]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/kvm/arm.c
arm: kvm: implement CPU PM notifier
[mirror_ubuntu-zesty-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
75 */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84 */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87 return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92 return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115 *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123 * kvm_arch_init_vm - initializes a VM data structure
124 * @kvm: pointer to the KVM struct
125 */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128 int ret = 0;
129
130 if (type)
131 return -EINVAL;
132
133 ret = kvm_alloc_stage2_pgd(kvm);
134 if (ret)
135 goto out_fail_alloc;
136
137 ret = create_hyp_mappings(kvm, kvm + 1);
138 if (ret)
139 goto out_free_stage2_pgd;
140
141 /* Mark the initial VMID generation invalid */
142 kvm->arch.vmid_gen = 0;
143
144 return ret;
145 out_free_stage2_pgd:
146 kvm_free_stage2_pgd(kvm);
147 out_fail_alloc:
148 return ret;
149 }
150
151 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
152 {
153 return VM_FAULT_SIGBUS;
154 }
155
156 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
157 struct kvm_memory_slot *dont)
158 {
159 }
160
161 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
162 unsigned long npages)
163 {
164 return 0;
165 }
166
167 /**
168 * kvm_arch_destroy_vm - destroy the VM data structure
169 * @kvm: pointer to the KVM struct
170 */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173 int i;
174
175 kvm_free_stage2_pgd(kvm);
176
177 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178 if (kvm->vcpus[i]) {
179 kvm_arch_vcpu_free(kvm->vcpus[i]);
180 kvm->vcpus[i] = NULL;
181 }
182 }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187 int r;
188 switch (ext) {
189 case KVM_CAP_IRQCHIP:
190 r = vgic_present;
191 break;
192 case KVM_CAP_USER_MEMORY:
193 case KVM_CAP_SYNC_MMU:
194 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195 case KVM_CAP_ONE_REG:
196 case KVM_CAP_ARM_PSCI:
197 r = 1;
198 break;
199 case KVM_CAP_COALESCED_MMIO:
200 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201 break;
202 case KVM_CAP_ARM_SET_DEVICE_ADDR:
203 r = 1;
204 break;
205 case KVM_CAP_NR_VCPUS:
206 r = num_online_cpus();
207 break;
208 case KVM_CAP_MAX_VCPUS:
209 r = KVM_MAX_VCPUS;
210 break;
211 default:
212 r = kvm_arch_dev_ioctl_check_extension(ext);
213 break;
214 }
215 return r;
216 }
217
218 long kvm_arch_dev_ioctl(struct file *filp,
219 unsigned int ioctl, unsigned long arg)
220 {
221 return -EINVAL;
222 }
223
224 void kvm_arch_memslots_updated(struct kvm *kvm)
225 {
226 }
227
228 int kvm_arch_prepare_memory_region(struct kvm *kvm,
229 struct kvm_memory_slot *memslot,
230 struct kvm_userspace_memory_region *mem,
231 enum kvm_mr_change change)
232 {
233 return 0;
234 }
235
236 void kvm_arch_commit_memory_region(struct kvm *kvm,
237 struct kvm_userspace_memory_region *mem,
238 const struct kvm_memory_slot *old,
239 enum kvm_mr_change change)
240 {
241 }
242
243 void kvm_arch_flush_shadow_all(struct kvm *kvm)
244 {
245 }
246
247 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
248 struct kvm_memory_slot *slot)
249 {
250 }
251
252 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
253 {
254 int err;
255 struct kvm_vcpu *vcpu;
256
257 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
258 if (!vcpu) {
259 err = -ENOMEM;
260 goto out;
261 }
262
263 err = kvm_vcpu_init(vcpu, kvm, id);
264 if (err)
265 goto free_vcpu;
266
267 err = create_hyp_mappings(vcpu, vcpu + 1);
268 if (err)
269 goto vcpu_uninit;
270
271 return vcpu;
272 vcpu_uninit:
273 kvm_vcpu_uninit(vcpu);
274 free_vcpu:
275 kmem_cache_free(kvm_vcpu_cache, vcpu);
276 out:
277 return ERR_PTR(err);
278 }
279
280 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
281 {
282 return 0;
283 }
284
285 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
286 {
287 kvm_mmu_free_memory_caches(vcpu);
288 kvm_timer_vcpu_terminate(vcpu);
289 kmem_cache_free(kvm_vcpu_cache, vcpu);
290 }
291
292 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
293 {
294 kvm_arch_vcpu_free(vcpu);
295 }
296
297 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
298 {
299 return 0;
300 }
301
302 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
303 {
304 int ret;
305
306 /* Force users to call KVM_ARM_VCPU_INIT */
307 vcpu->arch.target = -1;
308
309 /* Set up VGIC */
310 ret = kvm_vgic_vcpu_init(vcpu);
311 if (ret)
312 return ret;
313
314 /* Set up the timer */
315 kvm_timer_vcpu_init(vcpu);
316
317 return 0;
318 }
319
320 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
321 {
322 }
323
324 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
325 {
326 vcpu->cpu = cpu;
327 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
328
329 /*
330 * Check whether this vcpu requires the cache to be flushed on
331 * this physical CPU. This is a consequence of doing dcache
332 * operations by set/way on this vcpu. We do it here to be in
333 * a non-preemptible section.
