]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kernel/smp.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/interrupt.h>
17 #include <linux/cache.h>
18 #include <linux/profile.h>
19 #include <linux/errno.h>
20 #include <linux/mm.h>
21 #include <linux/err.h>
22 #include <linux/cpu.h>
23 #include <linux/seq_file.h>
24 #include <linux/irq.h>
25 #include <linux/nmi.h>
26 #include <linux/percpu.h>
27 #include <linux/clockchips.h>
28 #include <linux/completion.h>
29 #include <linux/cpufreq.h>
30 #include <linux/irq_work.h>
31
32 #include <linux/atomic.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/pgtable.h>
42 #include <asm/pgalloc.h>
43 #include <asm/processor.h>
44 #include <asm/sections.h>
45 #include <asm/tlbflush.h>
46 #include <asm/ptrace.h>
47 #include <asm/smp_plat.h>
48 #include <asm/virt.h>
49 #include <asm/mach/arch.h>
50 #include <asm/mpu.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ipi.h>
54
55 /*
56 * as from 2.5, kernels no longer have an init_tasks structure
57 * so we need some other way of telling a new secondary core
58 * where to place its SVC stack
59 */
60 struct secondary_data secondary_data;
61
62 /*
63 * control for which core is the next to come out of the secondary
64 * boot "holding pen"
65 */
66 volatile int pen_release = -1;
67
68 enum ipi_msg_type {
69 IPI_WAKEUP,
70 IPI_TIMER,
71 IPI_RESCHEDULE,
72 IPI_CALL_FUNC,
73 IPI_CPU_STOP,
74 IPI_IRQ_WORK,
75 IPI_COMPLETION,
76 IPI_CPU_BACKTRACE,
77 /*
78 * SGI8-15 can be reserved by secure firmware, and thus may
79 * not be usable by the kernel. Please keep the above limited
80 * to at most 8 entries.
81 */
82 };
83
84 static DECLARE_COMPLETION(cpu_running);
85
86 static struct smp_operations smp_ops __ro_after_init;
87
88 void __init smp_set_ops(const struct smp_operations *ops)
89 {
90 if (ops)
91 smp_ops = *ops;
92 };
93
94 static unsigned long get_arch_pgd(pgd_t *pgd)
95 {
96 #ifdef CONFIG_ARM_LPAE
97 return __phys_to_pfn(virt_to_phys(pgd));
98 #else
99 return virt_to_phys(pgd);
100 #endif
101 }
102
103 int __cpu_up(unsigned int cpu, struct task_struct *idle)
104 {
105 int ret;
106
107 if (!smp_ops.smp_boot_secondary)
108 return -ENOSYS;
109
110 /*
111 * We need to tell the secondary core where to find
112 * its stack and the page tables.
113 */
114 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
115 #ifdef CONFIG_ARM_MPU
116 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
117 #endif
118
119 #ifdef CONFIG_MMU
120 secondary_data.pgdir = virt_to_phys(idmap_pgd);
121 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
122 #endif
123 sync_cache_w(&secondary_data);
124
125 /*
126 * Now bring the CPU into our world.
127 */
128 ret = smp_ops.smp_boot_secondary(cpu, idle);
129 if (ret == 0) {
130 /*
131 * CPU was successfully started, wait for it
132 * to come online or time out.
