]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/kvm/arm.c
8a31906bdc9b94ca153f7ea2bc811666e6b9524b
[mirror_ubuntu-bionic-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
79 */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88 */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91 return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101 return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106 *(int *)rtn = 0;
107 }
108
109
110 /**
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
113 */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116 int ret, cpu;
117
118 if (type)
119 return -EINVAL;
120
121 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122 if (!kvm->arch.last_vcpu_ran)
123 return -ENOMEM;
124
125 for_each_possible_cpu(cpu)
126 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128 ret = kvm_alloc_stage2_pgd(kvm);
129 if (ret)
130 goto out_fail_alloc;
131
132 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 if (ret)
134 goto out_free_stage2_pgd;
135
136 kvm_vgic_early_init(kvm);
137
138 /* Mark the initial VMID generation invalid */
139 kvm->arch.vmid_gen = 0;
140
141 /* The maximum number of VCPUs is limited by the host's GIC model */
142 kvm->arch.max_vcpus = vgic_present ?
143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145 return ret;
146 out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 free_percpu(kvm->arch.last_vcpu_ran);
150 kvm->arch.last_vcpu_ran = NULL;
151 return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156 return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161 return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166 return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171 * kvm_arch_destroy_vm - destroy the VM data structure
172 * @kvm: pointer to the KVM struct
173 */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176 int i;
177
178 free_percpu(kvm->arch.last_vcpu_ran);
179 kvm->arch.last_vcpu_ran = NULL;
180
181 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182 if (kvm->vcpus[i]) {
183 kvm_arch_vcpu_free(kvm->vcpus[i]);
184 kvm->vcpus[i] = NULL;
185 }
186 }
187
188 kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193 int r;
194 switch (ext) {
195 case KVM_CAP_IRQCHIP:
196 r = vgic_present;
197 break;
198 case KVM_CAP_IOEVENTFD:
199 case KVM_CAP_DEVICE_CTRL:
200 case KVM_CAP_USER_MEMORY:
201 case KVM_CAP_SYNC_MMU:
202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203 case KVM_CAP_ONE_REG:
204 case KVM_CAP_ARM_PSCI:
205 case KVM_CAP_ARM_PSCI_0_2:
206 case KVM_CAP_READONLY_MEM:
207 case KVM_CAP_MP_STATE:
208 case KVM_CAP_IMMEDIATE_EXIT:
209 r = 1;
210 break;
211 case KVM_CAP_ARM_SET_DEVICE_ADDR:
212 r = 1;
213 break;
214 case KVM_CAP_NR_VCPUS:
215 r = num_online_cpus();
216 break;
217 case KVM_CAP_MAX_VCPUS:
218 r = KVM_MAX_VCPUS;
219 break;
220 case KVM_CAP_NR_MEMSLOTS:
221 r = KVM_USER_MEM_SLOTS;
222 break;
223 case KVM_CAP_MSI_DEVID:
224 if (!kvm)
225 r = -EINVAL;
226 else
227 r = kvm->arch.vgic.msis_require_devid;
228 break;
229 case KVM_CAP_ARM_USER_IRQ:
230 /*
231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232 * (bump this number if adding more devices)
233 */
234 r = 1;
235 break;
236 default:
237 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238 break;
239 }
240 return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244 unsigned int ioctl, unsigned long arg)
245 {
246 return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252 int err;
253 struct kvm_vcpu *vcpu;
254
255 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256 err = -EBUSY;
257 goto out;
258 }
259
260 if (id >= kvm->arch.max_vcpus) {
261 err = -EINVAL;
262 goto out;
263 }
264
265 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266 if (!vcpu) {
267 err = -ENOMEM;
268 goto out;
269 }
270
271 err = kvm_vcpu_init(vcpu, kvm, id);
272 if (err)
273 goto free_vcpu;
274
275 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 if (err)
277 goto vcpu_uninit;
278
279 return vcpu;
280 vcpu_uninit:
281 kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283 kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285 return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290 kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295 kvm_mmu_free_memory_caches(vcpu);
296 kvm_timer_vcpu_terminate(vcpu);
297 kvm_vgic_vcpu_destroy(vcpu);
298 kvm_pmu_vcpu_destroy(vcpu);
299 kvm_vcpu_uninit(vcpu);
300 kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305 kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311 kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316 kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321 kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326 /* Force users to call KVM_ARM_VCPU_INIT */
327 vcpu->arch.target = -1;
328 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330 /* Set up the timer */
331 kvm_timer_vcpu_init(vcpu);
332
333 kvm_arm_reset_debug_ptr(vcpu);
334
335 return 0;
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340 int *last_ran;
341
342 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344 /*
345 * We might get preempted before the vCPU actually runs, but
346 * over-invalidation doesn't affect correctness.
