]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kernel/smp.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32
33 #include <linux/atomic.h>
34 #include <asm/smp.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 #include <asm/idmap.h>
40 #include <asm/topology.h>
41 #include <asm/mmu_context.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/processor.h>
45 #include <asm/sections.h>
46 #include <asm/tlbflush.h>
47 #include <asm/ptrace.h>
48 #include <asm/smp_plat.h>
49 #include <asm/virt.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mpu.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
55
56 /*
57 * as from 2.5, kernels no longer have an init_tasks structure
58 * so we need some other way of telling a new secondary core
59 * where to place its SVC stack
60 */
61 struct secondary_data secondary_data;
62
63 /*
64 * control for which core is the next to come out of the secondary
65 * boot "holding pen"
66 */
67 volatile int pen_release = -1;
68
69 enum ipi_msg_type {
70 IPI_WAKEUP,
71 IPI_TIMER,
72 IPI_RESCHEDULE,
73 IPI_CALL_FUNC,
74 IPI_CPU_STOP,
75 IPI_IRQ_WORK,
76 IPI_COMPLETION,
77 IPI_CPU_BACKTRACE,
78 /*
79 * SGI8-15 can be reserved by secure firmware, and thus may
80 * not be usable by the kernel. Please keep the above limited
81 * to at most 8 entries.
82 */
83 };
84
85 static DECLARE_COMPLETION(cpu_running);
86
87 static struct smp_operations smp_ops __ro_after_init;
88
89 void __init smp_set_ops(const struct smp_operations *ops)
90 {
91 if (ops)
92 smp_ops = *ops;
93 };
94
95 static unsigned long get_arch_pgd(pgd_t *pgd)
96 {
97 #ifdef CONFIG_ARM_LPAE
98 return __phys_to_pfn(virt_to_phys(pgd));
99 #else
100 return virt_to_phys(pgd);
101 #endif
102 }
103
104 int __cpu_up(unsigned int cpu, struct task_struct *idle)
105 {
106 int ret;
107
108 if (!smp_ops.smp_boot_secondary)
109 return -ENOSYS;
110
111 /*
112 * We need to tell the secondary core where to find
113 * its stack and the page tables.
114 */
115 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
116 #ifdef CONFIG_ARM_MPU
117 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
118 #endif
119
120 #ifdef CONFIG_MMU
121 secondary_data.pgdir = virt_to_phys(idmap_pgd);
122 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
123 #endif
124 sync_cache_w(&secondary_data);
125
126 /*
127 * Now bring the CPU into our world.
128 */
129 ret = smp_ops.smp_boot_secondary(cpu, idle);
130 if (ret == 0) {
131 /*
132 * CPU was successfully started, wait for it
133 * to come online or time out.
134 */
135 wait_for_completion_timeout(&cpu_running,
136 msecs_to_jiffies(1000));
137
138 if (!cpu_online(cpu)) {
139 pr_crit("CPU%u: failed to come online\n", cpu);
140 ret = -EIO;
141 }
142 } else {
143 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
144 }
145
146
147 memset(&secondary_data, 0, sizeof(secondary_data));
148 return ret;
149 }
150
151 /* platform specific SMP operations */
152 void __init smp_init_cpus(void)
153 {
154 if (smp_ops.smp_init_cpus)
155 smp_ops.smp_init_cpus();
156 }
157
158 int platform_can_secondary_boot(void)
159 {
160 return !!smp_ops.smp_boot_secondary;
161 }
162
163 int platform_can_cpu_hotplug(void)
164 {
165 #ifdef CONFIG_HOTPLUG_CPU
166 if (smp_ops.cpu_kill)
167 return 1;
168 #endif
169
170 return 0;
171 }
172
173 #ifdef CONFIG_HOTPLUG_CPU
174 static int platform_cpu_kill(unsigned int cpu)
175 {
176 if (smp_ops.cpu_kill)
177 return smp_ops.cpu_kill(cpu);
178 return 1;
179 }
180
181 static int platform_cpu_disable(unsigned int cpu)
182 {
183 if (smp_ops.cpu_disable)
184 return smp_ops.cpu_disable(cpu);
185
186 return 0;
187 }
188
189 int platform_can_hotplug_cpu(unsigned int cpu)
190 {
191 /* cpu_die must be specified to support hotplug */
192 if (!smp_ops.cpu_die)
193 return 0;
194
195 if (smp_ops.cpu_can_disable)
196 return smp_ops.cpu_can_disable(cpu);
197
198 /*
199 * By default, allow disabling all CPUs except the first one,
200 * since this is special on a lot of platforms, e.g. because
201 * of clock tick interrupts.