133 */
134 wait_for_completion_timeout(&cpu_running,
135 msecs_to_jiffies(1000));
136
137 if (!cpu_online(cpu)) {
138 pr_crit("CPU%u: failed to come online\n", cpu);
139 ret = -EIO;
140 }
141 } else {
142 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
143 }
144
145
146 memset(&secondary_data, 0, sizeof(secondary_data));
147 return ret;
148 }
149
150 /* platform specific SMP operations */
151 void __init smp_init_cpus(void)
152 {
153 if (smp_ops.smp_init_cpus)
154 smp_ops.smp_init_cpus();
155 }
156
157 int platform_can_secondary_boot(void)
158 {
159 return !!smp_ops.smp_boot_secondary;
160 }
161
162 int platform_can_cpu_hotplug(void)
163 {
164 #ifdef CONFIG_HOTPLUG_CPU
165 if (smp_ops.cpu_kill)
166 return 1;
167 #endif
168
169 return 0;
170 }
171
172 #ifdef CONFIG_HOTPLUG_CPU
173 static int platform_cpu_kill(unsigned int cpu)
174 {
175 if (smp_ops.cpu_kill)
176 return smp_ops.cpu_kill(cpu);
177 return 1;
178 }
179
180 static int platform_cpu_disable(unsigned int cpu)
181 {
182 if (smp_ops.cpu_disable)
183 return smp_ops.cpu_disable(cpu);
184
185 return 0;
186 }
187
188 int platform_can_hotplug_cpu(unsigned int cpu)
189 {
190 /* cpu_die must be specified to support hotplug */
191 if (!smp_ops.cpu_die)
192 return 0;
193
194 if (smp_ops.cpu_can_disable)
195 return smp_ops.cpu_can_disable(cpu);
196
197 /*
198 * By default, allow disabling all CPUs except the first one,
199 * since this is special on a lot of platforms, e.g. because
200 * of clock tick interrupts.
201 */
202 return cpu != 0;
203 }
204
205 /*
206 * __cpu_disable runs on the processor to be shutdown.
207 */
208 int __cpu_disable(void)
209 {
210 unsigned int cpu = smp_processor_id();
211 int ret;
212
213 ret = platform_cpu_disable(cpu);
214 if (ret)
215 return ret;
216
217 /*
218 * Take this CPU offline. Once we clear this, we can't return,
219 * and we must not schedule until we're ready to give up the cpu.
220 */
221 set_cpu_online(cpu, false);
222
223 /*
224 * OK - migrate IRQs away from this CPU
225 */
226 migrate_irqs();
227
228 /*
229 * Flush user cache and TLB mappings, and then remove this CPU
230 * from the vm mask set of all processes.
231 *
232 * Caches are flushed to the Level of Unification Inner Shareable
233 * to write-back dirty lines to unified caches shared by all CPUs.
234 */
235 flush_cache_louis();
236 local_flush_tlb_all();
237
238 clear_tasks_mm_cpumask(cpu);
239
240 return 0;
241 }
242
243 static DECLARE_COMPLETION(cpu_died);
244
245 /*
246 * called on the thread which is asking for a CPU to be shutdown -
247 * waits until shutdown has completed, or it is timed out.
248 */
249 void __cpu_die(unsigned int cpu)
250 {
251 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
252 pr_err("CPU%u: cpu didn't die\n", cpu);
253 return;
254 }
255 pr_debug("CPU%u: shutdown\n", cpu);
256
257 /*
258 * platform_cpu_kill() is generally expected to do the powering off
259 * and/or cutting of clocks to the dying CPU. Optionally, this may
260 * be done by the CPU which is dying in preference to supporting
261 * this call, but that means there is _no_ synchronisation between
262 * the requesting CPU and the dying CPU actually losing power.
263 */
264 if (!platform_cpu_kill(cpu))
265 pr_err("CPU%u: unable to kill\n", cpu);
266 }
267
268 /*
269 * Called from the idle thread for the CPU which has been shutdown.
270 *
271 * Note that we disable IRQs here, but do not re-enable them
272 * before returning to the caller. This is also the behaviour
273 * of the other hotplug-cpu capable cores, so presumably coming
274 * out of idle fixes this.
275 */
276 void arch_cpu_idle_dead(void)
277 {
278 unsigned int cpu = smp_processor_id();
279
280 idle_task_exit();
281
282 local_irq_disable();
283
284 /*
285 * Flush the data out of the L1 cache for this CPU. This must be
286 * before the completion to ensure that data is safely written out
287 * before platform_cpu_kill() gets called - which may disable
288 * *this* CPU and power down its cache.
289 */
290 flush_cache_louis();
291
292 /*
293 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
294 * this returns, power and/or clocks can be removed at any point
295 * from this CPU and its cache by platform_cpu_kill().
296 */
297 complete(&cpu_died);
298
299 /*
300 * Ensure that the cache lines associated with that completion are
301 * written out. This covers the case where _this_ CPU is doing the
302 * powering down, to ensure that the completion is visible to the
303 * CPU waiting for this one.
304 */
305 flush_cache_louis();
306
307 /*
308 * The actual CPU shutdown procedure is at least platform (if not
309 * CPU) specific. This may remove power, or it may simply spin.