347 */
348 if (*last_ran != vcpu->vcpu_id) {
349 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350 *last_ran = vcpu->vcpu_id;
351 }
352
353 vcpu->cpu = cpu;
354 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356 kvm_arm_set_running_vcpu(vcpu);
357
358 kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363 kvm_vgic_put(vcpu);
364
365 vcpu->cpu = -1;
366
367 kvm_arm_set_running_vcpu(NULL);
368 kvm_timer_vcpu_put(vcpu);
369 }
370
371 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
372 struct kvm_mp_state *mp_state)
373 {
374 if (vcpu->arch.power_off)
375 mp_state->mp_state = KVM_MP_STATE_STOPPED;
376 else
377 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
378
379 return 0;
380 }
381
382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
383 struct kvm_mp_state *mp_state)
384 {
385 switch (mp_state->mp_state) {
386 case KVM_MP_STATE_RUNNABLE:
387 vcpu->arch.power_off = false;
388 break;
389 case KVM_MP_STATE_STOPPED:
390 vcpu->arch.power_off = true;
391 break;
392 default:
393 return -EINVAL;
394 }
395
396 return 0;
397 }
398
399 /**
400 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
401 * @v: The VCPU pointer
402 *
403 * If the guest CPU is not waiting for interrupts or an interrupt line is
404 * asserted, the CPU is by definition runnable.
405 */
406 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
407 {
408 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
409 && !v->arch.power_off && !v->arch.pause);
410 }
411
412 /* Just ensure a guest exit from a particular CPU */
413 static void exit_vm_noop(void *info)
414 {
415 }
416
417 void force_vm_exit(const cpumask_t *mask)
418 {
419 preempt_disable();
420 smp_call_function_many(mask, exit_vm_noop, NULL, true);
421 preempt_enable();
422 }
423
424 /**
425 * need_new_vmid_gen - check that the VMID is still valid
426 * @kvm: The VM's VMID to check
427 *
428 * return true if there is a new generation of VMIDs being used
429 *
430 * The hardware supports only 256 values with the value zero reserved for the
431 * host, so we check if an assigned value belongs to a previous generation,
432 * which which requires us to assign a new value. If we're the first to use a
433 * VMID for the new generation, we must flush necessary caches and TLBs on all
434 * CPUs.
435 */
436 static bool need_new_vmid_gen(struct kvm *kvm)
437 {
438 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
439 }
440
441 /**
442 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
443 * @kvm The guest that we are about to run
444 *
445 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
446 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
447 * caches and TLBs.
448 */
449 static void update_vttbr(struct kvm *kvm)
450 {
451 phys_addr_t pgd_phys;
452 u64 vmid;
453
454 if (!need_new_vmid_gen(kvm))
455 return;
456
457 spin_lock(&kvm_vmid_lock);
458
459 /*
460 * We need to re-check the vmid_gen here to ensure that if another vcpu
461 * already allocated a valid vmid for this vm, then this vcpu should
462 * use the same vmid.
463 */
464 if (!need_new_vmid_gen(kvm)) {
465 spin_unlock(&kvm_vmid_lock);
466 return;
467 }
468
469 /* First user of a new VMID generation? */
470 if (unlikely(kvm_next_vmid == 0)) {
471 atomic64_inc(&kvm_vmid_gen);
472 kvm_next_vmid = 1;
473
474 /*
475 * On SMP we know no other CPUs can use this CPU's or each
476 * other's VMID after force_vm_exit returns since the
477 * kvm_vmid_lock blocks them from reentry to the guest.
478 */
479 force_vm_exit(cpu_all_mask);
480 /*
481 * Now broadcast TLB + ICACHE invalidation over the inner
482 * shareable domain to make sure all data structures are
483 * clean.
