]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/arm.c
aea7ccb8d3970f236c34feb7d668c67bcb925b01
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension virt");
49 #endif
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 static unsigned long hyp_default_vectors;
54
55 /* Per-CPU variable containing the currently running vcpu. */
56 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u8 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 {
67 BUG_ON(preemptible());
68 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 }
70
71 /**
72 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
73 * Must be called from non-preemptible context
74 */
75 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 {
77 BUG_ON(preemptible());
78 return __this_cpu_read(kvm_arm_running_vcpu);
79 }
80
81 /**
82 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 */
84 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
85 {
86 return &kvm_arm_running_vcpu;
87 }
88
89 int kvm_arch_hardware_enable(void *garbage)
90 {
91 return 0;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 void kvm_arch_hardware_disable(void *garbage)
100 {
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_hardware_unsetup(void)
109 {
110 }
111
112 void kvm_arch_check_processor_compat(void *rtn)
113 {
114 *(int *)rtn = 0;
115 }
116
117 void kvm_arch_sync_events(struct kvm *kvm)
118 {
119 }
120
121 /**
122 * kvm_arch_init_vm - initializes a VM data structure
123 * @kvm: pointer to the KVM struct
124 */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127 int ret = 0;
128
129 if (type)
130 return -EINVAL;
131
132 ret = kvm_alloc_stage2_pgd(kvm);
133 if (ret)
134 goto out_fail_alloc;
135
136 ret = create_hyp_mappings(kvm, kvm + 1);
137 if (ret)
138 goto out_free_stage2_pgd;
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 return ret;
144 out_free_stage2_pgd:
145 kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147 return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152 return VM_FAULT_SIGBUS;
153 }
154
155 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
156 struct kvm_memory_slot *dont)
157 {
158 }
159
160 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
161 {
162 return 0;
163 }
164
165 /**
166 * kvm_arch_destroy_vm - destroy the VM data structure
167 * @kvm: pointer to the KVM struct
168 */
169 void kvm_arch_destroy_vm(struct kvm *kvm)
170 {
171 int i;
172
173 kvm_free_stage2_pgd(kvm);
174
175 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
176 if (kvm->vcpus[i]) {
177 kvm_arch_vcpu_free(kvm->vcpus[i]);
178 kvm->vcpus[i] = NULL;
179 }
180 }
181 }
182
183 int kvm_dev_ioctl_check_extension(long ext)
184 {
185 int r;
186 switch (ext) {
187 case KVM_CAP_IRQCHIP:
188 r = vgic_present;
189 break;
190 case KVM_CAP_USER_MEMORY:
191 case KVM_CAP_SYNC_MMU:
192 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
193 case KVM_CAP_ONE_REG:
194 case KVM_CAP_ARM_PSCI:
195 r = 1;
196 break;
197 case KVM_CAP_COALESCED_MMIO:
198 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
199 break;
200 case KVM_CAP_ARM_SET_DEVICE_ADDR:
201 r = 1;
202 break;
203 case KVM_CAP_NR_VCPUS:
204 r = num_online_cpus();
205 break;
206 case KVM_CAP_MAX_VCPUS:
207 r = KVM_MAX_VCPUS;
208 break;
209 default:
210 r = kvm_arch_dev_ioctl_check_extension(ext);
211 break;
212 }
213 return r;
214 }
215
216 long kvm_arch_dev_ioctl(struct file *filp,
217 unsigned int ioctl, unsigned long arg)
218 {
219 return -EINVAL;
220 }
221
222 void kvm_arch_memslots_updated(struct kvm *kvm)
223 {
224 }
225
226 int kvm_arch_prepare_memory_region(struct kvm *kvm,
227 struct kvm_memory_slot *memslot,
228 struct kvm_userspace_memory_region *mem,
229 enum kvm_mr_change change)
230 {
231 return 0;
232 }
233
234 void kvm_arch_commit_memory_region(struct kvm *kvm,
235 struct kvm_userspace_memory_region *mem,
236 const struct kvm_memory_slot *old,
237 enum kvm_mr_change change)
238 {
239 }
240
241 void kvm_arch_flush_shadow_all(struct kvm *kvm)
242 {
243 }
244
245 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
246 struct kvm_memory_slot *slot)
247 {
248 }
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252 int err;
253 struct kvm_vcpu *vcpu;
254
255 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