334 */
335 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
336 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
337
338 kvm_arm_set_running_vcpu(vcpu);
339 }
340
341 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
342 {
343 kvm_arm_set_running_vcpu(NULL);
344 }
345
346 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
347 struct kvm_guest_debug *dbg)
348 {
349 return -EINVAL;
350 }
351
352
353 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
354 struct kvm_mp_state *mp_state)
355 {
356 return -EINVAL;
357 }
358
359 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
360 struct kvm_mp_state *mp_state)
361 {
362 return -EINVAL;
363 }
364
365 /**
366 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
367 * @v: The VCPU pointer
368 *
369 * If the guest CPU is not waiting for interrupts or an interrupt line is
370 * asserted, the CPU is by definition runnable.
371 */
372 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
373 {
374 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
375 }
376
377 /* Just ensure a guest exit from a particular CPU */
378 static void exit_vm_noop(void *info)
379 {
380 }
381
382 void force_vm_exit(const cpumask_t *mask)
383 {
384 smp_call_function_many(mask, exit_vm_noop, NULL, true);
385 }
386
387 /**
388 * need_new_vmid_gen - check that the VMID is still valid
389 * @kvm: The VM's VMID to checkt
390 *
391 * return true if there is a new generation of VMIDs being used
392 *
393 * The hardware supports only 256 values with the value zero reserved for the
394 * host, so we check if an assigned value belongs to a previous generation,
395 * which which requires us to assign a new value. If we're the first to use a
396 * VMID for the new generation, we must flush necessary caches and TLBs on all
397 * CPUs.
398 */
399 static bool need_new_vmid_gen(struct kvm *kvm)
400 {
401 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
402 }
403
404 /**
405 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
406 * @kvm The guest that we are about to run
407 *
408 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
409 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
410 * caches and TLBs.
411 */
412 static void update_vttbr(struct kvm *kvm)
413 {
414 phys_addr_t pgd_phys;
415 u64 vmid;
416
417 if (!need_new_vmid_gen(kvm))
418 return;
419
420 spin_lock(&kvm_vmid_lock);
421
422 /*
423 * We need to re-check the vmid_gen here to ensure that if another vcpu
424 * already allocated a valid vmid for this vm, then this vcpu should
425 * use the same vmid.
426 */
427 if (!need_new_vmid_gen(kvm)) {
428 spin_unlock(&kvm_vmid_lock);
429 return;
430 }
431
432 /* First user of a new VMID generation? */
433 if (unlikely(kvm_next_vmid == 0)) {
434 atomic64_inc(&kvm_vmid_gen);
435 kvm_next_vmid = 1;
436
437 /*
438 * On SMP we know no other CPUs can use this CPU's or each
439 * other's VMID after force_vm_exit returns since the
440 * kvm_vmid_lock blocks them from reentry to the guest.
441 */
442 force_vm_exit(cpu_all_mask);
443 /*
444 * Now broadcast TLB + ICACHE invalidation over the inner
445 * shareable domain to make sure all data structures are
446 * clean.