484 */
485 kvm_call_hyp(__kvm_flush_vm_context);
486 }
487
488 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
489 kvm->arch.vmid = kvm_next_vmid;
490 kvm_next_vmid++;
491 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
492
493 /* update vttbr to be used with the new vmid */
494 pgd_phys = virt_to_phys(kvm->arch.pgd);
495 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
496 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
497 kvm->arch.vttbr = pgd_phys | vmid;
498
499 spin_unlock(&kvm_vmid_lock);
500 }
501
502 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
503 {
504 struct kvm *kvm = vcpu->kvm;
505 int ret = 0;
506
507 if (likely(vcpu->arch.has_run_once))
508 return 0;
509
510 vcpu->arch.has_run_once = true;
511
512 /*
513 * Map the VGIC hardware resources before running a vcpu the first
514 * time on this VM.
515 */
516 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
517 ret = kvm_vgic_map_resources(kvm);
518 if (ret)
519 return ret;
520 }
521
522 ret = kvm_timer_enable(vcpu);
523
524 return ret;
525 }
526
527 bool kvm_arch_intc_initialized(struct kvm *kvm)
528 {
529 return vgic_initialized(kvm);
530 }
531
532 void kvm_arm_halt_guest(struct kvm *kvm)
533 {
534 int i;
535 struct kvm_vcpu *vcpu;
536
537 kvm_for_each_vcpu(i, vcpu, kvm)
538 vcpu->arch.pause = true;
539 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
540 }
541
542 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
543 {
544 vcpu->arch.pause = true;
545 kvm_vcpu_kick(vcpu);
546 }
547
548 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
549 {
550 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
551
552 vcpu->arch.pause = false;
553 swake_up(wq);
554 }
555
556 void kvm_arm_resume_guest(struct kvm *kvm)
557 {
558 int i;
559 struct kvm_vcpu *vcpu;
560
561 kvm_for_each_vcpu(i, vcpu, kvm)
562 kvm_arm_resume_vcpu(vcpu);
563 }
564
565 static void vcpu_sleep(struct kvm_vcpu *vcpu)
566 {
567 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
568
569 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
570 (!vcpu->arch.pause)));
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575 return vcpu->arch.target >= 0;
576 }
577
578 /**
579 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
580 * @vcpu: The VCPU pointer
581 * @run: The kvm_run structure pointer used for userspace state exchange
582 *
583 * This function is called through the VCPU_RUN ioctl called from user space. It
584 * will execute VM code in a loop until the time slice for the process is used
585 * or some emulation is needed from user space in which case the function will
586 * return with return value 0 and with the kvm_run structure filled in with the
587 * required data for the requested emulation.
588 */
589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
590 {
591 int ret;
592 sigset_t sigsaved;
593
594 if (unlikely(!kvm_vcpu_initialized(vcpu)))
595 return -ENOEXEC;
596
597 ret = kvm_vcpu_first_run_init(vcpu);
598 if (ret)
599 return ret;
600
601 if (run->exit_reason == KVM_EXIT_MMIO) {
602 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
603 if (ret)
604 return ret;
605 }
606
607 if (run->immediate_exit)
608 return -EINTR;
609
610 if (vcpu->sigset_active)
611 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
612
613 ret = 1;
614 run->exit_reason = KVM_EXIT_UNKNOWN;
615 while (ret > 0) {
616 /*
617 * Check conditions before entering the guest
618 */
619 cond_resched();
620
621 update_vttbr(vcpu->kvm);
622
623 if (vcpu->arch.power_off || vcpu->arch.pause)
624 vcpu_sleep(vcpu);
625
626 /*
627 * Preparing the interrupts to be injected also
628 * involves poking the GIC, which must be done in a
629 * non-preemptible context.
630 */
631 preempt_disable();
632
633 kvm_pmu_flush_hwstate(vcpu);
634
635 kvm_timer_flush_hwstate(vcpu);
636 kvm_vgic_flush_hwstate(vcpu);
637
638 local_irq_disable();
639
640 /*
641 * If we have a singal pending, or need to notify a userspace
642 * irqchip about timer or PMU level changes, then we exit (and
643 * update the timer level state in kvm_timer_update_run
644 * below).
