]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kvm/arm.c
Merge tag 'renesas-sh-drivers-for-v3.16' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
75 */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84 */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87 return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92 return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115 *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123 * kvm_arch_init_vm - initializes a VM data structure
124 * @kvm: pointer to the KVM struct
125 */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128 int ret = 0;
129
130 if (type)
131 return -EINVAL;
132
133 ret = kvm_alloc_stage2_pgd(kvm);
134 if (ret)
135 goto out_fail_alloc;
136
137 ret = create_hyp_mappings(kvm, kvm + 1);
138 if (ret)
139 goto out_free_stage2_pgd;
140
141 kvm_timer_init(kvm);
142
143 /* Mark the initial VMID generation invalid */
144 kvm->arch.vmid_gen = 0;
145
146 return ret;
147 out_free_stage2_pgd:
148 kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150 return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155 return VM_FAULT_SIGBUS;
156 }
157
158 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
159 struct kvm_memory_slot *dont)
160 {
161 }
162
163 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
164 unsigned long npages)
165 {
166 return 0;
167 }
168
169 /**
170 * kvm_arch_destroy_vm - destroy the VM data structure
171 * @kvm: pointer to the KVM struct
172 */
173 void kvm_arch_destroy_vm(struct kvm *kvm)
174 {
175 int i;
176
177 kvm_free_stage2_pgd(kvm);
178
179 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
180 if (kvm->vcpus[i]) {
181 kvm_arch_vcpu_free(kvm->vcpus[i]);
182 kvm->vcpus[i] = NULL;
183 }
184 }
185 }
186
187 int kvm_dev_ioctl_check_extension(long ext)
188 {
189 int r;
190 switch (ext) {
191 case KVM_CAP_IRQCHIP:
192 r = vgic_present;
193 break;
194 case KVM_CAP_DEVICE_CTRL:
195 case KVM_CAP_USER_MEMORY:
196 case KVM_CAP_SYNC_MMU:
197 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
198 case KVM_CAP_ONE_REG:
199 case KVM_CAP_ARM_PSCI:
200 case KVM_CAP_ARM_PSCI_0_2:
201 r = 1;
202 break;
203 case KVM_CAP_COALESCED_MMIO:
204 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205 break;
206 case KVM_CAP_ARM_SET_DEVICE_ADDR:
207 r = 1;
208 break;
209 case KVM_CAP_NR_VCPUS:
210 r = num_online_cpus();
211 break;
212 case KVM_CAP_MAX_VCPUS:
213 r = KVM_MAX_VCPUS;
214 break;
215 default:
216 r = kvm_arch_dev_ioctl_check_extension(ext);
217 break;
218 }
219 return r;
220 }
221
222 long kvm_arch_dev_ioctl(struct file *filp,
223 unsigned int ioctl, unsigned long arg)
224 {
225 return -EINVAL;
226 }
227
228 void kvm_arch_memslots_updated(struct kvm *kvm)
229 {
230 }
231
232 int kvm_arch_prepare_memory_region(struct kvm *kvm,
233 struct kvm_memory_slot *memslot,
234 struct kvm_userspace_memory_region *mem,
235 enum kvm_mr_change change)
236 {
237 return 0;
238 }
239
240 void kvm_arch_commit_memory_region(struct kvm *kvm,
241 struct kvm_userspace_memory_region *mem,
242 const struct kvm_memory_slot *old,
243 enum kvm_mr_change change)
244 {
245 }
246
247 void kvm_arch_flush_shadow_all(struct kvm *kvm)
248 {
249 }
250
251 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
252 struct kvm_memory_slot *slot)
253 {
254 }
255
256 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
257 {
258 int err;
259 struct kvm_vcpu *vcpu;
260
261 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
262 if (!vcpu) {
263 err = -ENOMEM;
264 goto out;
265 }
266
267 err = kvm_vcpu_init(vcpu, kvm, id);
268 if (err)
269 goto free_vcpu;
270
271 err = create_hyp_mappings(vcpu, vcpu + 1);
272 if (err)
273 goto vcpu_uninit;
274
275 return vcpu;
276 vcpu_uninit:
277 kvm_vcpu_uninit(vcpu);
278 free_vcpu:
279 kmem_cache_free(kvm_vcpu_cache, vcpu);
280 out:
281 return ERR_PTR(err);
282 }
283
284 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
285 {
286 return 0;
287 }
288
289 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
290 {
291 kvm_mmu_free_memory_caches(vcpu);
292 kvm_timer_vcpu_terminate(vcpu);
293 kmem_cache_free(kvm_vcpu_cache, vcpu);
294 }
295
296 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
297 {
298 kvm_arch_vcpu_free(vcpu);
299 }
300
301 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
302 {
303 return 0;
304 }
305
306 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
307 {
308 int ret;
309
310 /* Force users to call KVM_ARM_VCPU_INIT */
311 vcpu->arch.target = -1;
312
313 /* Set up VGIC */
314 ret = kvm_vgic_vcpu_init(vcpu);
315 if (ret)
316 return ret;
317
318 /* Set up the timer */
319 kvm_timer_vcpu_init(vcpu);
320
321 return 0;
322 }
323
324 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
325 {
326 }
327
328 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
329 {
330 vcpu->cpu = cpu;
331 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
332
333 /*
334 * Check whether this vcpu requires the cache to be flushed on
335 * this physical CPU. This is a consequence of doing dcache
336 * operations by set/way on this vcpu. We do it here to be in
337 * a non-preemptible section.
