]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm/kernel/smp.c
Merge tag 'nfsd-5.2' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-hirsute-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57
58 /*
59 * as from 2.5, kernels no longer have an init_tasks structure
60 * so we need some other way of telling a new secondary core
61 * where to place its SVC stack
62 */
63 struct secondary_data secondary_data;
64
65 enum ipi_msg_type {
66 IPI_WAKEUP,
67 IPI_TIMER,
68 IPI_RESCHEDULE,
69 IPI_CALL_FUNC,
70 IPI_CPU_STOP,
71 IPI_IRQ_WORK,
72 IPI_COMPLETION,
73 /*
74 * CPU_BACKTRACE is special and not included in NR_IPI
75 * or tracable with trace_ipi_*
76 */
77 IPI_CPU_BACKTRACE,
78 /*
79 * SGI8-15 can be reserved by secure firmware, and thus may
80 * not be usable by the kernel. Please keep the above limited
81 * to at most 8 entries.
82 */
83 };
84
85 static DECLARE_COMPLETION(cpu_running);
86
87 static struct smp_operations smp_ops __ro_after_init;
88
89 void __init smp_set_ops(const struct smp_operations *ops)
90 {
91 if (ops)
92 smp_ops = *ops;
93 };
94
95 static unsigned long get_arch_pgd(pgd_t *pgd)
96 {
97 #ifdef CONFIG_ARM_LPAE
98 return __phys_to_pfn(virt_to_phys(pgd));
99 #else
100 return virt_to_phys(pgd);
101 #endif
102 }
103
104 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
105 static int secondary_biglittle_prepare(unsigned int cpu)
106 {
107 if (!cpu_vtable[cpu])
108 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
109
110 return cpu_vtable[cpu] ? 0 : -ENOMEM;
111 }
112
113 static void secondary_biglittle_init(void)
114 {
115 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
116 }
117 #else
118 static int secondary_biglittle_prepare(unsigned int cpu)
119 {
120 return 0;
121 }
122
123 static void secondary_biglittle_init(void)
124 {
125 }
126 #endif
127
128 int __cpu_up(unsigned int cpu, struct task_struct *idle)
129 {
130 int ret;
131
132 if (!smp_ops.smp_boot_secondary)
133 return -ENOSYS;
134
135 ret = secondary_biglittle_prepare(cpu);
136 if (ret)
137 return ret;
138
139 /*
140 * We need to tell the secondary core where to find
141 * its stack and the page tables.
142 */
143 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
144 #ifdef CONFIG_ARM_MPU
145 secondary_data.mpu_rgn_info = &mpu_rgn_info;
146 #endif
147
148 #ifdef CONFIG_MMU
149 secondary_data.pgdir = virt_to_phys(idmap_pgd);
150 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
151 #endif
152 sync_cache_w(&secondary_data);
153
154 /*
155 * Now bring the CPU into our world.
156 */
157 ret = smp_ops.smp_boot_secondary(cpu, idle);
158 if (ret == 0) {
159 /*
160 * CPU was successfully started, wait for it
161 * to come online or time out.
162 */
163 wait_for_completion_timeout(&cpu_running,
164 msecs_to_jiffies(1000));
165
166 if (!cpu_online(cpu)) {
167 pr_crit("CPU%u: failed to come online\n", cpu);
168 ret = -EIO;
169 }
170 } else {
171 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
172 }
173
174
175 memset(&secondary_data, 0, sizeof(secondary_data));
176 return ret;
177 }
178
179 /* platform specific SMP operations */
180 void __init smp_init_cpus(void)
181 {
182 if (smp_ops.smp_init_cpus)
183 smp_ops.smp_init_cpus();
184 }
185
186 int platform_can_secondary_boot(void)
187 {
188 return !!smp_ops.smp_boot_secondary;
189 }
190
191 int platform_can_cpu_hotplug(void)
192 {
193 #ifdef CONFIG_HOTPLUG_CPU
194 if (smp_ops.cpu_kill)
195 return 1;
196 #endif
197
198 return 0;
199 }
200
201 #ifdef CONFIG_HOTPLUG_CPU
202 static int platform_cpu_kill(unsigned int cpu)
203 {
204 if (smp_ops.cpu_kill)
205 return smp_ops.cpu_kill(cpu);
206 return 1;
207 }
208
209 static int platform_cpu_disable(unsigned int cpu)
210 {
211 if (smp_ops.cpu_disable)
212 return smp_ops.cpu_disable(cpu);
213
214 return 0;
215 }
216
217 int platform_can_hotplug_cpu(unsigned int cpu)
218 {
219 /* cpu_die must be specified to support hotplug */
220 if (!smp_ops.cpu_die)
221 return 0;
222
223 if (smp_ops.cpu_can_disable)
224 return smp_ops.cpu_can_disable(cpu);
225
226 /*
227 * By default, allow disabling all CPUs except the first one,
228 * since this is special on a lot of platforms, e.g. because
229 * of clock tick interrupts.