645 */
646 if (signal_pending(current) ||
647 kvm_timer_should_notify_user(vcpu) ||
648 kvm_pmu_should_notify_user(vcpu)) {
649 ret = -EINTR;
650 run->exit_reason = KVM_EXIT_INTR;
651 }
652
653 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
654 vcpu->arch.power_off || vcpu->arch.pause) {
655 local_irq_enable();
656 kvm_pmu_sync_hwstate(vcpu);
657 kvm_timer_sync_hwstate(vcpu);
658 kvm_vgic_sync_hwstate(vcpu);
659 preempt_enable();
660 continue;
661 }
662
663 kvm_arm_setup_debug(vcpu);
664
665 /**************************************************************
666 * Enter the guest
667 */
668 trace_kvm_entry(*vcpu_pc(vcpu));
669 guest_enter_irqoff();
670 vcpu->mode = IN_GUEST_MODE;
671
672 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
673
674 vcpu->mode = OUTSIDE_GUEST_MODE;
675 vcpu->stat.exits++;
676 /*
677 * Back from guest
678 *************************************************************/
679
680 kvm_arm_clear_debug(vcpu);
681
682 /*
683 * We may have taken a host interrupt in HYP mode (ie
684 * while executing the guest). This interrupt is still
685 * pending, as we haven't serviced it yet!
686 *
687 * We're now back in SVC mode, with interrupts
688 * disabled. Enabling the interrupts now will have
689 * the effect of taking the interrupt again, in SVC
690 * mode this time.
691 */
692 local_irq_enable();
693
694 /*
695 * We do local_irq_enable() before calling guest_exit() so
696 * that if a timer interrupt hits while running the guest we
697 * account that tick as being spent in the guest. We enable
698 * preemption after calling guest_exit() so that if we get
699 * preempted we make sure ticks after that is not counted as
700 * guest time.
701 */
702 guest_exit();
703 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
704
705 /*
706 * We must sync the PMU and timer state before the vgic state so
707 * that the vgic can properly sample the updated state of the
708 * interrupt line.
709 */
710 kvm_pmu_sync_hwstate(vcpu);
711 kvm_timer_sync_hwstate(vcpu);
712
713 kvm_vgic_sync_hwstate(vcpu);
714
715 preempt_enable();
716
717 ret = handle_exit(vcpu, run, ret);
718 }
719
720 /* Tell userspace about in-kernel device output levels */
721 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
722 kvm_timer_update_run(vcpu);
723 kvm_pmu_update_run(vcpu);
724 }
725
726 if (vcpu->sigset_active)
727 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
728 return ret;
729 }
730
731 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
732 {
733 int bit_index;
734 bool set;
735 unsigned long *ptr;
736
737 if (number == KVM_ARM_IRQ_CPU_IRQ)
738 bit_index = __ffs(HCR_VI);
739 else /* KVM_ARM_IRQ_CPU_FIQ */
740 bit_index = __ffs(HCR_VF);
741
742 ptr = (unsigned long *)&vcpu->arch.irq_lines;
743 if (level)
744 set = test_and_set_bit(bit_index, ptr);
745 else
746 set = test_and_clear_bit(bit_index, ptr);
747
748 /*
749 * If we didn't change anything, no need to wake up or kick other CPUs
750 */
751 if (set == level)
752 return 0;
753
754 /*
755 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
756 * trigger a world-switch round on the running physical CPU to set the
757 * virtual IRQ/FIQ fields in the HCR appropriately.
758 */
759 kvm_vcpu_kick(vcpu);
760
761 return 0;
762 }
763
764 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
765 bool line_status)
766 {
767 u32 irq = irq_level->irq;
768 unsigned int irq_type, vcpu_idx, irq_num;
769 int nrcpus = atomic_read(&kvm->online_vcpus);
770 struct kvm_vcpu *vcpu = NULL;
771 bool level = irq_level->level;
772
773 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
774 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
775 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
776
777 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
778
779 switch (irq_type) {
780 case KVM_ARM_IRQ_TYPE_CPU:
781 if (irqchip_in_kernel(kvm))
782 return -ENXIO;
783
784 if (vcpu_idx >= nrcpus)
785 return -EINVAL;
786
787 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
788 if (!vcpu)
789 return -EINVAL;
790
791 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
792 return -EINVAL;
793
794 return vcpu_interrupt_line(vcpu, irq_num, level);
795 case KVM_ARM_IRQ_TYPE_PPI:
796 if (!irqchip_in_kernel(kvm))
797 return -ENXIO;
798
799 if (vcpu_idx >= nrcpus)
800 return -EINVAL;
801
802 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
803 if (!vcpu)
804 return -EINVAL;
805
806 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
807 return -EINVAL;
808
809 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
810 case KVM_ARM_IRQ_TYPE_SPI:
811 if (!irqchip_in_kernel(kvm))
812 return -ENXIO;
813
814 if (irq_num < VGIC_NR_PRIVATE_IRQS)
815 return -EINVAL;
816
817 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
818 }
819
820 return -EINVAL;
821 }
822
823 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
824 const struct kvm_vcpu_init *init)
825 {
826 unsigned int i;
827 int phys_target = kvm_target_cpu();
828
829 if (init->target != phys_target)
830 return -EINVAL;
831
832 /*
833 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
834 * use the same target.