447 */
448 kvm_call_hyp(__kvm_flush_vm_context);
449 }
450
451 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
452 kvm->arch.vmid = kvm_next_vmid;
453 kvm_next_vmid++;
454
455 /* update vttbr to be used with the new vmid */
456 pgd_phys = virt_to_phys(kvm->arch.pgd);
457 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
458 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
459 kvm->arch.vttbr |= vmid;
460
461 spin_unlock(&kvm_vmid_lock);
462 }
463
464 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
465 {
466 if (likely(vcpu->arch.has_run_once))
467 return 0;
468
469 vcpu->arch.has_run_once = true;
470
471 /*
472 * Initialize the VGIC before running a vcpu the first time on
473 * this VM.
474 */
475 if (irqchip_in_kernel(vcpu->kvm) &&
476 unlikely(!vgic_initialized(vcpu->kvm))) {
477 int ret = kvm_vgic_init(vcpu->kvm);
478 if (ret)
479 return ret;
480 }
481
482 /*
483 * Handle the "start in power-off" case by calling into the
484 * PSCI code.
485 */
486 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
487 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
488 kvm_psci_call(vcpu);
489 }
490
491 return 0;
492 }
493
494 static void vcpu_pause(struct kvm_vcpu *vcpu)
495 {
496 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
497
498 wait_event_interruptible(*wq, !vcpu->arch.pause);
499 }
500
501 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
502 {
503 return vcpu->arch.target >= 0;
504 }
505
506 /**
507 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
508 * @vcpu: The VCPU pointer
509 * @run: The kvm_run structure pointer used for userspace state exchange
510 *
511 * This function is called through the VCPU_RUN ioctl called from user space. It
512 * will execute VM code in a loop until the time slice for the process is used
513 * or some emulation is needed from user space in which case the function will
514 * return with return value 0 and with the kvm_run structure filled in with the
515 * required data for the requested emulation.
516 */
517 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
518 {
519 int ret;
520 sigset_t sigsaved;
521
522 if (unlikely(!kvm_vcpu_initialized(vcpu)))
523 return -ENOEXEC;
524
525 ret = kvm_vcpu_first_run_init(vcpu);
526 if (ret)
527 return ret;
528
529 if (run->exit_reason == KVM_EXIT_MMIO) {
530 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
531 if (ret)
532 return ret;
533 }
534
535 if (vcpu->sigset_active)
536 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
537
538 ret = 1;
539 run->exit_reason = KVM_EXIT_UNKNOWN;
540 while (ret > 0) {
541 /*
542 * Check conditions before entering the guest
543 */
544 cond_resched();
545
546 update_vttbr(vcpu->kvm);
547
548 if (vcpu->arch.pause)
549 vcpu_pause(vcpu);
550
551 kvm_vgic_flush_hwstate(vcpu);
552 kvm_timer_flush_hwstate(vcpu);
553
554 local_irq_disable();
555
556 /*
557 * Re-check atomic conditions
558 */
559 if (signal_pending(current)) {
560 ret = -EINTR;
561 run->exit_reason = KVM_EXIT_INTR;
562 }
563
564 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
565 local_irq_enable();
566 kvm_timer_sync_hwstate(vcpu);
567 kvm_vgic_sync_hwstate(vcpu);
568 continue;
569 }
570
571 /**************************************************************
572 * Enter the guest
573 */
574 trace_kvm_entry(*vcpu_pc(vcpu));
575 kvm_guest_enter();
576 vcpu->mode = IN_GUEST_MODE;
577
578 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
579
580 vcpu->mode = OUTSIDE_GUEST_MODE;
581 vcpu->arch.last_pcpu = smp_processor_id();
582 kvm_guest_exit();
583 trace_kvm_exit(*vcpu_pc(vcpu));
584 /*
585 * We may have taken a host interrupt in HYP mode (ie
586 * while executing the guest). This interrupt is still
587 * pending, as we haven't serviced it yet!
588 *
589 * We're now back in SVC mode, with interrupts
590 * disabled. Enabling the interrupts now will have
591 * the effect of taking the interrupt again, in SVC
592 * mode this time.