230 */
231 return cpu != 0;
232 }
233
234 /*
235 * __cpu_disable runs on the processor to be shutdown.
236 */
237 int __cpu_disable(void)
238 {
239 unsigned int cpu = smp_processor_id();
240 int ret;
241
242 ret = platform_cpu_disable(cpu);
243 if (ret)
244 return ret;
245
246 /*
247 * Take this CPU offline. Once we clear this, we can't return,
248 * and we must not schedule until we're ready to give up the cpu.
249 */
250 set_cpu_online(cpu, false);
251
252 /*
253 * OK - migrate IRQs away from this CPU
254 */
255 irq_migrate_all_off_this_cpu();
256
257 /*
258 * Flush user cache and TLB mappings, and then remove this CPU
259 * from the vm mask set of all processes.
260 *
261 * Caches are flushed to the Level of Unification Inner Shareable
262 * to write-back dirty lines to unified caches shared by all CPUs.
263 */
264 flush_cache_louis();
265 local_flush_tlb_all();
266
267 return 0;
268 }
269
270 static DECLARE_COMPLETION(cpu_died);
271
272 /*
273 * called on the thread which is asking for a CPU to be shutdown -
274 * waits until shutdown has completed, or it is timed out.
275 */
276 void __cpu_die(unsigned int cpu)
277 {
278 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
279 pr_err("CPU%u: cpu didn't die\n", cpu);
280 return;
281 }
282 pr_debug("CPU%u: shutdown\n", cpu);
283
284 clear_tasks_mm_cpumask(cpu);
285 /*
286 * platform_cpu_kill() is generally expected to do the powering off
287 * and/or cutting of clocks to the dying CPU. Optionally, this may
288 * be done by the CPU which is dying in preference to supporting
289 * this call, but that means there is _no_ synchronisation between
290 * the requesting CPU and the dying CPU actually losing power.
291 */
292 if (!platform_cpu_kill(cpu))
293 pr_err("CPU%u: unable to kill\n", cpu);
294 }
295
296 /*
297 * Called from the idle thread for the CPU which has been shutdown.
298 *
299 * Note that we disable IRQs here, but do not re-enable them
300 * before returning to the caller. This is also the behaviour
301 * of the other hotplug-cpu capable cores, so presumably coming
302 * out of idle fixes this.
303 */
304 void arch_cpu_idle_dead(void)
305 {
306 unsigned int cpu = smp_processor_id();
307
308 idle_task_exit();
309
310 local_irq_disable();
311
312 /*
313 * Flush the data out of the L1 cache for this CPU. This must be
314 * before the completion to ensure that data is safely written out
315 * before platform_cpu_kill() gets called - which may disable
316 * *this* CPU and power down its cache.
317 */
318 flush_cache_louis();
319
320 /*
321 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
322 * this returns, power and/or clocks can be removed at any point
323 * from this CPU and its cache by platform_cpu_kill().
324 */
325 complete(&cpu_died);
326
327 /*
328 * Ensure that the cache lines associated with that completion are
329 * written out. This covers the case where _this_ CPU is doing the
330 * powering down, to ensure that the completion is visible to the
331 * CPU waiting for this one.
332 */
333 flush_cache_louis();
334
335 /*
336 * The actual CPU shutdown procedure is at least platform (if not
337 * CPU) specific. This may remove power, or it may simply spin.
338 *
339 * Platforms are generally expected *NOT* to return from this call,
340 * although there are some which do because they have no way to
341 * power down the CPU. These platforms are the _only_ reason we
342 * have a return path which uses the fragment of assembly below.
343 *
344 * The return path should not be used for platforms which can
345 * power off the CPU.