835 */
836 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
837 return -EINVAL;
838
839 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
840 for (i = 0; i < sizeof(init->features) * 8; i++) {
841 bool set = (init->features[i / 32] & (1 << (i % 32)));
842
843 if (set && i >= KVM_VCPU_MAX_FEATURES)
844 return -ENOENT;
845
846 /*
847 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
848 * use the same feature set.
849 */
850 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
851 test_bit(i, vcpu->arch.features) != set)
852 return -EINVAL;
853
854 if (set)
855 set_bit(i, vcpu->arch.features);
856 }
857
858 vcpu->arch.target = phys_target;
859
860 /* Now we know what it is, we can reset it. */
861 return kvm_reset_vcpu(vcpu);
862 }
863
864
865 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
866 struct kvm_vcpu_init *init)
867 {
868 int ret;
869
870 ret = kvm_vcpu_set_target(vcpu, init);
871 if (ret)
872 return ret;
873
874 /*
875 * Ensure a rebooted VM will fault in RAM pages and detect if the
876 * guest MMU is turned off and flush the caches as needed.
877 */
878 if (vcpu->arch.has_run_once)
879 stage2_unmap_vm(vcpu->kvm);
880
881 vcpu_reset_hcr(vcpu);
882
883 /*
884 * Handle the "start in power-off" case.
885 */
886 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
887 vcpu->arch.power_off = true;
888 else
889 vcpu->arch.power_off = false;
890
891 return 0;
892 }
893
894 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
895 struct kvm_device_attr *attr)
896 {
897 int ret = -ENXIO;
898
899 switch (attr->group) {
900 default:
901 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
902 break;
903 }
904
905 return ret;
906 }
907
908 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
909 struct kvm_device_attr *attr)
910 {
911 int ret = -ENXIO;
912
913 switch (attr->group) {
914 default:
915 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
916 break;
917 }
918
919 return ret;
920 }
921
922 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
923 struct kvm_device_attr *attr)
924 {
925 int ret = -ENXIO;
926
927 switch (attr->group) {
928 default:
929 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
930 break;
931 }
932
933 return ret;
934 }
935
936 long kvm_arch_vcpu_ioctl(struct file *filp,
937 unsigned int ioctl, unsigned long arg)
938 {
939 struct kvm_vcpu *vcpu = filp->private_data;
940 void __user *argp = (void __user *)arg;
941 struct kvm_device_attr attr;
942
943 switch (ioctl) {
944 case KVM_ARM_VCPU_INIT: {
945 struct kvm_vcpu_init init;
946
947 if (copy_from_user(&init, argp, sizeof(init)))
948 return -EFAULT;
949
950 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
951 }
952 case KVM_SET_ONE_REG:
953 case KVM_GET_ONE_REG: {
954 struct kvm_one_reg reg;
955
956 if (unlikely(!kvm_vcpu_initialized(vcpu)))
957 return -ENOEXEC;
958
959 if (copy_from_user(&reg, argp, sizeof(reg)))
960 return -EFAULT;
961 if (ioctl == KVM_SET_ONE_REG)
962 return kvm_arm_set_reg(vcpu, &reg);
963 else
964 return kvm_arm_get_reg(vcpu, &reg);
965 }
966 case KVM_GET_REG_LIST: {
967 struct kvm_reg_list __user *user_list = argp;
968 struct kvm_reg_list reg_list;
969 unsigned n;
970
971 if (unlikely(!kvm_vcpu_initialized(vcpu)))
972 return -ENOEXEC;
973
974 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
975 return -EFAULT;
976 n = reg_list.n;
977 reg_list.n = kvm_arm_num_regs(vcpu);
978 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
979 return -EFAULT;
980 if (n < reg_list.n)
981 return -E2BIG;
982 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
983 }
984 case KVM_SET_DEVICE_ATTR: {
985 if (copy_from_user(&attr, argp, sizeof(attr)))
986 return -EFAULT;
987 return kvm_arm_vcpu_set_attr(vcpu, &attr);
988 }
989 case KVM_GET_DEVICE_ATTR: {
990 if (copy_from_user(&attr, argp, sizeof(attr)))
991 return -EFAULT;
992 return kvm_arm_vcpu_get_attr(vcpu, &attr);
993 }
994 case KVM_HAS_DEVICE_ATTR: {
995 if (copy_from_user(&attr, argp, sizeof(attr)))
996 return -EFAULT;
997 return kvm_arm_vcpu_has_attr(vcpu, &attr);
998 }
999 default:
1000 return -EINVAL;
1001 }
1002 }
1003
1004 /**
1005 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1006 * @kvm: kvm instance
1007 * @log: slot id and address to which we copy the log
1008 *
1009 * Steps 1-4 below provide general overview of dirty page logging. See
1010 * kvm_get_dirty_log_protect() function description for additional details.
