_flush_tlb_all();
395
396 /*
397 * All kernel threads share the same mm context; grab a
398 * reference and switch to it.
399 */
400 cpu = smp_processor_id();
401 mmgrab(mm);
402 current->active_mm = mm;
403 cpumask_set_cpu(cpu, mm_cpumask(mm));
404
405 cpu_init();
406
407 #ifndef CONFIG_MMU
408 setup_vectors_base();
409 #endif
410 pr_debug("CPU%u: Booted secondary processor\n", cpu);
411
412 preempt_disable();
413 trace_hardirqs_off();
414
415 /*
416 * Give the platform a chance to do its own initialisation.
417 */
418 if (smp_ops.smp_secondary_init)
419 smp_ops.smp_secondary_init(cpu);
420
421 notify_cpu_starting(cpu);
422
423 calibrate_delay();
424
425 smp_store_cpu_info(cpu);
426
427 /*
428 * OK, now it's safe to let the boot CPU continue. Wait for
429 * the CPU migration code to notice that the CPU is online
430 * before we continue - which happens after __cpu_up returns.
431 */
432 set_cpu_online(cpu, true);
433
434 check_other_bugs();
435
436 complete(&cpu_running);
437
438 local_irq_enable();
439 local_fiq_enable();
440 local_abt_enable();
441
442 /*
443 * OK, it's off to the idle thread for us
444 */
445 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
446 }
447
448 void __init smp_cpus_done(unsigned int max_cpus)
449 {
450 int cpu;
451 unsigned long bogosum = 0;
452
453 for_each_online_cpu(cpu)
454 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
455
456 printk(KERN_INFO "SMP: Total of %d processors activated "
457 "(%lu.%02lu BogoMIPS).\n",
458 num_online_cpus(),
459 bogosum / (500000/HZ),
460 (bogosum / (5000/HZ)) % 100);
461
462 hyp_mode_check();
463 }
464
465 void __init smp_prepare_boot_cpu(void)
466 {
467 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
468 }
469
470 void __init smp_prepare_cpus(unsigned int max_cpus)
471 {
472 unsigned int ncores = num_possible_cpus();
473
474 init_cpu_topology();
475
476 smp_store_cpu_info(smp_processor_id());
477
478 /*
479 * are we trying to boot more cores than exist?
480 */
481 if (max_cpus > ncores)
482 max_cpus = ncores;
483 if (ncores > 1 && max_cpus) {
484 /*
485 * Initialise the present map, which describes the set of CPUs
486 * actually populated at the present time. A platform should
487 * re-initialize the map in the platforms smp_prepare_cpus()
488 * if present != possible (e.g. physical hotplug).
489 */
490 init_cpu_present(cpu_possible_mask);
491
492 /*
493 * Initialise the SCU if there are more than one CPU
494 * and let them know where to start.
495 */
496 if (smp_ops.smp_prepare_cpus)
497 smp_ops.smp_prepare_cpus(max_cpus);
498 }
499 }
500
501 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
502
503 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
504 {
505 if (!__smp_cross_call)
506 __smp_cross_call = fn;
507 }
508
509 static const char *ipi_types[NR_IPI] __tracepoint_string = {
510 #define S(x,s) [x] = s
511 S(IPI_WAKEUP, "CPU wakeup interrupts"),
512 S(IPI_TIMER, "Timer broadcast interrupts"),
513 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
514 S(IPI_CALL_FUNC, "Function call interrupts"),
515 S(IPI_CPU_STOP, "CPU stop interrupts"),
516 S(IPI_IRQ_WORK, "IRQ work interrupts"),
517 S(IPI_COMPLETION, "completion interrupts"),
518 };
519
520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521 {
522 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
523 __smp_cross_call(target, ipinr);
524 }
525
526 void show_ipi_list(struct seq_file *p, int prec)
527 {
528 unsigned int cpu, i;
529
530 for (i = 0; i < NR_IPI; i++) {
531 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533 for_each_online_cpu(cpu)
534 seq_printf(p, "%10u ",
535 __get_irq_stat(cpu, ipi_irqs[i]));
536
537 seq_printf(p, " %s\n", ipi_types[i]);
538 }
539 }
540
541 u64 smp_irq_stat_cpu(unsigned int cpu)
542 {
543 u64 sum = 0;
544 int i;
545
546 for (i = 0; i < NR_IPI; i++)
547 sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
549 return sum;
550 }
551
552 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
553 {
554 smp_cross_call(mask, IPI_CALL_FUNC);
555 }
556
557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
558 {
559 smp_cross_call(mask, IPI_WAKEUP);
560 }
561
562 void arch_send_call_function_single_ipi(int cpu)
563 {
564 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
565 }
566
567 #ifdef CONFIG_IRQ_WORK
568 void arch_irq_work_raise(void)
569 {
570 if (arch_irq_work_has_interrupt())
571 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572 }
573 #endif
574
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
576 void tick_broadcast(const struct cpumask *mask)
577 {
578 smp_cross_call(mask, IPI_TIMER);
579 }
580 #endif
581
582 static DEFINE_RAW_SPINLOCK(stop_lock);
583
584 /*
585 * ipi_cpu_stop - handle IPI from smp_send_stop()
586 */
587 static void ipi_cpu_stop(unsigned int cpu)
588 {
589 if (system_state <= SYSTEM_RUNNING) {
590 raw_spin_lock(&stop_lock);
591 pr_crit("CPU%u: stopping\n", cpu);
592 dump_stack();
593 raw_spin_unlock(&stop_lock);
594 }
595
596 set_cpu_online(cpu, false);
597
598 local_fiq_disable();