310 *
311 * Platforms are generally expected *NOT* to return from this call,
312 * although there are some which do because they have no way to
313 * power down the CPU. These platforms are the _only_ reason we
314 * have a return path which uses the fragment of assembly below.
315 *
316 * The return path should not be used for platforms which can
317 * power off the CPU.
318 */
319 if (smp_ops.cpu_die)
320 smp_ops.cpu_die(cpu);
321
322 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
323 cpu);
324
325 /*
326 * Do not return to the idle loop - jump back to the secondary
327 * cpu initialisation. There's some initialisation which needs
328 * to be repeated to undo the effects of taking the CPU offline.
329 */
330 __asm__("mov sp, %0\n"
331 " mov fp, #0\n"
332 " b secondary_start_kernel"
333 :
334 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
335 }
336 #endif /* CONFIG_HOTPLUG_CPU */
337
338 /*
339 * Called by both boot and secondaries to move global data into
340 * per-processor storage.
341 */
342 static void smp_store_cpu_info(unsigned int cpuid)
343 {
344 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
345
346 cpu_info->loops_per_jiffy = loops_per_jiffy;
347 cpu_info->cpuid = read_cpuid_id();
348
349 store_cpu_topology(cpuid);
350 }
351
352 /*
353 * This is the secondary CPU boot entry. We're using this CPUs
354 * idle thread stack, but a set of temporary page tables.
355 */
356 asmlinkage void secondary_start_kernel(void)
357 {
358 struct mm_struct *mm = &init_mm;
359 unsigned int cpu;
360
361 /*
362 * The identity mapping is uncached (strongly ordered), so
363 * switch away from it before attempting any exclusive accesses.
364 */
365 cpu_switch_mm(mm->pgd, mm);
366 local_flush_bp_all();
367 enter_lazy_tlb(mm, current);
368 local_flush_tlb_all();
369
370 /*
371 * All kernel threads share the same mm context; grab a
372 * reference and switch to it.
373 */
374 cpu = smp_processor_id();
375 mmgrab(mm);
376 current->active_mm = mm;
377 cpumask_set_cpu(cpu, mm_cpumask(mm));
378
379 cpu_init();
380
381 pr_debug("CPU%u: Booted secondary processor\n", cpu);
382
383 preempt_disable();
384 trace_hardirqs_off();
385
386 /*
387 * Give the platform a chance to do its own initialisation.
388 */
389 if (smp_ops.smp_secondary_init)
390 smp_ops.smp_secondary_init(cpu);
391
392 notify_cpu_starting(cpu);
393
394 calibrate_delay();
395
396 smp_store_cpu_info(cpu);
397
398 /*
399 * OK, now it's safe to let the boot CPU continue. Wait for
400 * the CPU migration code to notice that the CPU is online
401 * before we continue - which happens after __cpu_up returns.
402 */
403 set_cpu_online(cpu, true);
404 complete(&cpu_running);
405
406 local_irq_enable();
407 local_fiq_enable();
408 local_abt_enable();
409
410 /*
411 * OK, it's off to the idle thread for us
412 */
413 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
414 }
415
416 void __init smp_cpus_done(unsigned int max_cpus)
417 {
418 int cpu;
419 unsigned long bogosum = 0;
420
421 for_each_online_cpu(cpu)
422 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
423
424 printk(KERN_INFO "SMP: Total of %d processors activated "
425 "(%lu.%02lu BogoMIPS).\n",
426 num_online_cpus(),
427 bogosum / (500000/HZ),
428 (bogosum / (5000/HZ)) % 100);
429
430 hyp_mode_check();
431 }
432
433 void __init smp_prepare_boot_cpu(void)
434 {
435 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
436 }
437
438 void __init smp_prepare_cpus(unsigned int max_cpus)
439 {
440 unsigned int ncores = num_possible_cpus();
441
442 init_cpu_topology();
443
444 smp_store_cpu_info(smp_processor_id());
445
446 /*
447 * are we trying to boot more cores than exist?