202 */
203 return cpu != 0;
204 }
205
206 /*
207 * __cpu_disable runs on the processor to be shutdown.
208 */
209 int __cpu_disable(void)
210 {
211 unsigned int cpu = smp_processor_id();
212 int ret;
213
214 ret = platform_cpu_disable(cpu);
215 if (ret)
216 return ret;
217
218 /*
219 * Take this CPU offline. Once we clear this, we can't return,
220 * and we must not schedule until we're ready to give up the cpu.
221 */
222 set_cpu_online(cpu, false);
223
224 /*
225 * OK - migrate IRQs away from this CPU
226 */
227 migrate_irqs();
228
229 /*
230 * Flush user cache and TLB mappings, and then remove this CPU
231 * from the vm mask set of all processes.
232 *
233 * Caches are flushed to the Level of Unification Inner Shareable
234 * to write-back dirty lines to unified caches shared by all CPUs.
235 */
236 flush_cache_louis();
237 local_flush_tlb_all();
238
239 clear_tasks_mm_cpumask(cpu);
240
241 return 0;
242 }
243
244 static DECLARE_COMPLETION(cpu_died);
245
246 /*
247 * called on the thread which is asking for a CPU to be shutdown -
248 * waits until shutdown has completed, or it is timed out.
249 */
250 void __cpu_die(unsigned int cpu)
251 {
252 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
253 pr_err("CPU%u: cpu didn't die\n", cpu);
254 return;
255 }
256 pr_debug("CPU%u: shutdown\n", cpu);
257
258 /*
259 * platform_cpu_kill() is generally expected to do the powering off
260 * and/or cutting of clocks to the dying CPU. Optionally, this may
261 * be done by the CPU which is dying in preference to supporting
262 * this call, but that means there is _no_ synchronisation between
263 * the requesting CPU and the dying CPU actually losing power.
264 */
265 if (!platform_cpu_kill(cpu))
266 pr_err("CPU%u: unable to kill\n", cpu);
267 }
268
269 /*
270 * Called from the idle thread for the CPU which has been shutdown.
271 *
272 * Note that we disable IRQs here, but do not re-enable them
273 * before returning to the caller. This is also the behaviour
274 * of the other hotplug-cpu capable cores, so presumably coming
275 * out of idle fixes this.
276 */
277 void arch_cpu_idle_dead(void)
278 {
279 unsigned int cpu = smp_processor_id();
280
281 idle_task_exit();
282
283 local_irq_disable();
284
285 /*
286 * Flush the data out of the L1 cache for this CPU. This must be
287 * before the completion to ensure that data is safely written out
288 * before platform_cpu_kill() gets called - which may disable
289 * *this* CPU and power down its cache.
290 */
291 flush_cache_louis();
292
293 /*
294 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
295 * this returns, power and/or clocks can be removed at any point
296 * from this CPU and its cache by platform_cpu_kill().
297 */
298 complete(&cpu_died);
299
300 /*
301 * Ensure that the cache lines associated with that completion are
302 * written out. This covers the case where _this_ CPU is doing the
303 * powering down, to ensure that the completion is visible to the
304 * CPU waiting for this one.
305 */
306 flush_cache_louis();
307
308 /*
309 * The actual CPU shutdown procedure is at least platform (if not
310 * CPU) specific. This may remove power, or it may simply spin.
311 *
312 * Platforms are generally expected *NOT* to return from this call,
313 * although there are some which do because they have no way to
314 * power down the CPU. These platforms are the _only_ reason we
315 * have a return path which uses the fragment of assembly below.
