]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm/kvm/arm.c
ASoC: cs4271: configure reset GPIO as output
[mirror_ubuntu-eoan-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
70
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
72 {
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 /**
78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79 * Must be called from non-preemptible context
80 */
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
82 {
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu);
85 }
86
87 /**
88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89 */
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
91 {
92 return &kvm_arm_running_vcpu;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret, cpu;
118
119 if (type)
120 return -EINVAL;
121
122 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123 if (!kvm->arch.last_vcpu_ran)
124 return -ENOMEM;
125
126 for_each_possible_cpu(cpu)
127 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
128
129 ret = kvm_alloc_stage2_pgd(kvm);
130 if (ret)
131 goto out_fail_alloc;
132
133 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 if (ret)
135 goto out_free_stage2_pgd;
136
137 kvm_vgic_early_init(kvm);
138
139 /* Mark the initial VMID generation invalid */
140 kvm->arch.vmid_gen = 0;
141
142 /* The maximum number of VCPUs is limited by the host's GIC model */
143 kvm->arch.max_vcpus = vgic_present ?
144 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
145
146 return ret;
147 out_free_stage2_pgd:
148 kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150 free_percpu(kvm->arch.last_vcpu_ran);
151 kvm->arch.last_vcpu_ran = NULL;
152 return ret;
153 }
154
155 bool kvm_arch_has_vcpu_debugfs(void)
156 {
157 return false;
158 }
159
160 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
161 {
162 return 0;
163 }
164
165 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
166 {
167 return VM_FAULT_SIGBUS;
168 }
169
170
171 /**
172 * kvm_arch_destroy_vm - destroy the VM data structure
173 * @kvm: pointer to the KVM struct
174 */
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177 int i;
178
179 free_percpu(kvm->arch.last_vcpu_ran);
180 kvm->arch.last_vcpu_ran = NULL;
181
182 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
183 if (kvm->vcpus[i]) {
184 kvm_arch_vcpu_free(kvm->vcpus[i]);
185 kvm->vcpus[i] = NULL;
186 }
187 }
188
189 kvm_vgic_destroy(kvm);
190 }
191
192 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
193 {
194 int r;
195 switch (ext) {
196 case KVM_CAP_IRQCHIP:
197 r = vgic_present;
198 break;
199 case KVM_CAP_IOEVENTFD:
200 case KVM_CAP_DEVICE_CTRL:
201 case KVM_CAP_USER_MEMORY:
202 case KVM_CAP_SYNC_MMU:
203 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
204 case KVM_CAP_ONE_REG:
205 case KVM_CAP_ARM_PSCI:
206 case KVM_CAP_ARM_PSCI_0_2:
207 case KVM_CAP_READONLY_MEM:
208 case KVM_CAP_MP_STATE:
209 case KVM_CAP_IMMEDIATE_EXIT:
210 r = 1;
211 break;
212 case KVM_CAP_COALESCED_MMIO:
213 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214 break;
215 case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 r = 1;
217 break;
218 case KVM_CAP_NR_VCPUS:
219 r = num_online_cpus();
220 break;
221 case KVM_CAP_MAX_VCPUS:
222 r = KVM_MAX_VCPUS;
223 break;
224 case KVM_CAP_MSI_DEVID:
225 if (!kvm)
226 r = -EINVAL;
227 else
228 r = kvm->arch.vgic.msis_require_devid;
229 break;
230 default:
231 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
232 break;
233 }
234 return r;
235 }
236
237 long kvm_arch_dev_ioctl(struct file *filp,
238 unsigned int ioctl, unsigned long arg)
239 {
240 return -EINVAL;
241 }
242
243
244 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
245 {
246 int err;
247 struct kvm_vcpu *vcpu;
248
249 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
250 err = -EBUSY;
251 goto out;
252 }
253
254 if (id >= kvm->arch.max_vcpus) {
255 err = -EINVAL;
256 goto out;
257 }
258
259 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
260 if (!vcpu) {
261 err = -ENOMEM;
262 goto out;
263 }
264
265 err = kvm_vcpu_init(vcpu, kvm, id);
266 if (err)
267 goto free_vcpu;
268
269 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
270 if (err)
271 goto vcpu_uninit;
272
273 return vcpu;
274 vcpu_uninit:
275 kvm_vcpu_uninit(vcpu);
276 free_vcpu:
277 kmem_cache_free(kvm_vcpu_cache, vcpu);
278 out:
279 return ERR_PTR(err);
280 }
281
282 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
283 {
284 kvm_vgic_vcpu_early_init(vcpu);
285 }
286
287 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
288 {
289 kvm_mmu_free_memory_caches(vcpu);
290 kvm_timer_vcpu_terminate(vcpu);
291 kvm_vgic_vcpu_destroy(vcpu);
292 kvm_pmu_vcpu_destroy(vcpu);
293 kvm_vcpu_uninit(vcpu);
294 kmem_cache_free(kvm_vcpu_cache, vcpu);
295 }
296
297 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
298 {
299 kvm_arch_vcpu_free(vcpu);
300 }
301
302 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
303 {
304 return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
305 kvm_timer_should_fire(vcpu_ptimer(vcpu));
306 }
307
308 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
309 {
310 kvm_timer_schedule(vcpu);
311 }
312
313 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
314 {
315 kvm_timer_unschedule(vcpu);
316 }
317
318 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
319 {
320 /* Force users to call KVM_ARM_VCPU_INIT */
321 vcpu->arch.target = -1;
322 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
323
324 /* Set up the timer */
325 kvm_timer_vcpu_init(vcpu);
326
327 kvm_arm_reset_debug_ptr(vcpu);
328
329 return 0;
330 }
331
332 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
333 {
334 int *last_ran;
335
336 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
337
338 /*
339 * We might get preempted before the vCPU actually runs, but
340 * over-invalidation doesn't affect correctness.