338 */
339 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
340 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
341
342 kvm_arm_set_running_vcpu(vcpu);
343 }
344
345 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
346 {
347 /*
348 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
349 * if the vcpu is no longer assigned to a cpu. This is used for the
350 * optimized make_all_cpus_request path.
351 */
352 vcpu->cpu = -1;
353
354 kvm_arm_set_running_vcpu(NULL);
355 }
356
357 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
358 struct kvm_guest_debug *dbg)
359 {
360 return -EINVAL;
361 }
362
363
364 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
365 struct kvm_mp_state *mp_state)
366 {
367 return -EINVAL;
368 }
369
370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371 struct kvm_mp_state *mp_state)
372 {
373 return -EINVAL;
374 }
375
376 /**
377 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
378 * @v: The VCPU pointer
379 *
380 * If the guest CPU is not waiting for interrupts or an interrupt line is
381 * asserted, the CPU is by definition runnable.
382 */
383 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
384 {
385 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
386 }
387
388 /* Just ensure a guest exit from a particular CPU */
389 static void exit_vm_noop(void *info)
390 {
391 }
392
393 void force_vm_exit(const cpumask_t *mask)
394 {
395 smp_call_function_many(mask, exit_vm_noop, NULL, true);
396 }
397
398 /**
399 * need_new_vmid_gen - check that the VMID is still valid
400 * @kvm: The VM's VMID to checkt
401 *
402 * return true if there is a new generation of VMIDs being used
403 *
404 * The hardware supports only 256 values with the value zero reserved for the
405 * host, so we check if an assigned value belongs to a previous generation,
406 * which which requires us to assign a new value. If we're the first to use a
407 * VMID for the new generation, we must flush necessary caches and TLBs on all
408 * CPUs.
409 */
410 static bool need_new_vmid_gen(struct kvm *kvm)
411 {
412 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
413 }
414
415 /**
416 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
417 * @kvm The guest that we are about to run
418 *
419 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
420 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
421 * caches and TLBs.
422 */
423 static void update_vttbr(struct kvm *kvm)
424 {
425 phys_addr_t pgd_phys;
426 u64 vmid;
427
428 if (!need_new_vmid_gen(kvm))
429 return;
430
431 spin_lock(&kvm_vmid_lock);
432
433 /*
434 * We need to re-check the vmid_gen here to ensure that if another vcpu
435 * already allocated a valid vmid for this vm, then this vcpu should
436 * use the same vmid.
437 */
438 if (!need_new_vmid_gen(kvm)) {
439 spin_unlock(&kvm_vmid_lock);
440 return;
441 }
442
443 /* First user of a new VMID generation? */
444 if (unlikely(kvm_next_vmid == 0)) {
445 atomic64_inc(&kvm_vmid_gen);
446 kvm_next_vmid = 1;
447
448 /*
449 * On SMP we know no other CPUs can use this CPU's or each
450 * other's VMID after force_vm_exit returns since the
451 * kvm_vmid_lock blocks them from reentry to the guest.