316 *
317 * The return path should not be used for platforms which can
318 * power off the CPU.
319 */
320 if (smp_ops.cpu_die)
321 smp_ops.cpu_die(cpu);
322
323 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
324 cpu);
325
326 /*
327 * Do not return to the idle loop - jump back to the secondary
328 * cpu initialisation. There's some initialisation which needs
329 * to be repeated to undo the effects of taking the CPU offline.
330 */
331 __asm__("mov sp, %0\n"
332 " mov fp, #0\n"
333 " b secondary_start_kernel"
334 :
335 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
336 }
337 #endif /* CONFIG_HOTPLUG_CPU */
338
339 /*
340 * Called by both boot and secondaries to move global data into
341 * per-processor storage.
342 */
343 static void smp_store_cpu_info(unsigned int cpuid)
344 {
345 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
346
347 cpu_info->loops_per_jiffy = loops_per_jiffy;
348 cpu_info->cpuid = read_cpuid_id();
349
350 store_cpu_topology(cpuid);
351 }
352
353 /*
354 * This is the secondary CPU boot entry. We're using this CPUs
355 * idle thread stack, but a set of temporary page tables.
356 */
357 asmlinkage void secondary_start_kernel(void)
358 {
359 struct mm_struct *mm = &init_mm;
360 unsigned int cpu;
361
362 /*
363 * The identity mapping is uncached (strongly ordered), so
364 * switch away from it before attempting any exclusive accesses.
365 */
366 cpu_switch_mm(mm->pgd, mm);
367 local_flush_bp_all();
368 enter_lazy_tlb(mm, current);
369 local_flush_tlb_all();
370
371 /*
372 * All kernel threads share the same mm context; grab a
373 * reference and switch to it.
374 */
375 cpu = smp_processor_id();
376 mmgrab(mm);
377 current->active_mm = mm;
378 cpumask_set_cpu(cpu, mm_cpumask(mm));
379
380 cpu_init();
381
382 pr_debug("CPU%u: Booted secondary processor\n", cpu);
383
384 preempt_disable();
385 trace_hardirqs_off();
386
387 /*
388 * Give the platform a chance to do its own initialisation.
389 */
390 if (smp_ops.smp_secondary_init)
391 smp_ops.smp_secondary_init(cpu);
392
393 notify_cpu_starting(cpu);
394
395 calibrate_delay();
396
397 smp_store_cpu_info(cpu);
398
399 /*
400 * OK, now it's safe to let the boot CPU continue. Wait for
401 * the CPU migration code to notice that the CPU is online
402 * before we continue - which happens after __cpu_up returns.
403 */
404 set_cpu_online(cpu, true);
405 complete(&cpu_running);
406
407 local_irq_enable();
408 local_fiq_enable();
409 local_abt_enable();
410
411 /*
412 * OK, it's off to the idle thread for us
413 */
414 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
415 }
416
417 void __init smp_cpus_done(unsigned int max_cpus)
418 {
419 int cpu;
420 unsigned long bogosum = 0;
421
422 for_each_online_cpu(cpu)
423 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
424
425 printk(KERN_INFO "SMP: Total of %d processors activated "
426 "(%lu.%02lu BogoMIPS).\n",
427 num_online_cpus(),
428 bogosum / (500000/HZ),
429 (bogosum / (5000/HZ)) % 100);
430
431 hyp_mode_check();
432 }
433
434 void __init smp_prepare_boot_cpu(void)
435 {
436 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
437 }
438
439 void __init smp_prepare_cpus(unsigned int max_cpus)
440 {
441 unsigned int ncores = num_possible_cpus();
442
443 init_cpu_topology();
444
445 smp_store_cpu_info(smp_processor_id());
446
447 /*
448 * are we trying to boot more cores than exist?
449 */
450 if (max_cpus > ncores)
451 max_cpus = ncores;
452 if (ncores > 1 && max_cpus) {
453 /*
454 * Initialise the present map, which describes the set of CPUs
455 * actually populated at the present time. A platform should
456 * re-initialize the map in the platforms smp_prepare_cpus()
457 * if present != possible (e.g. physical hotplug).