341 */
342 if (*last_ran != vcpu->vcpu_id) {
343 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
344 *last_ran = vcpu->vcpu_id;
345 }
346
347 vcpu->cpu = cpu;
348 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
349
350 kvm_arm_set_running_vcpu(vcpu);
351 }
352
353 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
354 {
355 /*
356 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
357 * if the vcpu is no longer assigned to a cpu. This is used for the
358 * optimized make_all_cpus_request path.
359 */
360 vcpu->cpu = -1;
361
362 kvm_arm_set_running_vcpu(NULL);
363 kvm_timer_vcpu_put(vcpu);
364 }
365
366 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
367 struct kvm_mp_state *mp_state)
368 {
369 if (vcpu->arch.power_off)
370 mp_state->mp_state = KVM_MP_STATE_STOPPED;
371 else
372 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
373
374 return 0;
375 }
376
377 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
378 struct kvm_mp_state *mp_state)
379 {
380 switch (mp_state->mp_state) {
381 case KVM_MP_STATE_RUNNABLE:
382 vcpu->arch.power_off = false;
383 break;
384 case KVM_MP_STATE_STOPPED:
385 vcpu->arch.power_off = true;
386 break;
387 default:
388 return -EINVAL;
389 }
390
391 return 0;
392 }
393
394 /**
395 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
396 * @v: The VCPU pointer
397 *
398 * If the guest CPU is not waiting for interrupts or an interrupt line is
399 * asserted, the CPU is by definition runnable.
400 */
401 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
402 {
403 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
404 && !v->arch.power_off && !v->arch.pause);
405 }
406
407 /* Just ensure a guest exit from a particular CPU */
408 static void exit_vm_noop(void *info)
409 {
410 }
411
412 void force_vm_exit(const cpumask_t *mask)
413 {
414 preempt_disable();
415 smp_call_function_many(mask, exit_vm_noop, NULL, true);
416 preempt_enable();
417 }
418
419 /**
420 * need_new_vmid_gen - check that the VMID is still valid
421 * @kvm: The VM's VMID to check
422 *
423 * return true if there is a new generation of VMIDs being used
424 *
425 * The hardware supports only 256 values with the value zero reserved for the
426 * host, so we check if an assigned value belongs to a previous generation,
427 * which which requires us to assign a new value. If we're the first to use a
428 * VMID for the new generation, we must flush necessary caches and TLBs on all
429 * CPUs.
430 */
431 static bool need_new_vmid_gen(struct kvm *kvm)
432 {
433 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
434 }
435
436 /**
437 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
438 * @kvm The guest that we are about to run
439 *
440 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
441 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
442 * caches and TLBs.
443 */
444 static void update_vttbr(struct kvm *kvm)
445 {
446 phys_addr_t pgd_phys;
447 u64 vmid;
448
449 if (!need_new_vmid_gen(kvm))
450 return;
451
452 spin_lock(&kvm_vmid_lock);
453
454 /*
455 * We need to re-check the vmid_gen here to ensure that if another vcpu
456 * already allocated a valid vmid for this vm, then this vcpu should
457 * use the same vmid.
458 */
459 if (!need_new_vmid_gen(kvm)) {
460 spin_unlock(&kvm_vmid_lock);
461 return;
462 }
463
464 /* First user of a new VMID generation? */
465 if (unlikely(kvm_next_vmid == 0)) {
466 atomic64_inc(&kvm_vmid_gen);
467 kvm_next_vmid = 1;
468
469 /*
470 * On SMP we know no other CPUs can use this CPU's or each
471 * other's VMID after force_vm_exit returns since the
472 * kvm_vmid_lock blocks them from reentry to the guest.