256 if (!vcpu) {
257 err = -ENOMEM;
258 goto out;
259 }
260
261 err = kvm_vcpu_init(vcpu, kvm, id);
262 if (err)
263 goto free_vcpu;
264
265 err = create_hyp_mappings(vcpu, vcpu + 1);
266 if (err)
267 goto vcpu_uninit;
268
269 return vcpu;
270 vcpu_uninit:
271 kvm_vcpu_uninit(vcpu);
272 free_vcpu:
273 kmem_cache_free(kvm_vcpu_cache, vcpu);
274 out:
275 return ERR_PTR(err);
276 }
277
278 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
279 {
280 return 0;
281 }
282
283 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
284 {
285 kvm_mmu_free_memory_caches(vcpu);
286 kvm_timer_vcpu_terminate(vcpu);
287 kmem_cache_free(kvm_vcpu_cache, vcpu);
288 }
289
290 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
291 {
292 kvm_arch_vcpu_free(vcpu);
293 }
294
295 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
296 {
297 return 0;
298 }
299
300 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
301 {
302 int ret;
303
304 /* Force users to call KVM_ARM_VCPU_INIT */
305 vcpu->arch.target = -1;
306
307 /* Set up VGIC */
308 ret = kvm_vgic_vcpu_init(vcpu);
309 if (ret)
310 return ret;
311
312 /* Set up the timer */
313 kvm_timer_vcpu_init(vcpu);
314
315 return 0;
316 }
317
318 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
319 {
320 }
321
322 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
323 {
324 vcpu->cpu = cpu;
325 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
326
327 /*
328 * Check whether this vcpu requires the cache to be flushed on
329 * this physical CPU. This is a consequence of doing dcache
330 * operations by set/way on this vcpu. We do it here to be in
331 * a non-preemptible section.
332 */
333 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
334 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
335
336 kvm_arm_set_running_vcpu(vcpu);
337 }
338
339 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
340 {
341 kvm_arm_set_running_vcpu(NULL);
342 }
343
344 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
345 struct kvm_guest_debug *dbg)
346 {
347 return -EINVAL;
348 }
349
350
351 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
352 struct kvm_mp_state *mp_state)
353 {
354 return -EINVAL;
355 }
356
357 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
358 struct kvm_mp_state *mp_state)
359 {
360 return -EINVAL;
361 }
362
363 /**
364 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
365 * @v: The VCPU pointer
366 *
367 * If the guest CPU is not waiting for interrupts or an interrupt line is
368 * asserted, the CPU is by definition runnable.
369 */
370 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
371 {
372 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
373 }
374
375 /* Just ensure a guest exit from a particular CPU */
376 static void exit_vm_noop(void *info)
377 {
378 }
379
380 void force_vm_exit(const cpumask_t *mask)
381 {
382 smp_call_function_many(mask, exit_vm_noop, NULL, true);
383 }
384
385 /**
386 * need_new_vmid_gen - check that the VMID is still valid
387 * @kvm: The VM's VMID to checkt
388 *
389 * return true if there is a new generation of VMIDs being used
390 *
391 * The hardware supports only 256 values with the value zero reserved for the
392 * host, so we check if an assigned value belongs to a previous generation,
393 * which which requires us to assign a new value. If we're the first to use a
394 * VMID for the new generation, we must flush necessary caches and TLBs on all
395 * CPUs.
396 */
397 static bool need_new_vmid_gen(struct kvm *kvm)
398 {
399 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
400 }
401
402 /**
403 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
404 * @kvm The guest that we are about to run
405 *
406 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
407 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
408 * caches and TLBs.
409 */
410 static void update_vttbr(struct kvm *kvm)
411 {
412 phys_addr_t pgd_phys;
413 u64 vmid;
414
415 if (!need_new_vmid_gen(kvm))
416 return;
417
418 spin_lock(&kvm_vmid_lock);
419
420 /*
421 * We need to re-check the vmid_gen here to ensure that if another vcpu
422 * already allocated a valid vmid for this vm, then this vcpu should
423 * use the same vmid.