346 */
347 if (smp_ops.cpu_die)
348 smp_ops.cpu_die(cpu);
349
350 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
351 cpu);
352
353 /*
354 * Do not return to the idle loop - jump back to the secondary
355 * cpu initialisation. There's some initialisation which needs
356 * to be repeated to undo the effects of taking the CPU offline.
357 */
358 __asm__("mov sp, %0\n"
359 " mov fp, #0\n"
360 " b secondary_start_kernel"
361 :
362 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
363 }
364 #endif /* CONFIG_HOTPLUG_CPU */
365
366 /*
367 * Called by both boot and secondaries to move global data into
368 * per-processor storage.
369 */
370 static void smp_store_cpu_info(unsigned int cpuid)
371 {
372 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
373
374 cpu_info->loops_per_jiffy = loops_per_jiffy;
375 cpu_info->cpuid = read_cpuid_id();
376
377 store_cpu_topology(cpuid);
378 }
379
380 /*
381 * This is the secondary CPU boot entry. We're using this CPUs
382 * idle thread stack, but a set of temporary page tables.
383 */
384 asmlinkage void secondary_start_kernel(void)
385 {
386 struct mm_struct *mm = &init_mm;
387 unsigned int cpu;
388
389 secondary_biglittle_init();
390
391 /*
392 * The identity mapping is uncached (strongly ordered), so
393 * switch away from it before attempting any exclusive accesses.
394 */
395 cpu_switch_mm(mm->pgd, mm);
396 local_flush_bp_all();
397 enter_lazy_tlb(mm, current);
398 local_flush_tlb_all();
399
400 /*
401 * All kernel threads share the same mm context; grab a
402 * reference and switch to it.
403 */
404 cpu = smp_processor_id();
405 mmgrab(mm);
406 current->active_mm = mm;
407 cpumask_set_cpu(cpu, mm_cpumask(mm));
408
409 cpu_init();
410
411 #ifndef CONFIG_MMU
412 setup_vectors_base();
413 #endif
414 pr_debug("CPU%u: Booted secondary processor\n", cpu);
415
416 preempt_disable();
417 trace_hardirqs_off();
418
419 /*
420 * Give the platform a chance to do its own initialisation.
421 */
422 if (smp_ops.smp_secondary_init)
423 smp_ops.smp_secondary_init(cpu);
424
425 notify_cpu_starting(cpu);
426
427 calibrate_delay();
428
429 smp_store_cpu_info(cpu);
430
431 /*
432 * OK, now it's safe to let the boot CPU continue. Wait for
433 * the CPU migration code to notice that the CPU is online
434 * before we continue - which happens after __cpu_up returns.
435 */
436 set_cpu_online(cpu, true);
437
438 check_other_bugs();
439
440 complete(&cpu_running);
441
442 local_irq_enable();
443 local_fiq_enable();
444 local_abt_enable();
445
446 /*
447 * OK, it's off to the idle thread for us
448 */
449 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
450 }
451
452 void __init smp_cpus_done(unsigned int max_cpus)
453 {
454 int cpu;
455 unsigned long bogosum = 0;
456
457 for_each_online_cpu(cpu)
458 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
459
460 printk(KERN_INFO "SMP: Total of %d processors activated "
461 "(%lu.%02lu BogoMIPS).\n",
462 num_online_cpus(),
463 bogosum / (500000/HZ),
464 (bogosum / (5000/HZ)) % 100);
465
466 hyp_mode_check();
467 }
468
469 void __init smp_prepare_boot_cpu(void)
470 {
471 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
472 }
473
474 void __init smp_prepare_cpus(unsigned int max_cpus)
475 {
476 unsigned int ncores = num_possible_cpus();
477
478 init_cpu_topology();
479
480 smp_store_cpu_info(smp_processor_id());
481
482 /*
483 * are we trying to boot more cores than exist?
484 */
485 if (max_cpus > ncores)
486 max_cpus = ncores;
487 if (ncores > 1 && max_cpus) {
488 /*
489 * Initialise the present map, which describes the set of CPUs
490 * actually populated at the present time. A platform should
491 * re-initialize the map in the platforms smp_prepare_cpus()
492 * if present != possible (e.g. physical hotplug).
493 */
494 init_cpu_present(cpu_possible_mask);
495
496 /*
497 * Initialise the SCU if there are more than one CPU
498 * and let them know where to start.