1011 *
1012 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1013 * always flush the TLB (step 4) even if previous step failed and the dirty
1014 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1015 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1016 * writes will be marked dirty for next log read.
1017 *
1018 * 1. Take a snapshot of the bit and clear it if needed.
1019 * 2. Write protect the corresponding page.
1020 * 3. Copy the snapshot to the userspace.
1021 * 4. Flush TLB's if needed.
1022 */
1023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1024 {
1025 bool is_dirty = false;
1026 int r;
1027
1028 mutex_lock(&kvm->slots_lock);
1029
1030 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1031
1032 if (is_dirty)
1033 kvm_flush_remote_tlbs(kvm);
1034
1035 mutex_unlock(&kvm->slots_lock);
1036 return r;
1037 }
1038
1039 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1040 struct kvm_arm_device_addr *dev_addr)
1041 {
1042 unsigned long dev_id, type;
1043
1044 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1045 KVM_ARM_DEVICE_ID_SHIFT;
1046 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1047 KVM_ARM_DEVICE_TYPE_SHIFT;
1048
1049 switch (dev_id) {
1050 case KVM_ARM_DEVICE_VGIC_V2:
1051 if (!vgic_present)
1052 return -ENXIO;
1053 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1054 default:
1055 return -ENODEV;
1056 }
1057 }
1058
1059 long kvm_arch_vm_ioctl(struct file *filp,
1060 unsigned int ioctl, unsigned long arg)
1061 {
1062 struct kvm *kvm = filp->private_data;
1063 void __user *argp = (void __user *)arg;
1064
1065 switch (ioctl) {
1066 case KVM_CREATE_IRQCHIP: {
1067 int ret;
1068 if (!vgic_present)
1069 return -ENXIO;
1070 mutex_lock(&kvm->lock);
1071 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1072 mutex_unlock(&kvm->lock);
1073 return ret;
1074 }
1075 case KVM_ARM_SET_DEVICE_ADDR: {
1076 struct kvm_arm_device_addr dev_addr;
1077
1078 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1079 return -EFAULT;
1080 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1081 }
1082 case KVM_ARM_PREFERRED_TARGET: {
1083 int err;
1084 struct kvm_vcpu_init init;
1085
1086 err = kvm_vcpu_preferred_target(&init);
1087 if (err)
1088 return err;
1089
1090 if (copy_to_user(argp, &init, sizeof(init)))
1091 return -EFAULT;
1092
1093 return 0;
1094 }
1095 default:
1096 return -EINVAL;
1097 }
1098 }
1099
1100 static void cpu_init_hyp_mode(void *dummy)
1101 {
1102 phys_addr_t pgd_ptr;
1103 unsigned long hyp_stack_ptr;
1104 unsigned long stack_page;
1105 unsigned long vector_ptr;
1106
1107 /* Switch from the HYP stub to our own HYP init vector */
1108 __hyp_set_vectors(kvm_get_idmap_vector());
1109
1110 pgd_ptr = kvm_mmu_get_httbr();
1111 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1112 hyp_stack_ptr = stack_page + PAGE_SIZE;
1113 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1114
1115 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1116 __cpu_init_stage2();
1117
1118 if (is_kernel_in_hyp_mode())
1119 kvm_timer_init_vhe();
1120
1121 kvm_arm_init_debug();
1122 }
1123
1124 static void cpu_hyp_reset(void)
1125 {
1126 if (!is_kernel_in_hyp_mode())
1127 __hyp_reset_vectors();
1128 }
1129
1130 static void cpu_hyp_reinit(void)
1131 {
1132 cpu_hyp_reset();
1133
1134 if (is_kernel_in_hyp_mode()) {
1135 /*
1136 * __cpu_init_stage2() is safe to call even if the PM
1137 * event was cancelled before the CPU was reset.