448 */
449 if (max_cpus > ncores)
450 max_cpus = ncores;
451 if (ncores > 1 && max_cpus) {
452 /*
453 * Initialise the present map, which describes the set of CPUs
454 * actually populated at the present time. A platform should
455 * re-initialize the map in the platforms smp_prepare_cpus()
456 * if present != possible (e.g. physical hotplug).
457 */
458 init_cpu_present(cpu_possible_mask);
459
460 /*
461 * Initialise the SCU if there are more than one CPU
462 * and let them know where to start.
463 */
464 if (smp_ops.smp_prepare_cpus)
465 smp_ops.smp_prepare_cpus(max_cpus);
466 }
467 }
468
469 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
470
471 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
472 {
473 if (!__smp_cross_call)
474 __smp_cross_call = fn;
475 }
476
477 static const char *ipi_types[NR_IPI] __tracepoint_string = {
478 #define S(x,s) [x] = s
479 S(IPI_WAKEUP, "CPU wakeup interrupts"),
480 S(IPI_TIMER, "Timer broadcast interrupts"),
481 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
482 S(IPI_CALL_FUNC, "Function call interrupts"),
483 S(IPI_CPU_STOP, "CPU stop interrupts"),
484 S(IPI_IRQ_WORK, "IRQ work interrupts"),
485 S(IPI_COMPLETION, "completion interrupts"),
486 };
487
488 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
489 {
490 trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
491 __smp_cross_call(target, ipinr);
492 }
493
494 void show_ipi_list(struct seq_file *p, int prec)
495 {
496 unsigned int cpu, i;
497
498 for (i = 0; i < NR_IPI; i++) {
499 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
500
501 for_each_online_cpu(cpu)
502 seq_printf(p, "%10u ",
503 __get_irq_stat(cpu, ipi_irqs[i]));
504
505 seq_printf(p, " %s\n", ipi_types[i]);
506 }
507 }
508
509 u64 smp_irq_stat_cpu(unsigned int cpu)
510 {
511 u64 sum = 0;
512 int i;
513
514 for (i = 0; i < NR_IPI; i++)
515 sum += __get_irq_stat(cpu, ipi_irqs[i]);
516
517 return sum;
518 }
519
520 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521 {
522 smp_cross_call(mask, IPI_CALL_FUNC);
523 }
524
525 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
526 {
527 smp_cross_call(mask, IPI_WAKEUP);
528 }
529
530 void arch_send_call_function_single_ipi(int cpu)
531 {
532 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
533 }
534
535 #ifdef CONFIG_IRQ_WORK
536 void arch_irq_work_raise(void)
537 {
538 if (arch_irq_work_has_interrupt())
539 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
540 }
541 #endif
542
543 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
544 void tick_broadcast(const struct cpumask *mask)
545 {
546 smp_cross_call(mask, IPI_TIMER);
547 }
548 #endif
549
550 static DEFINE_RAW_SPINLOCK(stop_lock);
551
552 /*
553 * ipi_cpu_stop - handle IPI from smp_send_stop()
554 */
555 static void ipi_cpu_stop(unsigned int cpu)
556 {
557 if (system_state == SYSTEM_BOOTING ||
558 system_state == SYSTEM_RUNNING) {
559 raw_spin_lock(&stop_lock);
560 pr_crit("CPU%u: stopping\n", cpu);
561 dump_stack();
562 raw_spin_unlock(&stop_lock);
563 }
564
565 set_cpu_online(cpu, false);
566
567 local_fiq_disable();
568 local_irq_disable();
569
570 while (1)
571 cpu_relax();
572 }
573
574 static DEFINE_PER_CPU(struct completion *, cpu_completion);
575
576 int register_ipi_completion(struct completion *completion, int cpu)
577 {
578 per_cpu(cpu_completion, cpu) = completion;
579 return IPI_COMPLETION;
580 }
581
582 static void ipi_complete(unsigned int cpu)
583 {
584 complete(per_cpu(cpu_completion, cpu));
585 }
586
587 /*
588 * Main handler for inter-processor interrupts
589 */
590 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
591 {
592 handle_IPI(ipinr, regs);
593 }
594
595 void handle_IPI(int ipinr, struct pt_regs *regs)
596 {
597 unsigned int cpu = smp_processor_id();