458 */
459 init_cpu_present(cpu_possible_mask);
460
461 /*
462 * Initialise the SCU if there are more than one CPU
463 * and let them know where to start.
464 */
465 if (smp_ops.smp_prepare_cpus)
466 smp_ops.smp_prepare_cpus(max_cpus);
467 }
468 }
469
470 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
471
472 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
473 {
474 if (!__smp_cross_call)
475 __smp_cross_call = fn;
476 }
477
478 static const char *ipi_types[NR_IPI] __tracepoint_string = {
479 #define S(x,s) [x] = s
480 S(IPI_WAKEUP, "CPU wakeup interrupts"),
481 S(IPI_TIMER, "Timer broadcast interrupts"),
482 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
483 S(IPI_CALL_FUNC, "Function call interrupts"),
484 S(IPI_CPU_STOP, "CPU stop interrupts"),
485 S(IPI_IRQ_WORK, "IRQ work interrupts"),
486 S(IPI_COMPLETION, "completion interrupts"),
487 };
488
489 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
490 {
491 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
492 __smp_cross_call(target, ipinr);
493 }
494
495 void show_ipi_list(struct seq_file *p, int prec)
496 {
497 unsigned int cpu, i;
498
499 for (i = 0; i < NR_IPI; i++) {
500 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
501
502 for_each_online_cpu(cpu)
503 seq_printf(p, "%10u ",
504 __get_irq_stat(cpu, ipi_irqs[i]));
505
506 seq_printf(p, " %s\n", ipi_types[i]);
507 }
508 }
509
510 u64 smp_irq_stat_cpu(unsigned int cpu)
511 {
512 u64 sum = 0;
513 int i;
514
515 for (i = 0; i < NR_IPI; i++)
516 sum += __get_irq_stat(cpu, ipi_irqs[i]);
517
518 return sum;
519 }
520
521 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
522 {
523 smp_cross_call(mask, IPI_CALL_FUNC);
524 }
525
526 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
527 {
528 smp_cross_call(mask, IPI_WAKEUP);
529 }
530
531 void arch_send_call_function_single_ipi(int cpu)
532 {
533 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
534 }
535
536 #ifdef CONFIG_IRQ_WORK
537 void arch_irq_work_raise(void)
538 {
539 if (arch_irq_work_has_interrupt())
540 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
541 }
542 #endif
543
544 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
545 void tick_broadcast(const struct cpumask *mask)
546 {
547 smp_cross_call(mask, IPI_TIMER);
548 }
549 #endif
550
551 static DEFINE_RAW_SPINLOCK(stop_lock);
552
553 /*
554 * ipi_cpu_stop - handle IPI from smp_send_stop()
555 */
556 static void ipi_cpu_stop(unsigned int cpu)
557 {
558 if (system_state == SYSTEM_BOOTING ||
559 system_state == SYSTEM_RUNNING) {
560 raw_spin_lock(&stop_lock);
561 pr_crit("CPU%u: stopping\n", cpu);
562 dump_stack();
563 raw_spin_unlock(&stop_lock);
564 }
565
566 set_cpu_online(cpu, false);
567
568 local_fiq_disable();
569 local_irq_disable();
570
571 while (1)
572 cpu_relax();
573 }
574
575 static DEFINE_PER_CPU(struct completion *, cpu_completion);
576
577 int register_ipi_completion(struct completion *completion, int cpu)
578 {
579 per_cpu(cpu_completion, cpu) = completion;
580 return IPI_COMPLETION;
581 }
582
583 static void ipi_complete(unsigned int cpu)
584 {
585 complete(per_cpu(cpu_completion, cpu));
586 }
587
588 /*
589 * Main handler for inter-processor interrupts
590 */
591 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
592 {
593 handle_IPI(ipinr, regs);
594 }
595
596 void handle_IPI(int ipinr, struct pt_regs *regs)
597 {
598 unsigned int cpu = smp_processor_id();
599 struct pt_regs *old_regs = set_irq_regs(regs);
600
601 if ((unsigned)ipinr < NR_IPI) {
602 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
603 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