1138 */
1139 __cpu_init_stage2();
1140 } else {
1141 cpu_init_hyp_mode(NULL);
1142 }
1143
1144 if (vgic_present)
1145 kvm_vgic_init_cpu_hardware();
1146 }
1147
1148 static void _kvm_arch_hardware_enable(void *discard)
1149 {
1150 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1151 cpu_hyp_reinit();
1152 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1153 }
1154 }
1155
1156 int kvm_arch_hardware_enable(void)
1157 {
1158 _kvm_arch_hardware_enable(NULL);
1159 return 0;
1160 }
1161
1162 static void _kvm_arch_hardware_disable(void *discard)
1163 {
1164 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1165 cpu_hyp_reset();
1166 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1167 }
1168 }
1169
1170 void kvm_arch_hardware_disable(void)
1171 {
1172 _kvm_arch_hardware_disable(NULL);
1173 }
1174
1175 #ifdef CONFIG_CPU_PM
1176 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1177 unsigned long cmd,
1178 void *v)
1179 {
1180 /*
1181 * kvm_arm_hardware_enabled is left with its old value over
1182 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1183 * re-enable hyp.
1184 */
1185 switch (cmd) {
1186 case CPU_PM_ENTER:
1187 if (__this_cpu_read(kvm_arm_hardware_enabled))
1188 /*
1189 * don't update kvm_arm_hardware_enabled here
1190 * so that the hardware will be re-enabled
1191 * when we resume. See below.
1192 */
1193 cpu_hyp_reset();
1194
1195 return NOTIFY_OK;
1196 case CPU_PM_EXIT:
1197 if (__this_cpu_read(kvm_arm_hardware_enabled))
1198 /* The hardware was enabled before suspend. */
1199 cpu_hyp_reinit();
1200
1201 return NOTIFY_OK;
1202
1203 default:
1204 return NOTIFY_DONE;
1205 }
1206 }
1207
1208 static struct notifier_block hyp_init_cpu_pm_nb = {
1209 .notifier_call = hyp_init_cpu_pm_notifier,
1210 };
1211
1212 static void __init hyp_cpu_pm_init(void)
1213 {
1214 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1215 }
1216 static void __init hyp_cpu_pm_exit(void)
1217 {
1218 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1219 }
1220 #else
1221 static inline void hyp_cpu_pm_init(void)
1222 {
1223 }
1224 static inline void hyp_cpu_pm_exit(void)
1225 {
1226 }
1227 #endif
1228
1229 static void teardown_common_resources(void)
1230 {
1231 free_percpu(kvm_host_cpu_state);
1232 }
1233
1234 static int init_common_resources(void)
1235 {
1236 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1237 if (!kvm_host_cpu_state) {
1238 kvm_err("Cannot allocate host CPU state\n");
1239 return -ENOMEM;
1240 }
1241
1242 /* set size of VMID supported by CPU */
1243 kvm_vmid_bits = kvm_get_vmid_bits();
1244 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1245
1246 return 0;
1247 }
1248
1249 static int init_subsystems(void)
1250 {
1251 int err = 0;
1252
1253 /*
1254 * Enable hardware so that subsystem initialisation can access EL2.