473 */
474 force_vm_exit(cpu_all_mask);
475 /*
476 * Now broadcast TLB + ICACHE invalidation over the inner
477 * shareable domain to make sure all data structures are
478 * clean.
479 */
480 kvm_call_hyp(__kvm_flush_vm_context);
481 }
482
483 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
484 kvm->arch.vmid = kvm_next_vmid;
485 kvm_next_vmid++;
486 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
487
488 /* update vttbr to be used with the new vmid */
489 pgd_phys = virt_to_phys(kvm->arch.pgd);
490 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
491 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
492 kvm->arch.vttbr = pgd_phys | vmid;
493
494 spin_unlock(&kvm_vmid_lock);
495 }
496
497 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
498 {
499 struct kvm *kvm = vcpu->kvm;
500 int ret = 0;
501
502 if (likely(vcpu->arch.has_run_once))
503 return 0;
504
505 vcpu->arch.has_run_once = true;
506
507 /*
508 * Map the VGIC hardware resources before running a vcpu the first
509 * time on this VM.
510 */
511 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
512 ret = kvm_vgic_map_resources(kvm);
513 if (ret)
514 return ret;
515 }
516
517 /*
518 * Enable the arch timers only if we have an in-kernel VGIC
519 * and it has been properly initialized, since we cannot handle
520 * interrupts from the virtual timer with a userspace gic.
521 */
522 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
523 ret = kvm_timer_enable(vcpu);
524
525 return ret;
526 }
527
528 bool kvm_arch_intc_initialized(struct kvm *kvm)
529 {
530 return vgic_initialized(kvm);
531 }
532
533 void kvm_arm_halt_guest(struct kvm *kvm)
534 {
535 int i;
536 struct kvm_vcpu *vcpu;
537
538 kvm_for_each_vcpu(i, vcpu, kvm)
539 vcpu->arch.pause = true;
540 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
541 }
542
543 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
544 {
545 vcpu->arch.pause = true;
546 kvm_vcpu_kick(vcpu);
547 }
548
549 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
550 {
551 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
552
553 vcpu->arch.pause = false;
554 swake_up(wq);
555 }
556
557 void kvm_arm_resume_guest(struct kvm *kvm)
558 {
559 int i;
560 struct kvm_vcpu *vcpu;
561
562 kvm_for_each_vcpu(i, vcpu, kvm)
563 kvm_arm_resume_vcpu(vcpu);
564 }
565
566 static void vcpu_sleep(struct kvm_vcpu *vcpu)
567 {
568 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
569
570 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
571 (!vcpu->arch.pause)));
572 }
573
574 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
575 {
576 return vcpu->arch.target >= 0;
577 }
578
579 /**
580 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
581 * @vcpu: The VCPU pointer
582 * @run: The kvm_run structure pointer used for userspace state exchange
583 *
584 * This function is called through the VCPU_RUN ioctl called from user space. It
585 * will execute VM code in a loop until the time slice for the process is used
586 * or some emulation is needed from user space in which case the function will
587 * return with return value 0 and with the kvm_run structure filled in with the
588 * required data for the requested emulation.
589 */
590 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
591 {
592 int ret;
593 sigset_t sigsaved;
594
595 if (unlikely(!kvm_vcpu_initialized(vcpu)))
596 return -ENOEXEC;
597
598 ret = kvm_vcpu_first_run_init(vcpu);
599 if (ret)
600 return ret;
601
602 if (run->exit_reason == KVM_EXIT_MMIO) {
603 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
604 if (ret)
605 return ret;
606 }
607
608 if (run->immediate_exit)
609 return -EINTR;
610
611 if (vcpu->sigset_active)
612 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
613
614 ret = 1;
615 run->exit_reason = KVM_EXIT_UNKNOWN;
616 while (ret > 0) {
617 /*
618 * Check conditions before entering the guest
619 */
620 cond_resched();
621
622 update_vttbr(vcpu->kvm);
623
624 if (vcpu->arch.power_off || vcpu->arch.pause)
625 vcpu_sleep(vcpu);
626
627 /*
628 * Preparing the interrupts to be injected also
629 * involves poking the GIC, which must be done in a
630 * non-preemptible context.