424 */
425 if (!need_new_vmid_gen(kvm)) {
426 spin_unlock(&kvm_vmid_lock);
427 return;
428 }
429
430 /* First user of a new VMID generation? */
431 if (unlikely(kvm_next_vmid == 0)) {
432 atomic64_inc(&kvm_vmid_gen);
433 kvm_next_vmid = 1;
434
435 /*
436 * On SMP we know no other CPUs can use this CPU's or each
437 * other's VMID after force_vm_exit returns since the
438 * kvm_vmid_lock blocks them from reentry to the guest.
439 */
440 force_vm_exit(cpu_all_mask);
441 /*
442 * Now broadcast TLB + ICACHE invalidation over the inner
443 * shareable domain to make sure all data structures are
444 * clean.
445 */
446 kvm_call_hyp(__kvm_flush_vm_context);
447 }
448
449 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
450 kvm->arch.vmid = kvm_next_vmid;
451 kvm_next_vmid++;
452
453 /* update vttbr to be used with the new vmid */
454 pgd_phys = virt_to_phys(kvm->arch.pgd);
455 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
456 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
457 kvm->arch.vttbr |= vmid;
458
459 spin_unlock(&kvm_vmid_lock);
460 }
461
462 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
463 {
464 if (likely(vcpu->arch.has_run_once))
465 return 0;
466
467 vcpu->arch.has_run_once = true;
468
469 /*
470 * Initialize the VGIC before running a vcpu the first time on
471 * this VM.
472 */
473 if (irqchip_in_kernel(vcpu->kvm) &&
474 unlikely(!vgic_initialized(vcpu->kvm))) {
475 int ret = kvm_vgic_init(vcpu->kvm);
476 if (ret)
477 return ret;
478 }
479
480 /*
481 * Handle the "start in power-off" case by calling into the
482 * PSCI code.
483 */
484 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
485 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
486 kvm_psci_call(vcpu);
487 }
488
489 return 0;
490 }
491
492 static void vcpu_pause(struct kvm_vcpu *vcpu)
493 {
494 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
495
496 wait_event_interruptible(*wq, !vcpu->arch.pause);
497 }
498
499 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
500 {
501 return vcpu->arch.target >= 0;
502 }
503
504 /**
505 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
506 * @vcpu: The VCPU pointer
507 * @run: The kvm_run structure pointer used for userspace state exchange
508 *
509 * This function is called through the VCPU_RUN ioctl called from user space. It
510 * will execute VM code in a loop until the time slice for the process is used
511 * or some emulation is needed from user space in which case the function will
512 * return with return value 0 and with the kvm_run structure filled in with the
513 * required data for the requested emulation.
514 */
515 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
516 {
517 int ret;
518 sigset_t sigsaved;
519
520 if (unlikely(!kvm_vcpu_initialized(vcpu)))
521 return -ENOEXEC;
522
523 ret = kvm_vcpu_first_run_init(vcpu);
524 if (ret)
525 return ret;
526
527 if (run->exit_reason == KVM_EXIT_MMIO) {
528 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
529 if (ret)
530 return ret;
531 }
532
533 if (vcpu->sigset_active)
534 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
535
536 ret = 1;
537 run->exit_reason = KVM_EXIT_UNKNOWN;
538 while (ret > 0) {
539 /*
540 * Check conditions before entering the guest
541 */
542 cond_resched();
543
544 update_vttbr(vcpu->kvm);
545
546 if (vcpu->arch.pause)
547 vcpu_pause(vcpu);
548
549 kvm_vgic_flush_hwstate(vcpu);
550 kvm_timer_flush_hwstate(vcpu);
551
552 local_irq_disable();
553
554 /*
555 * Re-check atomic conditions
556 */
557 if (signal_pending(current)) {
558 ret = -EINTR;
559 run->exit_reason = KVM_EXIT_INTR;
560 }
561
562 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
563 local_irq_enable();
564 kvm_timer_sync_hwstate(vcpu);
565 kvm_vgic_sync_hwstate(vcpu);
566 continue;
567 }
568
569 /**************************************************************
570 * Enter the guest
571 */
572 trace_kvm_entry(*vcpu_pc(vcpu));
573 kvm_guest_enter();
574 vcpu->mode = IN_GUEST_MODE;
575
576 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
577
578 vcpu->mode = OUTSIDE_GUEST_MODE;
579 vcpu->arch.last_pcpu = smp_processor_id();
580 kvm_guest_exit();
581 trace_kvm_exit(*vcpu_pc(vcpu));
582 /*
583 * We may have taken a host interrupt in HYP mode (ie
584 * while executing the guest). This interrupt is still
585 * pending, as we haven't serviced it yet!