499 */
500 if (smp_ops.smp_prepare_cpus)
501 smp_ops.smp_prepare_cpus(max_cpus);
502 }
503 }
504
505 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
506
507 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
508 {
509 if (!__smp_cross_call)
510 __smp_cross_call = fn;
511 }
512
513 static const char *ipi_types[NR_IPI] __tracepoint_string = {
514 #define S(x,s) [x] = s
515 S(IPI_WAKEUP, "CPU wakeup interrupts"),
516 S(IPI_TIMER, "Timer broadcast interrupts"),
517 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
518 S(IPI_CALL_FUNC, "Function call interrupts"),
519 S(IPI_CPU_STOP, "CPU stop interrupts"),
520 S(IPI_IRQ_WORK, "IRQ work interrupts"),
521 S(IPI_COMPLETION, "completion interrupts"),
522 };
523
524 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
525 {
526 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
527 __smp_cross_call(target, ipinr);
528 }
529
530 void show_ipi_list(struct seq_file *p, int prec)
531 {
532 unsigned int cpu, i;
533
534 for (i = 0; i < NR_IPI; i++) {
535 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
536
537 for_each_online_cpu(cpu)
538 seq_printf(p, "%10u ",
539 __get_irq_stat(cpu, ipi_irqs[i]));
540
541 seq_printf(p, " %s\n", ipi_types[i]);
542 }
543 }
544
545 u64 smp_irq_stat_cpu(unsigned int cpu)
546 {
547 u64 sum = 0;
548 int i;
549
550 for (i = 0; i < NR_IPI; i++)
551 sum += __get_irq_stat(cpu, ipi_irqs[i]);
552
553 return sum;
554 }
555
556 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
557 {
558 smp_cross_call(mask, IPI_CALL_FUNC);
559 }
560
561 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
562 {
563 smp_cross_call(mask, IPI_WAKEUP);
564 }
565
566 void arch_send_call_function_single_ipi(int cpu)
567 {
568 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
569 }
570
571 #ifdef CONFIG_IRQ_WORK
572 void arch_irq_work_raise(void)
573 {
574 if (arch_irq_work_has_interrupt())
575 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
576 }
577 #endif
578
579 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
580 void tick_broadcast(const struct cpumask *mask)
581 {
582 smp_cross_call(mask, IPI_TIMER);
583 }
584 #endif
585
586 static DEFINE_RAW_SPINLOCK(stop_lock);
587
588 /*
589 * ipi_cpu_stop - handle IPI from smp_send_stop()
590 */
591 static void ipi_cpu_stop(unsigned int cpu)
592 {
593 if (system_state <= SYSTEM_RUNNING) {
594 raw_spin_lock(&stop_lock);
595 pr_crit("CPU%u: stopping\n", cpu);
596 dump_stack();
597 raw_spin_unlock(&stop_lock);
598 }
599
600 set_cpu_online(cpu, false);
601
602 local_fiq_disable();
603 local_irq_disable();
604
605 while (1) {
606 cpu_relax();
607 wfe();
608 }
609 }
610
611 static DEFINE_PER_CPU(struct completion *, cpu_completion);
612
613 int register_ipi_completion(struct completion *completion, int cpu)
614 {
615 per_cpu(cpu_completion, cpu) = completion;
616 return IPI_COMPLETION;
617 }
618
619 static void ipi_complete(unsigned int cpu)
620 {
621 complete(per_cpu(cpu_completion, cpu));
622 }
623
624 /*
625 * Main handler for inter-processor interrupts
626 */
627 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
628 {
629 handle_IPI(ipinr, regs);
630 }
631
632 void handle_IPI(int ipinr, struct pt_regs *regs)
633 {
634 unsigned int cpu = smp_processor_id();
635 struct pt_regs *old_regs = set_irq_regs(regs);
636
637 if ((unsigned)ipinr < NR_IPI) {
638 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
639 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
640 }
641
642 switch (ipinr) {
643 case IPI_WAKEUP:
644 break;
645
646 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
647 case IPI_TIMER:
648 irq_enter();
649 tick_receive_broadcast();
650 irq_exit();
651 break;
652 #endif
653
654 case IPI_RESCHEDULE:
655 scheduler_ipi();
656 break;
657
658 case IPI_CALL_FUNC:
659 irq_enter();
660 generic_smp_call_function_interrupt();
661 irq_exit();