593 */
594 local_irq_enable();
595
596 /*
597 * Back from guest
598 *************************************************************/
599
600 kvm_timer_sync_hwstate(vcpu);
601 kvm_vgic_sync_hwstate(vcpu);
602
603 ret = handle_exit(vcpu, run, ret);
604 }
605
606 if (vcpu->sigset_active)
607 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
608 return ret;
609 }
610
611 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
612 {
613 int bit_index;
614 bool set;
615 unsigned long *ptr;
616
617 if (number == KVM_ARM_IRQ_CPU_IRQ)
618 bit_index = __ffs(HCR_VI);
619 else /* KVM_ARM_IRQ_CPU_FIQ */
620 bit_index = __ffs(HCR_VF);
621
622 ptr = (unsigned long *)&vcpu->arch.irq_lines;
623 if (level)
624 set = test_and_set_bit(bit_index, ptr);
625 else
626 set = test_and_clear_bit(bit_index, ptr);
627
628 /*
629 * If we didn't change anything, no need to wake up or kick other CPUs
630 */
631 if (set == level)
632 return 0;
633
634 /*
635 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
636 * trigger a world-switch round on the running physical CPU to set the
637 * virtual IRQ/FIQ fields in the HCR appropriately.
638 */
639 kvm_vcpu_kick(vcpu);
640
641 return 0;
642 }
643
644 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
645 bool line_status)
646 {
647 u32 irq = irq_level->irq;
648 unsigned int irq_type, vcpu_idx, irq_num;
649 int nrcpus = atomic_read(&kvm->online_vcpus);
650 struct kvm_vcpu *vcpu = NULL;
651 bool level = irq_level->level;
652
653 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
654 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
655 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
656
657 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
658
659 switch (irq_type) {
660 case KVM_ARM_IRQ_TYPE_CPU:
661 if (irqchip_in_kernel(kvm))
662 return -ENXIO;
663
664 if (vcpu_idx >= nrcpus)
665 return -EINVAL;
666
667 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
668 if (!vcpu)
669 return -EINVAL;
670
671 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
672 return -EINVAL;
673
674 return vcpu_interrupt_line(vcpu, irq_num, level);
675 case KVM_ARM_IRQ_TYPE_PPI:
676 if (!irqchip_in_kernel(kvm))
677 return -ENXIO;
678
679 if (vcpu_idx >= nrcpus)
680 return -EINVAL;
681
682 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
683 if (!vcpu)
684 return -EINVAL;
685
686 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
687 return -EINVAL;
688
689 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
690 case KVM_ARM_IRQ_TYPE_SPI:
691 if (!irqchip_in_kernel(kvm))
692 return -ENXIO;
693
694 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
695 irq_num > KVM_ARM_IRQ_GIC_MAX)
696 return -EINVAL;
697
698 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
699 }
700
701 return -EINVAL;
702 }
703
704 long kvm_arch_vcpu_ioctl(struct file *filp,
705 unsigned int ioctl, unsigned long arg)
706 {
707 struct kvm_vcpu *vcpu = filp->private_data;
708 void __user *argp = (void __user *)arg;
709
710 switch (ioctl) {
711 case KVM_ARM_VCPU_INIT: {
712 struct kvm_vcpu_init init;
713
714 if (copy_from_user(&init, argp, sizeof(init)))
715 return -EFAULT;
716
717 return kvm_vcpu_set_target(vcpu, &init);
718
719 }
720 case KVM_SET_ONE_REG:
721 case KVM_GET_ONE_REG: {
722 struct kvm_one_reg reg;
723
724 if (unlikely(!kvm_vcpu_initialized(vcpu)))
725 return -ENOEXEC;
726
727 if (copy_from_user(&reg, argp, sizeof(reg)))
728 return -EFAULT;
729 if (ioctl == KVM_SET_ONE_REG)
730 return kvm_arm_set_reg(vcpu, &reg);
731 else
732 return kvm_arm_get_reg(vcpu, &reg);
733 }
734 case KVM_GET_REG_LIST: {
735 struct kvm_reg_list __user *user_list = argp;
736 struct kvm_reg_list reg_list;
737 unsigned n;
738
739 if (unlikely(!kvm_vcpu_initialized(vcpu)))
740 return -ENOEXEC;
741