452 */
453 force_vm_exit(cpu_all_mask);
454 /*
455 * Now broadcast TLB + ICACHE invalidation over the inner
456 * shareable domain to make sure all data structures are
457 * clean.
458 */
459 kvm_call_hyp(__kvm_flush_vm_context);
460 }
461
462 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
463 kvm->arch.vmid = kvm_next_vmid;
464 kvm_next_vmid++;
465
466 /* update vttbr to be used with the new vmid */
467 pgd_phys = virt_to_phys(kvm->arch.pgd);
468 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
469 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
470 kvm->arch.vttbr |= vmid;
471
472 spin_unlock(&kvm_vmid_lock);
473 }
474
475 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
476 {
477 int ret;
478
479 if (likely(vcpu->arch.has_run_once))
480 return 0;
481
482 vcpu->arch.has_run_once = true;
483
484 /*
485 * Initialize the VGIC before running a vcpu the first time on
486 * this VM.
487 */
488 if (unlikely(!vgic_initialized(vcpu->kvm))) {
489 ret = kvm_vgic_init(vcpu->kvm);
490 if (ret)
491 return ret;
492 }
493
494 return 0;
495 }
496
497 static void vcpu_pause(struct kvm_vcpu *vcpu)
498 {
499 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
500
501 wait_event_interruptible(*wq, !vcpu->arch.pause);
502 }
503
504 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
505 {
506 return vcpu->arch.target >= 0;
507 }
508
509 /**
510 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
511 * @vcpu: The VCPU pointer
512 * @run: The kvm_run structure pointer used for userspace state exchange
513 *
514 * This function is called through the VCPU_RUN ioctl called from user space. It
515 * will execute VM code in a loop until the time slice for the process is used
516 * or some emulation is needed from user space in which case the function will
517 * return with return value 0 and with the kvm_run structure filled in with the
518 * required data for the requested emulation.
519 */
520 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
521 {
522 int ret;
523 sigset_t sigsaved;
524
525 if (unlikely(!kvm_vcpu_initialized(vcpu)))
526 return -ENOEXEC;
527
528 ret = kvm_vcpu_first_run_init(vcpu);
529 if (ret)
530 return ret;
531
532 if (run->exit_reason == KVM_EXIT_MMIO) {
533 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
534 if (ret)
535 return ret;
536 }
537
538 if (vcpu->sigset_active)
539 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
540
541 ret = 1;
542 run->exit_reason = KVM_EXIT_UNKNOWN;
543 while (ret > 0) {
544 /*
545 * Check conditions before entering the guest
546 */
547 cond_resched();
548
549 update_vttbr(vcpu->kvm);
550
551 if (vcpu->arch.pause)
552 vcpu_pause(vcpu);
553
554 kvm_vgic_flush_hwstate(vcpu);
555 kvm_timer_flush_hwstate(vcpu);
556
557 local_irq_disable();
558
559 /*
560 * Re-check atomic conditions
561 */
562 if (signal_pending(current)) {
563 ret = -EINTR;
564 run->exit_reason = KVM_EXIT_INTR;
565 }
566
567 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
568 local_irq_enable();
569 kvm_timer_sync_hwstate(vcpu);
570 kvm_vgic_sync_hwstate(vcpu);
571 continue;
572 }
573
574 /**************************************************************
575 * Enter the guest
576 */
577 trace_kvm_entry(*vcpu_pc(vcpu));
578 kvm_guest_enter();
579 vcpu->mode = IN_GUEST_MODE;
580
581 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
582
583 vcpu->mode = OUTSIDE_GUEST_MODE;
584 vcpu->arch.last_pcpu = smp_processor_id();
585 kvm_guest_exit();
586 trace_kvm_exit(*vcpu_pc(vcpu));
587 /*
588 * We may have taken a host interrupt in HYP mode (ie
589 * while executing the guest). This interrupt is still
590 * pending, as we haven't serviced it yet!
591 *
592 * We're now back in SVC mode, with interrupts
593 * disabled. Enabling the interrupts now will have
594 * the effect of taking the interrupt again, in SVC
595 * mode this time.