662 break;
663
664 case IPI_CPU_STOP:
665 irq_enter();
666 ipi_cpu_stop(cpu);
667 irq_exit();
668 break;
669
670 #ifdef CONFIG_IRQ_WORK
671 case IPI_IRQ_WORK:
672 irq_enter();
673 irq_work_run();
674 irq_exit();
675 break;
676 #endif
677
678 case IPI_COMPLETION:
679 irq_enter();
680 ipi_complete(cpu);
681 irq_exit();
682 break;
683
684 case IPI_CPU_BACKTRACE:
685 printk_nmi_enter();
686 irq_enter();
687 nmi_cpu_backtrace(regs);
688 irq_exit();
689 printk_nmi_exit();
690 break;
691
692 default:
693 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
694 cpu, ipinr);
695 break;
696 }
697
698 if ((unsigned)ipinr < NR_IPI)
699 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
700 set_irq_regs(old_regs);
701 }
702
703 void smp_send_reschedule(int cpu)
704 {
705 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
706 }
707
708 void smp_send_stop(void)
709 {
710 unsigned long timeout;
711 struct cpumask mask;
712
713 cpumask_copy(&mask, cpu_online_mask);
714 cpumask_clear_cpu(smp_processor_id(), &mask);
715 if (!cpumask_empty(&mask))
716 smp_cross_call(&mask, IPI_CPU_STOP);
717
718 /* Wait up to one second for other CPUs to stop */
719 timeout = USEC_PER_SEC;
720 while (num_online_cpus() > 1 && timeout--)
721 udelay(1);
722
723 if (num_online_cpus() > 1)
724 pr_warn("SMP: failed to stop secondary CPUs\n");
725 }
726
727 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
728 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
729 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
730 * kdump fails. So split out the panic_smp_self_stop() and add
731 * set_cpu_online(smp_processor_id(), false).
732 */
733 void panic_smp_self_stop(void)
734 {
735 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
736 smp_processor_id());
737 set_cpu_online(smp_processor_id(), false);
738 while (1)
739 cpu_relax();
740 }
741
742 /*
743 * not supported here
744 */
745 int setup_profiling_timer(unsigned int multiplier)
746 {
747 return -EINVAL;
748 }
749
750 #ifdef CONFIG_CPU_FREQ
751
752 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
754 static unsigned long global_l_p_j_ref;
755 static unsigned long global_l_p_j_ref_freq;
756
757 static int cpufreq_callback(struct notifier_block *nb,
758 unsigned long val, void *data)
759 {
760 struct cpufreq_freqs *freq = data;
761 struct cpumask *cpus = freq->policy->cpus;
762 int cpu, first = cpumask_first(cpus);
763 unsigned int lpj;
764
765 if (freq->flags & CPUFREQ_CONST_LOOPS)
766 return NOTIFY_OK;
767
768 if (!per_cpu(l_p_j_ref, first)) {
769 for_each_cpu(cpu, cpus) {
770 per_cpu(l_p_j_ref, cpu) =
771 per_cpu(cpu_data, cpu).loops_per_jiffy;
772 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
773 }
774
775 if (!global_l_p_j_ref) {
776 global_l_p_j_ref = loops_per_jiffy;
777 global_l_p_j_ref_freq = freq->old;
778 }
779 }
780
781 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
782 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
783 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
784 global_l_p_j_ref_freq,
785 freq->new);
786
787 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
788 per_cpu(l_p_j_ref_freq, first), freq->new);
789 for_each_cpu(cpu, cpus)
790 per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
791 }
792 return NOTIFY_OK;
793 }
794
795 static struct notifier_block cpufreq_notifier = {
796 .notifier_call = cpufreq_callback,
797 };
798
799 static int __init register_cpufreq_notifier(void)
800 {
801 return cpufreq_register_notifier(&cpufreq_notifier,
802 CPUFREQ_TRANSITION_NOTIFIER);
803 }
804 core_initcall(register_cpufreq_notifier);
805
806 #endif
807
808 static void raise_nmi(cpumask_t *mask)
809 {
810 __smp_cross_call(mask, IPI_CPU_BACKTRACE);
811 }
812
813 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
814 {
815 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
816 }