742 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
743 return -EFAULT;
744 n = reg_list.n;
745 reg_list.n = kvm_arm_num_regs(vcpu);
746 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
747 return -EFAULT;
748 if (n < reg_list.n)
749 return -E2BIG;
750 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
751 }
752 default:
753 return -EINVAL;
754 }
755 }
756
757 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
758 {
759 return -EINVAL;
760 }
761
762 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
763 struct kvm_arm_device_addr *dev_addr)
764 {
765 unsigned long dev_id, type;
766
767 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
768 KVM_ARM_DEVICE_ID_SHIFT;
769 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
770 KVM_ARM_DEVICE_TYPE_SHIFT;
771
772 switch (dev_id) {
773 case KVM_ARM_DEVICE_VGIC_V2:
774 if (!vgic_present)
775 return -ENXIO;
776 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
777 default:
778 return -ENODEV;
779 }
780 }
781
782 long kvm_arch_vm_ioctl(struct file *filp,
783 unsigned int ioctl, unsigned long arg)
784 {
785 struct kvm *kvm = filp->private_data;
786 void __user *argp = (void __user *)arg;
787
788 switch (ioctl) {
789 case KVM_CREATE_IRQCHIP: {
790 if (vgic_present)
791 return kvm_vgic_create(kvm);
792 else
793 return -ENXIO;
794 }
795 case KVM_ARM_SET_DEVICE_ADDR: {
796 struct kvm_arm_device_addr dev_addr;
797
798 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
799 return -EFAULT;
800 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
801 }
802 case KVM_ARM_PREFERRED_TARGET: {
803 int err;
804 struct kvm_vcpu_init init;
805
806 err = kvm_vcpu_preferred_target(&init);
807 if (err)
808 return err;
809
810 if (copy_to_user(argp, &init, sizeof(init)))
811 return -EFAULT;
812
813 return 0;
814 }
815 default:
816 return -EINVAL;
817 }
818 }
819
820 static void cpu_init_hyp_mode(void *dummy)
821 {
822 phys_addr_t boot_pgd_ptr;
823 phys_addr_t pgd_ptr;
824 unsigned long hyp_stack_ptr;
825 unsigned long stack_page;
826 unsigned long vector_ptr;
827
828 /* Switch from the HYP stub to our own HYP init vector */
829 __hyp_set_vectors(kvm_get_idmap_vector());
830
831 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
832 pgd_ptr = kvm_mmu_get_httbr();
833 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
834 hyp_stack_ptr = stack_page + PAGE_SIZE;
835 vector_ptr = (unsigned long)__kvm_hyp_vector;
836
837 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
838 }
839
840 static int hyp_init_cpu_notify(struct notifier_block *self,
841 unsigned long action, void *cpu)
842 {
843 switch (action) {
844 case CPU_STARTING:
845 case CPU_STARTING_FROZEN:
846 cpu_init_hyp_mode(NULL);
847 break;
848 }
849
850 return NOTIFY_OK;
851 }
852
853 static struct notifier_block hyp_init_cpu_nb = {
854 .notifier_call = hyp_init_cpu_notify,
855 };
856
857 #ifdef CONFIG_CPU_PM
858 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
859 unsigned long cmd,
860 void *v)
861 {
862 if (cmd == CPU_PM_EXIT) {
863 cpu_init_hyp_mode(NULL);
864 return NOTIFY_OK;
865 }
866
867 return NOTIFY_DONE;
868 }
869
870 static struct notifier_block hyp_init_cpu_pm_nb = {
871 .notifier_call = hyp_init_cpu_pm_notifier,
872 };
873
874 static void __init hyp_cpu_pm_init(void)
875 {
876 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
877 }
878 #else
879 static inline void hyp_cpu_pm_init(void)
880 {
881 }
882 #endif
883
884 /**
885 * Inits Hyp-mode on all online CPUs
886 */
887 static int init_hyp_mode(void)
888 {
889 int cpu;
890 int err = 0;
891
892 /*
893 * Allocate Hyp PGD and setup Hyp identity mapping
894 */
895 err = kvm_mmu_init();
896 if (err)
897 goto out_err;
898
899 /*
900 * It is probably enough to obtain the default on one
901 * CPU. It's unlikely to be different on the others.