596 */
597 local_irq_enable();
598
599 /*
600 * Back from guest
601 *************************************************************/
602
603 kvm_timer_sync_hwstate(vcpu);
604 kvm_vgic_sync_hwstate(vcpu);
605
606 ret = handle_exit(vcpu, run, ret);
607 }
608
609 if (vcpu->sigset_active)
610 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
611 return ret;
612 }
613
614 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
615 {
616 int bit_index;
617 bool set;
618 unsigned long *ptr;
619
620 if (number == KVM_ARM_IRQ_CPU_IRQ)
621 bit_index = __ffs(HCR_VI);
622 else /* KVM_ARM_IRQ_CPU_FIQ */
623 bit_index = __ffs(HCR_VF);
624
625 ptr = (unsigned long *)&vcpu->arch.irq_lines;
626 if (level)
627 set = test_and_set_bit(bit_index, ptr);
628 else
629 set = test_and_clear_bit(bit_index, ptr);
630
631 /*
632 * If we didn't change anything, no need to wake up or kick other CPUs
633 */
634 if (set == level)
635 return 0;
636
637 /*
638 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
639 * trigger a world-switch round on the running physical CPU to set the
640 * virtual IRQ/FIQ fields in the HCR appropriately.
641 */
642 kvm_vcpu_kick(vcpu);
643
644 return 0;
645 }
646
647 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
648 bool line_status)
649 {
650 u32 irq = irq_level->irq;
651 unsigned int irq_type, vcpu_idx, irq_num;
652 int nrcpus = atomic_read(&kvm->online_vcpus);
653 struct kvm_vcpu *vcpu = NULL;
654 bool level = irq_level->level;
655
656 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
657 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
658 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
659
660 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
661
662 switch (irq_type) {
663 case KVM_ARM_IRQ_TYPE_CPU:
664 if (irqchip_in_kernel(kvm))
665 return -ENXIO;
666
667 if (vcpu_idx >= nrcpus)
668 return -EINVAL;
669
670 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
671 if (!vcpu)
672 return -EINVAL;
673
674 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
675 return -EINVAL;
676
677 return vcpu_interrupt_line(vcpu, irq_num, level);
678 case KVM_ARM_IRQ_TYPE_PPI:
679 if (!irqchip_in_kernel(kvm))
680 return -ENXIO;
681
682 if (vcpu_idx >= nrcpus)
683 return -EINVAL;
684
685 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
686 if (!vcpu)
687 return -EINVAL;
688
689 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
690 return -EINVAL;
691
692 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
693 case KVM_ARM_IRQ_TYPE_SPI:
694 if (!irqchip_in_kernel(kvm))
695 return -ENXIO;
696
697 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
698 irq_num > KVM_ARM_IRQ_GIC_MAX)
699 return -EINVAL;
700
701 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
702 }
703
704 return -EINVAL;
705 }
706
707 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
708 struct kvm_vcpu_init *init)
709 {
710 int ret;
711
712 ret = kvm_vcpu_set_target(vcpu, init);
713 if (ret)
714 return ret;
715
716 /*
717 * Handle the "start in power-off" case by marking the VCPU as paused.
718 */
719 if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
720 vcpu->arch.pause = true;
721
722 return 0;
723 }
724
725 long kvm_arch_vcpu_ioctl(struct file *filp,
726 unsigned int ioctl, unsigned long arg)
727 {
728 struct kvm_vcpu *vcpu = filp->private_data;
729 void __user *argp = (void __user *)arg;
730
731 switch (ioctl) {
732 case KVM_ARM_VCPU_INIT: {
733 struct kvm_vcpu_init init;
734
735 if (copy_from_user(&init, argp, sizeof(init)))
736 return -EFAULT;
737
738 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
739 }
740 case KVM_SET_ONE_REG:
741 case KVM_GET_ONE_REG: {
742 struct kvm_one_reg reg;
743
744 if (unlikely(!kvm_vcpu_initialized(vcpu)))
745 return -ENOEXEC;
746
747 if (copy_from_user(&reg, argp, sizeof(reg)))
748 return -EFAULT;
749 if (ioctl == KVM_SET_ONE_REG)
750 return kvm_arm_set_reg(vcpu, &reg);
751 else
752 return kvm_arm_get_reg(vcpu, &reg);
753 }
754 case KVM_GET_REG_LIST: {