586 *
587 * We're now back in SVC mode, with interrupts
588 * disabled. Enabling the interrupts now will have
589 * the effect of taking the interrupt again, in SVC
590 * mode this time.
591 */
592 local_irq_enable();
593
594 /*
595 * Back from guest
596 *************************************************************/
597
598 kvm_timer_sync_hwstate(vcpu);
599 kvm_vgic_sync_hwstate(vcpu);
600
601 ret = handle_exit(vcpu, run, ret);
602 }
603
604 if (vcpu->sigset_active)
605 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
606 return ret;
607 }
608
609 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
610 {
611 int bit_index;
612 bool set;
613 unsigned long *ptr;
614
615 if (number == KVM_ARM_IRQ_CPU_IRQ)
616 bit_index = __ffs(HCR_VI);
617 else /* KVM_ARM_IRQ_CPU_FIQ */
618 bit_index = __ffs(HCR_VF);
619
620 ptr = (unsigned long *)&vcpu->arch.irq_lines;
621 if (level)
622 set = test_and_set_bit(bit_index, ptr);
623 else
624 set = test_and_clear_bit(bit_index, ptr);
625
626 /*
627 * If we didn't change anything, no need to wake up or kick other CPUs
628 */
629 if (set == level)
630 return 0;
631
632 /*
633 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
634 * trigger a world-switch round on the running physical CPU to set the
635 * virtual IRQ/FIQ fields in the HCR appropriately.
636 */
637 kvm_vcpu_kick(vcpu);
638
639 return 0;
640 }
641
642 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
643 bool line_status)
644 {
645 u32 irq = irq_level->irq;
646 unsigned int irq_type, vcpu_idx, irq_num;
647 int nrcpus = atomic_read(&kvm->online_vcpus);
648 struct kvm_vcpu *vcpu = NULL;
649 bool level = irq_level->level;
650
651 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
652 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
653 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
654
655 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
656
657 switch (irq_type) {
658 case KVM_ARM_IRQ_TYPE_CPU:
659 if (irqchip_in_kernel(kvm))
660 return -ENXIO;
661
662 if (vcpu_idx >= nrcpus)
663 return -EINVAL;
664
665 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
666 if (!vcpu)
667 return -EINVAL;
668
669 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
670 return -EINVAL;
671
672 return vcpu_interrupt_line(vcpu, irq_num, level);
673 case KVM_ARM_IRQ_TYPE_PPI:
674 if (!irqchip_in_kernel(kvm))
675 return -ENXIO;
676
677 if (vcpu_idx >= nrcpus)
678 return -EINVAL;
679
680 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
681 if (!vcpu)
682 return -EINVAL;
683
684 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
685 return -EINVAL;
686
687 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
688 case KVM_ARM_IRQ_TYPE_SPI:
689 if (!irqchip_in_kernel(kvm))
690 return -ENXIO;
691
692 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
693 irq_num > KVM_ARM_IRQ_GIC_MAX)
694 return -EINVAL;
695
696 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
697 }
698
699 return -EINVAL;
700 }
701
702 long kvm_arch_vcpu_ioctl(struct file *filp,
703 unsigned int ioctl, unsigned long arg)
704 {
705 struct kvm_vcpu *vcpu = filp->private_data;
706 void __user *argp = (void __user *)arg;
707
708 switch (ioctl) {
709 case KVM_ARM_VCPU_INIT: {
710 struct kvm_vcpu_init init;
711
712 if (copy_from_user(&init, argp, sizeof(init)))
713 return -EFAULT;
714
715 return kvm_vcpu_set_target(vcpu, &init);
716
717 }
718 case KVM_SET_ONE_REG:
719 case KVM_GET_ONE_REG: {
720 struct kvm_one_reg reg;