902 */
903 hyp_default_vectors = __hyp_get_vectors();
904
905 /*
906 * Allocate stack pages for Hypervisor-mode
907 */
908 for_each_possible_cpu(cpu) {
909 unsigned long stack_page;
910
911 stack_page = __get_free_page(GFP_KERNEL);
912 if (!stack_page) {
913 err = -ENOMEM;
914 goto out_free_stack_pages;
915 }
916
917 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
918 }
919
920 /*
921 * Map the Hyp-code called directly from the host
922 */
923 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
924 if (err) {
925 kvm_err("Cannot map world-switch code\n");
926 goto out_free_mappings;
927 }
928
929 /*
930 * Map the Hyp stack pages
931 */
932 for_each_possible_cpu(cpu) {
933 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
934 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
935
936 if (err) {
937 kvm_err("Cannot map hyp stack\n");
938 goto out_free_mappings;
939 }
940 }
941
942 /*
943 * Map the host CPU structures
944 */
945 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
946 if (!kvm_host_cpu_state) {
947 err = -ENOMEM;
948 kvm_err("Cannot allocate host CPU state\n");
949 goto out_free_mappings;
950 }
951
952 for_each_possible_cpu(cpu) {
953 kvm_cpu_context_t *cpu_ctxt;
954
955 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
956 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
957
958 if (err) {
959 kvm_err("Cannot map host CPU state: %d\n", err);
960 goto out_free_context;
961 }
962 }
963
964 /*
965 * Execute the init code on each CPU.
966 */
967 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
968
969 /*
970 * Init HYP view of VGIC
971 */
972 err = kvm_vgic_hyp_init();
973 if (err)
974 goto out_free_context;
975
976 #ifdef CONFIG_KVM_ARM_VGIC
977 vgic_present = true;
978 #endif
979
980 /*
981 * Init HYP architected timer support
982 */
983 err = kvm_timer_hyp_init();
984 if (err)
985 goto out_free_mappings;
986
987 #ifndef CONFIG_HOTPLUG_CPU
988 free_boot_hyp_pgd();
989 #endif
990
991 kvm_perf_init();
992
993 kvm_info("Hyp mode initialized successfully\n");
994
995 return 0;
996 out_free_context:
997 free_percpu(kvm_host_cpu_state);
998 out_free_mappings:
999 free_hyp_pgds();
1000 out_free_stack_pages:
1001 for_each_possible_cpu(cpu)
1002 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1003 out_err:
1004 kvm_err("error initializing Hyp mode: %d\n", err);
1005 return err;
1006 }
1007
1008 static void check_kvm_target_cpu(void *ret)
1009 {
1010 *(int *)ret = kvm_target_cpu();
1011 }
1012
1013 /**
1014 * Initialize Hyp-mode and memory mappings on all CPUs.
1015 */
1016 int kvm_arch_init(void *opaque)
1017 {
1018 int err;
1019 int ret, cpu;
1020
1021 if (!is_hyp_mode_available()) {
1022 kvm_err("HYP mode not available\n");
1023 return -ENODEV;
1024 }
1025
1026 for_each_online_cpu(cpu) {
1027 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1028 if (ret < 0) {
1029 kvm_err("Error, CPU %d not supported!\n", cpu);
1030 return -ENODEV;
1031 }
1032 }
1033
1034 err = init_hyp_mode();
1035 if (err)
1036 goto out_err;
1037
1038 err = register_cpu_notifier(&hyp_init_cpu_nb);
1039 if (err) {
1040 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1041 goto out_err;
1042 }
1043
1044 hyp_cpu_pm_init();
1045
1046 kvm_coproc_table_init();
1047 return 0;
1048 out_err:
1049 return err;
1050 }
1051
1052 /* NOP: Compiling as a module not supported */
1053 void kvm_arch_exit(void)
1054 {
1055 kvm_perf_teardown();
1056 }
1057
1058 static int arm_init(void)
1059 {
1060 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1061 return rc;
1062 }
1063
1064 module_init(arm_init);