604 }
605
606 switch (ipinr) {
607 case IPI_WAKEUP:
608 break;
609
610 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
611 case IPI_TIMER:
612 irq_enter();
613 tick_receive_broadcast();
614 irq_exit();
615 break;
616 #endif
617
618 case IPI_RESCHEDULE:
619 scheduler_ipi();
620 break;
621
622 case IPI_CALL_FUNC:
623 irq_enter();
624 generic_smp_call_function_interrupt();
625 irq_exit();
626 break;
627
628 case IPI_CPU_STOP:
629 irq_enter();
630 ipi_cpu_stop(cpu);
631 irq_exit();
632 break;
633
634 #ifdef CONFIG_IRQ_WORK
635 case IPI_IRQ_WORK:
636 irq_enter();
637 irq_work_run();
638 irq_exit();
639 break;
640 #endif
641
642 case IPI_COMPLETION:
643 irq_enter();
644 ipi_complete(cpu);
645 irq_exit();
646 break;
647
648 case IPI_CPU_BACKTRACE:
649 printk_nmi_enter();
650 irq_enter();
651 nmi_cpu_backtrace(regs);
652 irq_exit();
653 printk_nmi_exit();
654 break;
655
656 default:
657 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
658 cpu, ipinr);
659 break;
660 }
661
662 if ((unsigned)ipinr < NR_IPI)
663 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
664 set_irq_regs(old_regs);
665 }
666
667 void smp_send_reschedule(int cpu)
668 {
669 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
670 }
671
672 void smp_send_stop(void)
673 {
674 unsigned long timeout;
675 struct cpumask mask;
676
677 cpumask_copy(&mask, cpu_online_mask);
678 cpumask_clear_cpu(smp_processor_id(), &mask);
679 if (!cpumask_empty(&mask))
680 smp_cross_call(&mask, IPI_CPU_STOP);
681
682 /* Wait up to one second for other CPUs to stop */
683 timeout = USEC_PER_SEC;
684 while (num_online_cpus() > 1 && timeout--)
685 udelay(1);
686
687 if (num_online_cpus() > 1)
688 pr_warn("SMP: failed to stop secondary CPUs\n");
689 }
690
691 /*
692 * not supported here
693 */
694 int setup_profiling_timer(unsigned int multiplier)
695 {
696 return -EINVAL;
697 }
698
699 #ifdef CONFIG_CPU_FREQ
700
701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
702 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
703 static unsigned long global_l_p_j_ref;
704 static unsigned long global_l_p_j_ref_freq;
705
706 static int cpufreq_callback(struct notifier_block *nb,
707 unsigned long val, void *data)
708 {
709 struct cpufreq_freqs *freq = data;
710 int cpu = freq->cpu;
711
712 if (freq->flags & CPUFREQ_CONST_LOOPS)
713 return NOTIFY_OK;
714
715 if (!per_cpu(l_p_j_ref, cpu)) {
716 per_cpu(l_p_j_ref, cpu) =
717 per_cpu(cpu_data, cpu).loops_per_jiffy;
718 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
719 if (!global_l_p_j_ref) {
720 global_l_p_j_ref = loops_per_jiffy;
721 global_l_p_j_ref_freq = freq->old;
722 }
723 }
724
725 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
726 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
727 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
728 global_l_p_j_ref_freq,
729 freq->new);
730 per_cpu(cpu_data, cpu).loops_per_jiffy =
731 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
732 per_cpu(l_p_j_ref_freq, cpu),
733 freq->new);
734 }
735 return NOTIFY_OK;
736 }
737
738 static struct notifier_block cpufreq_notifier = {
739 .notifier_call = cpufreq_callback,
740 };
741
742 static int __init register_cpufreq_notifier(void)
743 {
744 return cpufreq_register_notifier(&cpufreq_notifier,
745 CPUFREQ_TRANSITION_NOTIFIER);
746 }
747 core_initcall(register_cpufreq_notifier);
748
749 #endif
750
751 static void raise_nmi(cpumask_t *mask)
752 {
753 smp_cross_call(mask, IPI_CPU_BACKTRACE);
754 }
755
756 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
757 {
758 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
759 }