721
722 if (unlikely(!kvm_vcpu_initialized(vcpu)))
723 return -ENOEXEC;
724
725 if (copy_from_user(&reg, argp, sizeof(reg)))
726 return -EFAULT;
727 if (ioctl == KVM_SET_ONE_REG)
728 return kvm_arm_set_reg(vcpu, &reg);
729 else
730 return kvm_arm_get_reg(vcpu, &reg);
731 }
732 case KVM_GET_REG_LIST: {
733 struct kvm_reg_list __user *user_list = argp;
734 struct kvm_reg_list reg_list;
735 unsigned n;
736
737 if (unlikely(!kvm_vcpu_initialized(vcpu)))
738 return -ENOEXEC;
739
740 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
741 return -EFAULT;
742 n = reg_list.n;
743 reg_list.n = kvm_arm_num_regs(vcpu);
744 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
745 return -EFAULT;
746 if (n < reg_list.n)
747 return -E2BIG;
748 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
749 }
750 default:
751 return -EINVAL;
752 }
753 }
754
755 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
756 {
757 return -EINVAL;
758 }
759
760 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
761 struct kvm_arm_device_addr *dev_addr)
762 {
763 unsigned long dev_id, type;
764
765 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
766 KVM_ARM_DEVICE_ID_SHIFT;
767 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
768 KVM_ARM_DEVICE_TYPE_SHIFT;
769
770 switch (dev_id) {
771 case KVM_ARM_DEVICE_VGIC_V2:
772 if (!vgic_present)
773 return -ENXIO;
774 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
775 default:
776 return -ENODEV;
777 }
778 }
779
780 long kvm_arch_vm_ioctl(struct file *filp,
781 unsigned int ioctl, unsigned long arg)
782 {
783 struct kvm *kvm = filp->private_data;
784 void __user *argp = (void __user *)arg;
785
786 switch (ioctl) {
787 case KVM_CREATE_IRQCHIP: {
788 if (vgic_present)
789 return kvm_vgic_create(kvm);
790 else
791 return -ENXIO;
792 }
793 case KVM_ARM_SET_DEVICE_ADDR: {
794 struct kvm_arm_device_addr dev_addr;
795
796 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
797 return -EFAULT;
798 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
799 }
800 default:
801 return -EINVAL;
802 }
803 }
804
805 static void cpu_init_hyp_mode(void *dummy)
806 {
807 phys_addr_t boot_pgd_ptr;
808 phys_addr_t pgd_ptr;
809 unsigned long hyp_stack_ptr;
810 unsigned long stack_page;
811 unsigned long vector_ptr;
812
813 /* Switch from the HYP stub to our own HYP init vector */
814 __hyp_set_vectors(kvm_get_idmap_vector());
815
816 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
817 pgd_ptr = kvm_mmu_get_httbr();
818 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
819 hyp_stack_ptr = stack_page + PAGE_SIZE;
820 vector_ptr = (unsigned long)__kvm_hyp_vector;
821
822 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
823 }
824
825 static int hyp_init_cpu_notify(struct notifier_block *self,
826 unsigned long action, void *cpu)
827 {
828 switch (action) {
829 case CPU_STARTING:
830 case CPU_STARTING_FROZEN:
831 cpu_init_hyp_mode(NULL);
832 break;
833 }
834
835 return NOTIFY_OK;
836 }
837
838 static struct notifier_block hyp_init_cpu_nb = {
839 .notifier_call = hyp_init_cpu_notify,
840 };
841
842 /**
843 * Inits Hyp-mode on all online CPUs
844 */
845 static int init_hyp_mode(void)
846 {
847 int cpu;
848 int err = 0;
849
850 /*
851 * Allocate Hyp PGD and setup Hyp identity mapping
852 */
853 err = kvm_mmu_init();
854 if (err)
855 goto out_err;
856
857 /*
858 * It is probably enough to obtain the default on one
859 * CPU. It's unlikely to be different on the others.