755 struct kvm_reg_list __user *user_list = argp;
756 struct kvm_reg_list reg_list;
757 unsigned n;
758
759 if (unlikely(!kvm_vcpu_initialized(vcpu)))
760 return -ENOEXEC;
761
762 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
763 return -EFAULT;
764 n = reg_list.n;
765 reg_list.n = kvm_arm_num_regs(vcpu);
766 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
767 return -EFAULT;
768 if (n < reg_list.n)
769 return -E2BIG;
770 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
771 }
772 default:
773 return -EINVAL;
774 }
775 }
776
777 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
778 {
779 return -EINVAL;
780 }
781
782 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
783 struct kvm_arm_device_addr *dev_addr)
784 {
785 unsigned long dev_id, type;
786
787 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
788 KVM_ARM_DEVICE_ID_SHIFT;
789 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
790 KVM_ARM_DEVICE_TYPE_SHIFT;
791
792 switch (dev_id) {
793 case KVM_ARM_DEVICE_VGIC_V2:
794 if (!vgic_present)
795 return -ENXIO;
796 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
797 default:
798 return -ENODEV;
799 }
800 }
801
802 long kvm_arch_vm_ioctl(struct file *filp,
803 unsigned int ioctl, unsigned long arg)
804 {
805 struct kvm *kvm = filp->private_data;
806 void __user *argp = (void __user *)arg;
807
808 switch (ioctl) {
809 case KVM_CREATE_IRQCHIP: {
810 if (vgic_present)
811 return kvm_vgic_create(kvm);
812 else
813 return -ENXIO;
814 }
815 case KVM_ARM_SET_DEVICE_ADDR: {
816 struct kvm_arm_device_addr dev_addr;
817
818 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
819 return -EFAULT;
820 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
821 }
822 case KVM_ARM_PREFERRED_TARGET: {
823 int err;
824 struct kvm_vcpu_init init;
825
826 err = kvm_vcpu_preferred_target(&init);
827 if (err)
828 return err;
829
830 if (copy_to_user(argp, &init, sizeof(init)))
831 return -EFAULT;
832
833 return 0;
834 }
835 default:
836 return -EINVAL;
837 }
838 }
839
840 static void cpu_init_hyp_mode(void *dummy)
841 {
842 phys_addr_t boot_pgd_ptr;
843 phys_addr_t pgd_ptr;
844 unsigned long hyp_stack_ptr;
845 unsigned long stack_page;
846 unsigned long vector_ptr;
847
848 /* Switch from the HYP stub to our own HYP init vector */
849 __hyp_set_vectors(kvm_get_idmap_vector());
850
851 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
852 pgd_ptr = kvm_mmu_get_httbr();
853 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
854 hyp_stack_ptr = stack_page + PAGE_SIZE;
855 vector_ptr = (unsigned long)__kvm_hyp_vector;
856
857 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
858 }
859
860 static int hyp_init_cpu_notify(struct notifier_block *self,
861 unsigned long action, void *cpu)
862 {
863 switch (action) {
864 case CPU_STARTING:
865 case CPU_STARTING_FROZEN:
866 cpu_init_hyp_mode(NULL);
867 break;
868 }
869
870 return NOTIFY_OK;
871 }
872
873 static struct notifier_block hyp_init_cpu_nb = {
874 .notifier_call = hyp_init_cpu_notify,
875 };
876
877 #ifdef CONFIG_CPU_PM
878 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
879 unsigned long cmd,
880 void *v)
881 {
882 if (cmd == CPU_PM_EXIT &&
883 __hyp_get_vectors() == hyp_default_vectors) {
884 cpu_init_hyp_mode(NULL);
885 return NOTIFY_OK;
886 }
887
888 return NOTIFY_DONE;
889 }
890
891 static struct notifier_block hyp_init_cpu_pm_nb = {
892 .notifier_call = hyp_init_cpu_pm_notifier,
893 };
894
895 static void __init hyp_cpu_pm_init(void)
896 {
897 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
898 }
899 #else
900 static inline void hyp_cpu_pm_init(void)
901 {
902 }
903 #endif
904
905 /**
906 * Inits Hyp-mode on all online CPUs
907 */
908 static int init_hyp_mode(void)
909 {
910 int cpu;
911 int err = 0;
912
913 /*
914 * Allocate Hyp PGD and setup Hyp identity mapping
915 */
916 err = kvm_mmu_init();
917 if (err)
918 goto out_err;
919
920 /*
921 * It is probably enough to obtain the default on one
922 * CPU. It's unlikely to be different on the others.