599 local_irq_disable();
600
601 while (1) {
602 cpu_relax();
603 wfe();
604 }
605 }
606
607 static DEFINE_PER_CPU(struct completion *, cpu_completion);
608
609 int register_ipi_completion(struct completion *completion, int cpu)
610 {
611 per_cpu(cpu_completion, cpu) = completion;
612 return IPI_COMPLETION;
613 }
614
615 static void ipi_complete(unsigned int cpu)
616 {
617 complete(per_cpu(cpu_completion, cpu));
618 }
619
620 /*
621 * Main handler for inter-processor interrupts
622 */
623 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
624 {
625 handle_IPI(ipinr, regs);
626 }
627
628 void handle_IPI(int ipinr, struct pt_regs *regs)
629 {
630 unsigned int cpu = smp_processor_id();
631 struct pt_regs *old_regs = set_irq_regs(regs);
632
633 if ((unsigned)ipinr < NR_IPI) {
634 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
635 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
636 }
637
638 switch (ipinr) {
639 case IPI_WAKEUP:
640 break;
641
642 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
643 case IPI_TIMER:
644 irq_enter();
645 tick_receive_broadcast();
646 irq_exit();
647 break;
648 #endif
649
650 case IPI_RESCHEDULE:
651 scheduler_ipi();
652 break;
653
654 case IPI_CALL_FUNC:
655 irq_enter();
656 generic_smp_call_function_interrupt();
657 irq_exit();
658 break;
659
660 case IPI_CPU_STOP:
661 irq_enter();
662 ipi_cpu_stop(cpu);
663 irq_exit();
664 break;
665
666 #ifdef CONFIG_IRQ_WORK
667 case IPI_IRQ_WORK:
668 irq_enter();
669 irq_work_run();
670 irq_exit();
671 break;
672 #endif
673
674 case IPI_COMPLETION:
675 irq_enter();
676 ipi_complete(cpu);
677 irq_exit();
678 break;
679
680 case IPI_CPU_BACKTRACE:
681 printk_nmi_enter();
682 irq_enter();
683 nmi_cpu_backtrace(regs);
684 irq_exit();
685 printk_nmi_exit();
686 break;
687
688 default:
689 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
690 cpu, ipinr);
691 break;
692 }
693
694 if ((unsigned)ipinr < NR_IPI)
695 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
696 set_irq_regs(old_regs);
697 }
698
699 void smp_send_reschedule(int cpu)
700 {
701 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
702 }
703
704 void smp_send_stop(void)
705 {
706 unsigned long timeout;
707 struct cpumask mask;
708
709 cpumask_copy(&mask, cpu_online_mask);
710 cpumask_clear_cpu(smp_processor_id(), &mask);
711 if (!cpumask_empty(&mask))
712 smp_cross_call(&mask, IPI_CPU_STOP);
713
714 /* Wait up to one second for other CPUs to stop */
715 timeout = USEC_PER_SEC;
716 while (num_online_cpus() > 1 && timeout--)
717 udelay(1);
718
719 if (num_online_cpus() > 1)
720 pr_warn("SMP: failed to stop secondary CPUs\n");
721 }
722
723 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
724 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
725 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
726 * kdump fails. So split out the panic_smp_self_stop() and add
727 * set_cpu_online(smp_processor_id(), false).
728 */
729 void panic_smp_self_stop(void)
730 {
731 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
732 smp_processor_id());
733 set_cpu_online(smp_processor_id(), false);
734 while (1)
735 cpu_relax();
736 }
737
738 /*
739 * not supported here
740 */
741 int setup_profiling_timer(unsigned int multiplier)
742 {
743 return -EINVAL;
744 }
745
746 #ifdef CONFIG_CPU_FREQ
747
748 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
749 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
750 static unsigned long global_l_p_j_ref;
751 static unsigned long global_l_p_j_ref_freq;
752
753 static int cpufreq_callback(struct notifier_block *nb,
754 unsigned long val, void *data)
755 {
756 struct cpufreq_freqs *freq = data;
757 int cpu = freq->cpu;
758
759 if (freq->flags & CPUFREQ_CONST_LOOPS)
760 return NOTIFY_OK;
761
762 if (!per_cpu(l_p_j_ref, cpu)) {
763 per_cpu(l_p_j_ref, cpu) =
764 per_cpu(cpu_data, cpu).loops_per_jiffy;
765 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
766 if (!global_l_p_j_ref) {
767 global_l_p_j_ref = loops_per_jiffy;
768 global_l_p_j_ref_freq = freq->old;
769 }
770 }
771
772 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
773 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
774 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
775 global_l_p_j_ref_freq,
776 freq->new);
777 per_cpu(cpu_data, cpu).loops_per_jiffy =
778 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
779 per_cpu(l_p_j_ref_freq, cpu),
780 freq->new);
781 }
782 return NOTIFY_OK;
783 }
784
785 static struct notifier_block cpufreq_notifier = {
786 .notifier_call = cpufreq_callback,
787 };
788
789 static int __init register_cpufreq_notifier(void)
790 {
791 return cpufreq_register_notifier(&cpufreq_notifier,
792 CPUFREQ_TRANSITION_NOTIFIER);
793 }
794 core_initcall(register_cpufreq_notifier);
795
796 #endif
797
798 static void raise_nmi(cpumask_t *mask)
799 {
800 smp_cross_call(mask, IPI_CPU_BACKTRACE);
801 }
802
803 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
804 {
805 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
806 }