860 */
861 hyp_default_vectors = __hyp_get_vectors();
862
863 /*
864 * Allocate stack pages for Hypervisor-mode
865 */
866 for_each_possible_cpu(cpu) {
867 unsigned long stack_page;
868
869 stack_page = __get_free_page(GFP_KERNEL);
870 if (!stack_page) {
871 err = -ENOMEM;
872 goto out_free_stack_pages;
873 }
874
875 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
876 }
877
878 /*
879 * Map the Hyp-code called directly from the host
880 */
881 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
882 if (err) {
883 kvm_err("Cannot map world-switch code\n");
884 goto out_free_mappings;
885 }
886
887 /*
888 * Map the Hyp stack pages
889 */
890 for_each_possible_cpu(cpu) {
891 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
892 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
893
894 if (err) {
895 kvm_err("Cannot map hyp stack\n");
896 goto out_free_mappings;
897 }
898 }
899
900 /*
901 * Map the host CPU structures
902 */
903 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
904 if (!kvm_host_cpu_state) {
905 err = -ENOMEM;
906 kvm_err("Cannot allocate host CPU state\n");
907 goto out_free_mappings;
908 }
909
910 for_each_possible_cpu(cpu) {
911 kvm_cpu_context_t *cpu_ctxt;
912
913 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
914 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
915
916 if (err) {
917 kvm_err("Cannot map host CPU state: %d\n", err);
918 goto out_free_context;
919 }
920 }
921
922 /*
923 * Execute the init code on each CPU.
924 */
925 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
926
927 /*
928 * Init HYP view of VGIC
929 */
930 err = kvm_vgic_hyp_init();
931 if (err)
932 goto out_free_context;
933
934 #ifdef CONFIG_KVM_ARM_VGIC
935 vgic_present = true;
936 #endif
937
938 /*
939 * Init HYP architected timer support
940 */
941 err = kvm_timer_hyp_init();
942 if (err)
943 goto out_free_mappings;
944
945 #ifndef CONFIG_HOTPLUG_CPU
946 free_boot_hyp_pgd();
947 #endif
948
949 kvm_perf_init();
950
951 kvm_info("Hyp mode initialized successfully\n");
952
953 return 0;
954 out_free_context:
955 free_percpu(kvm_host_cpu_state);
956 out_free_mappings:
957 free_hyp_pgds();
958 out_free_stack_pages:
959 for_each_possible_cpu(cpu)
960 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
961 out_err:
962 kvm_err("error initializing Hyp mode: %d\n", err);
963 return err;
964 }
965
966 static void check_kvm_target_cpu(void *ret)
967 {
968 *(int *)ret = kvm_target_cpu();
969 }
970
971 /**
972 * Initialize Hyp-mode and memory mappings on all CPUs.
973 */
974 int kvm_arch_init(void *opaque)
975 {
976 int err;
977 int ret, cpu;
978
979 if (!is_hyp_mode_available()) {
980 kvm_err("HYP mode not available\n");
981 return -ENODEV;
982 }
983
984 for_each_online_cpu(cpu) {
985 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
986 if (ret < 0) {
987 kvm_err("Error, CPU %d not supported!\n", cpu);
988 return -ENODEV;
989 }
990 }
991
992 err = init_hyp_mode();
993 if (err)
994 goto out_err;
995
996 err = register_cpu_notifier(&hyp_init_cpu_nb);
997 if (err) {
998 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
999 goto out_err;
1000 }
1001
1002 kvm_coproc_table_init();
1003 return 0;
1004 out_err:
1005 return err;
1006 }
1007
1008 /* NOP: Compiling as a module not supported */
1009 void kvm_arch_exit(void)
1010 {
1011 kvm_perf_teardown();
1012 }
1013
1014 static int arm_init(void)
1015 {
1016 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1017 return rc;
1018 }
1019
1020 module_init(arm_init);