598 struct pt_regs *old_regs = set_irq_regs(regs);
599
600 if ((unsigned)ipinr < NR_IPI) {
601 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
602 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
603 }
604
605 switch (ipinr) {
606 case IPI_WAKEUP:
607 break;
608
609 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
610 case IPI_TIMER:
611 irq_enter();
612 tick_receive_broadcast();
613 irq_exit();
614 break;
615 #endif
616
617 case IPI_RESCHEDULE:
618 scheduler_ipi();
619 break;
620
621 case IPI_CALL_FUNC:
622 irq_enter();
623 generic_smp_call_function_interrupt();
624 irq_exit();
625 break;
626
627 case IPI_CPU_STOP:
628 irq_enter();
629 ipi_cpu_stop(cpu);
630 irq_exit();
631 break;
632
633 #ifdef CONFIG_IRQ_WORK
634 case IPI_IRQ_WORK:
635 irq_enter();
636 irq_work_run();
637 irq_exit();
638 break;
639 #endif
640
641 case IPI_COMPLETION:
642 irq_enter();
643 ipi_complete(cpu);
644 irq_exit();
645 break;
646
647 case IPI_CPU_BACKTRACE:
648 printk_nmi_enter();
649 irq_enter();
650 nmi_cpu_backtrace(regs);
651 irq_exit();
652 printk_nmi_exit();
653 break;
654
655 default:
656 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
657 cpu, ipinr);
658 break;
659 }
660
661 if ((unsigned)ipinr < NR_IPI)
662 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
663 set_irq_regs(old_regs);
664 }
665
666 void smp_send_reschedule(int cpu)
667 {
668 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
669 }
670
671 void smp_send_stop(void)
672 {
673 unsigned long timeout;
674 struct cpumask mask;
675
676 cpumask_copy(&mask, cpu_online_mask);
677 cpumask_clear_cpu(smp_processor_id(), &mask);
678 if (!cpumask_empty(&mask))
679 smp_cross_call(&mask, IPI_CPU_STOP);
680
681 /* Wait up to one second for other CPUs to stop */
682 timeout = USEC_PER_SEC;
683 while (num_online_cpus() > 1 && timeout--)
684 udelay(1);
685
686 if (num_online_cpus() > 1)
687 pr_warn("SMP: failed to stop secondary CPUs\n");
688 }
689
690 /*
691 * not supported here
692 */
693 int setup_profiling_timer(unsigned int multiplier)
694 {
695 return -EINVAL;
696 }
697
698 #ifdef CONFIG_CPU_FREQ
699
700 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
701 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
702 static unsigned long global_l_p_j_ref;
703 static unsigned long global_l_p_j_ref_freq;
704
705 static int cpufreq_callback(struct notifier_block *nb,
706 unsigned long val, void *data)
707 {
708 struct cpufreq_freqs *freq = data;
709 int cpu = freq->cpu;
710
711 if (freq->flags & CPUFREQ_CONST_LOOPS)
712 return NOTIFY_OK;
713
714 if (!per_cpu(l_p_j_ref, cpu)) {
715 per_cpu(l_p_j_ref, cpu) =
716 per_cpu(cpu_data, cpu).loops_per_jiffy;
717 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
718 if (!global_l_p_j_ref) {
719 global_l_p_j_ref = loops_per_jiffy;
720 global_l_p_j_ref_freq = freq->old;
721 }
722 }
723
724 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
725 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
726 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
727 global_l_p_j_ref_freq,
728 freq->new);
729 per_cpu(cpu_data, cpu).loops_per_jiffy =
730 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
731 per_cpu(l_p_j_ref_freq, cpu),
732 freq->new);
733 }
734 return NOTIFY_OK;
735 }
736
737 static struct notifier_block cpufreq_notifier = {
738 .notifier_call = cpufreq_callback,
739 };
740
741 static int __init register_cpufreq_notifier(void)
742 {
743 return cpufreq_register_notifier(&cpufreq_notifier,
744 CPUFREQ_TRANSITION_NOTIFIER);
745 }
746 core_initcall(register_cpufreq_notifier);
747
748 #endif
749
750 static void raise_nmi(cpumask_t *mask)
751 {
752 smp_cross_call(mask, IPI_CPU_BACKTRACE);
753 }
754
755 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
756 {
757 nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
758 }