923 */
924 hyp_default_vectors = __hyp_get_vectors();
925
926 /*
927 * Allocate stack pages for Hypervisor-mode
928 */
929 for_each_possible_cpu(cpu) {
930 unsigned long stack_page;
931
932 stack_page = __get_free_page(GFP_KERNEL);
933 if (!stack_page) {
934 err = -ENOMEM;
935 goto out_free_stack_pages;
936 }
937
938 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
939 }
940
941 /*
942 * Map the Hyp-code called directly from the host
943 */
944 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
945 if (err) {
946 kvm_err("Cannot map world-switch code\n");
947 goto out_free_mappings;
948 }
949
950 /*
951 * Map the Hyp stack pages
952 */
953 for_each_possible_cpu(cpu) {
954 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
955 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
956
957 if (err) {
958 kvm_err("Cannot map hyp stack\n");
959 goto out_free_mappings;
960 }
961 }
962
963 /*
964 * Map the host CPU structures
965 */
966 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
967 if (!kvm_host_cpu_state) {
968 err = -ENOMEM;
969 kvm_err("Cannot allocate host CPU state\n");
970 goto out_free_mappings;
971 }
972
973 for_each_possible_cpu(cpu) {
974 kvm_cpu_context_t *cpu_ctxt;
975
976 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
977 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
978
979 if (err) {
980 kvm_err("Cannot map host CPU state: %d\n", err);
981 goto out_free_context;
982 }
983 }
984
985 /*
986 * Execute the init code on each CPU.
987 */
988 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
989
990 /*
991 * Init HYP view of VGIC
992 */
993 err = kvm_vgic_hyp_init();
994 if (err)
995 goto out_free_context;
996
997 #ifdef CONFIG_KVM_ARM_VGIC
998 vgic_present = true;
999 #endif
1000
1001 /*
1002 * Init HYP architected timer support
1003 */
1004 err = kvm_timer_hyp_init();
1005 if (err)
1006 goto out_free_mappings;
1007
1008 #ifndef CONFIG_HOTPLUG_CPU
1009 free_boot_hyp_pgd();
1010 #endif
1011
1012 kvm_perf_init();
1013
1014 kvm_info("Hyp mode initialized successfully\n");
1015
1016 return 0;
1017 out_free_context:
1018 free_percpu(kvm_host_cpu_state);
1019 out_free_mappings:
1020 free_hyp_pgds();
1021 out_free_stack_pages:
1022 for_each_possible_cpu(cpu)
1023 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1024 out_err:
1025 kvm_err("error initializing Hyp mode: %d\n", err);
1026 return err;
1027 }
1028
1029 static void check_kvm_target_cpu(void *ret)
1030 {
1031 *(int *)ret = kvm_target_cpu();
1032 }
1033
1034 /**
1035 * Initialize Hyp-mode and memory mappings on all CPUs.
1036 */
1037 int kvm_arch_init(void *opaque)
1038 {
1039 int err;
1040 int ret, cpu;
1041
1042 if (!is_hyp_mode_available()) {
1043 kvm_err("HYP mode not available\n");
1044 return -ENODEV;
1045 }
1046
1047 for_each_online_cpu(cpu) {
1048 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1049 if (ret < 0) {
1050 kvm_err("Error, CPU %d not supported!\n", cpu);
1051 return -ENODEV;
1052 }
1053 }
1054
1055 cpu_notifier_register_begin();
1056
1057 err = init_hyp_mode();
1058 if (err)
1059 goto out_err;
1060
1061 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1062 if (err) {
1063 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1064 goto out_err;
1065 }
1066
1067 cpu_notifier_register_done();
1068
1069 hyp_cpu_pm_init();
1070
1071 kvm_coproc_table_init();
1072 return 0;
1073 out_err:
1074 cpu_notifier_register_done();
1075 return err;
1076 }
1077
1078 /* NOP: Compiling as a module not supported */
1079 void kvm_arch_exit(void)
1080 {
1081 kvm_perf_teardown();
1082 }
1083
1084 static int arm_init(void)
1085 {
1086 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1087 return rc;
1088 }
1089
1090 module_init(arm_init);