1255 */
1256 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1257
1258 /*
1259 * Register CPU lower-power notifier
1260 */
1261 hyp_cpu_pm_init();
1262
1263 /*
1264 * Init HYP view of VGIC
1265 */
1266 err = kvm_vgic_hyp_init();
1267 switch (err) {
1268 case 0:
1269 vgic_present = true;
1270 break;
1271 case -ENODEV:
1272 case -ENXIO:
1273 vgic_present = false;
1274 err = 0;
1275 break;
1276 default:
1277 goto out;
1278 }
1279
1280 /*
1281 * Init HYP architected timer support
1282 */
1283 err = kvm_timer_hyp_init();
1284 if (err)
1285 goto out;
1286
1287 kvm_perf_init();
1288 kvm_coproc_table_init();
1289
1290 out:
1291 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1292
1293 return err;
1294 }
1295
1296 static void teardown_hyp_mode(void)
1297 {
1298 int cpu;
1299
1300 if (is_kernel_in_hyp_mode())
1301 return;
1302
1303 free_hyp_pgds();
1304 for_each_possible_cpu(cpu)
1305 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1306 hyp_cpu_pm_exit();
1307 }
1308
1309 static int init_vhe_mode(void)
1310 {
1311 kvm_info("VHE mode initialized successfully\n");
1312 return 0;
1313 }
1314
1315 /**
1316 * Inits Hyp-mode on all online CPUs
1317 */
1318 static int init_hyp_mode(void)
1319 {
1320 int cpu;
1321 int err = 0;
1322
1323 /*
1324 * Allocate Hyp PGD and setup Hyp identity mapping
1325 */
1326 err = kvm_mmu_init();
1327 if (err)
1328 goto out_err;
1329
1330 /*
1331 * Allocate stack pages for Hypervisor-mode
1332 */
1333 for_each_possible_cpu(cpu) {
1334 unsigned long stack_page;
1335
1336 stack_page = __get_free_page(GFP_KERNEL);
1337 if (!stack_page) {
1338 err = -ENOMEM;
1339 goto out_err;
1340 }
1341
1342 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1343 }
1344
1345 /*
1346 * Map the Hyp-code called directly from the host
1347 */
1348 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1349 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1350 if (err) {
1351 kvm_err("Cannot map world-switch code\n");
1352 goto out_err;
1353 }
1354
1355 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1356 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1357 if (err) {
1358 kvm_err("Cannot map rodata section\n");
1359 goto out_err;
1360 }
1361
1362 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1363 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1364 if (err) {
1365 kvm_err("Cannot map bss section\n");
1366 goto out_err;
1367 }
1368
1369 /*
1370 * Map the Hyp stack pages
1371 */
1372 for_each_possible_cpu(cpu) {
1373 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1374 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1375 PAGE_HYP);
1376
1377 if (err) {
1378 kvm_err("Cannot map hyp stack\n");
1379 goto out_err;
1380 }
1381 }
1382
1383 for_each_possible_cpu(cpu) {
1384 kvm_cpu_context_t *cpu_ctxt;
1385
1386 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1387 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1388
1389 if (err) {
1390 kvm_err("Cannot map host CPU state: %d\n", err);
1391 goto out_err;
1392 }
1393 }
1394
1395 kvm_info("Hyp mode initialized successfully\n");
1396
1397 return 0;
1398
1399 out_err:
1400 teardown_hyp_mode();
1401 kvm_err("error initializing Hyp mode: %d\n", err);
1402 return err;
1403 }
1404
1405 static void check_kvm_target_cpu(void *ret)
1406 {
1407 *(int *)ret = kvm_target_cpu();
1408 }
1409
1410 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1411 {
1412 struct kvm_vcpu *vcpu;
1413 int i;
1414
1415 mpidr &= MPIDR_HWID_BITMASK;
1416 kvm_for_each_vcpu(i, vcpu, kvm) {
1417 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1418 return vcpu;
1419 }
1420 return NULL;
1421 }
1422
1423 /**
1424 * Initialize Hyp-mode and memory mappings on all CPUs.
1425 */
1426 int kvm_arch_init(void *opaque)
1427 {
1428 int err;
1429 int ret, cpu;
1430
1431 if (!is_hyp_mode_available()) {
1432 kvm_err("HYP mode not available\n");
1433 return -ENODEV;
1434 }
1435
1436 for_each_online_cpu(cpu) {
1437 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1438 if (ret < 0) {
1439 kvm_err("Error, CPU %d not supported!\n", cpu);
1440 return -ENODEV;
1441 }
1442 }
1443
1444 err = init_common_resources();
1445 if (err)
1446 return err;
1447
1448 if (is_kernel_in_hyp_mode())
1449 err = init_vhe_mode();
1450 else
1451 err = init_hyp_mode();
1452 if (err)
1453 goto out_err;
1454
1455 err = init_subsystems();
1456 if (err)
1457 goto out_hyp;
1458
1459 return 0;
1460
1461 out_hyp:
1462 teardown_hyp_mode();
1463 out_err:
1464 teardown_common_resources();
1465 return err;
1466 }
1467
1468 /* NOP: Compiling as a module not supported */
1469 void kvm_arch_exit(void)
1470 {
1471 kvm_perf_teardown();
1472 }
1473
1474 static int arm_init(void)
1475 {
1476 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1477 return rc;
1478 }
1479
1480 module_init(arm_init);