631 */
632 preempt_disable();
633 kvm_pmu_flush_hwstate(vcpu);
634 kvm_timer_flush_hwstate(vcpu);
635 kvm_vgic_flush_hwstate(vcpu);
636
637 local_irq_disable();
638
639 /*
640 * Re-check atomic conditions
641 */
642 if (signal_pending(current)) {
643 ret = -EINTR;
644 run->exit_reason = KVM_EXIT_INTR;
645 }
646
647 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
648 vcpu->arch.power_off || vcpu->arch.pause) {
649 local_irq_enable();
650 kvm_pmu_sync_hwstate(vcpu);
651 kvm_timer_sync_hwstate(vcpu);
652 kvm_vgic_sync_hwstate(vcpu);
653 preempt_enable();
654 continue;
655 }
656
657 kvm_arm_setup_debug(vcpu);
658
659 /**************************************************************
660 * Enter the guest
661 */
662 trace_kvm_entry(*vcpu_pc(vcpu));
663 guest_enter_irqoff();
664 vcpu->mode = IN_GUEST_MODE;
665
666 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
667
668 vcpu->mode = OUTSIDE_GUEST_MODE;
669 vcpu->stat.exits++;
670 /*
671 * Back from guest
672 *************************************************************/
673
674 kvm_arm_clear_debug(vcpu);
675
676 /*
677 * We may have taken a host interrupt in HYP mode (ie
678 * while executing the guest). This interrupt is still
679 * pending, as we haven't serviced it yet!
680 *
681 * We're now back in SVC mode, with interrupts
682 * disabled. Enabling the interrupts now will have
683 * the effect of taking the interrupt again, in SVC
684 * mode this time.
685 */
686 local_irq_enable();
687
688 /*
689 * We do local_irq_enable() before calling guest_exit() so
690 * that if a timer interrupt hits while running the guest we
691 * account that tick as being spent in the guest. We enable
692 * preemption after calling guest_exit() so that if we get
693 * preempted we make sure ticks after that is not counted as
694 * guest time.
695 */
696 guest_exit();
697 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
698
699 /*
700 * We must sync the PMU and timer state before the vgic state so
701 * that the vgic can properly sample the updated state of the
702 * interrupt line.
703 */
704 kvm_pmu_sync_hwstate(vcpu);
705 kvm_timer_sync_hwstate(vcpu);
706
707 kvm_vgic_sync_hwstate(vcpu);
708
709 preempt_enable();
710
711 ret = handle_exit(vcpu, run, ret);
712 }
713
714 if (vcpu->sigset_active)
715 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
716 return ret;
717 }
718
719 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
720 {
721 int bit_index;
722 bool set;
723 unsigned long *ptr;
724
725 if (number == KVM_ARM_IRQ_CPU_IRQ)
726 bit_index = __ffs(HCR_VI);
727 else /* KVM_ARM_IRQ_CPU_FIQ */
728 bit_index = __ffs(HCR_VF);
729
730 ptr = (unsigned long *)&vcpu->arch.irq_lines;
731 if (level)
732 set = test_and_set_bit(bit_index, ptr);
733 else
734 set = test_and_clear_bit(bit_index, ptr);
735
736 /*
737 * If we didn't change anything, no need to wake up or kick other CPUs
738 */
739 if (set == level)
740 return 0;
741
742 /*
743 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
744 * trigger a world-switch round on the running physical CPU to set the
745 * virtual IRQ/FIQ fields in the HCR appropriately.
746 */
747 kvm_vcpu_kick(vcpu);
748
749 return 0;
750 }
751
752 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
753 bool line_status)
754 {
755 u32 irq = irq_level->irq;
756 unsigned int irq_type, vcpu_idx, irq_num;
757 int nrcpus = atomic_read(&kvm->online_vcpus);
758 struct kvm_vcpu *vcpu = NULL;
759 bool level = irq_level->level;
760
761 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
762 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
763 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
764
765 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
766
767 switch (irq_type) {
768 case KVM_ARM_IRQ_TYPE_CPU:
769 if (irqchip_in_kernel(kvm))
770 return -ENXIO;
771
772 if (vcpu_idx >= nrcpus)
773 return -EINVAL;
774
775 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
776 if (!vcpu)
777 return -EINVAL;
778
779 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
780 return -EINVAL;
781
782 return vcpu_interrupt_line(vcpu, irq_num, level);
783 case KVM_ARM_IRQ_TYPE_PPI:
784 if (!irqchip_in_kernel(kvm))
785 return -ENXIO;
786
787 if (vcpu_idx >= nrcpus)
788 return -EINVAL;
789
790 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
791 if (!vcpu)
792 return -EINVAL;
793
794 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
795 return -EINVAL;
796
797 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
798 case KVM_ARM_IRQ_TYPE_SPI:
799 if (!irqchip_in_kernel(kvm))
800 return -ENXIO;
801
802 if (irq_num < VGIC_NR_PRIVATE_IRQS)
803 return -EINVAL;
804
805 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
806 }
807
808 return -EINVAL;
809 }
810
811 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
812 const struct kvm_vcpu_init *init)
813 {
814 unsigned int i;
815 int phys_target = kvm_target_cpu();
816
817 if (init->target != phys_target)
818 return -EINVAL;
819
820 /*
821 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
822 * use the same target.
823 */
824 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
825 return -EINVAL;
826
827 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
828 for (i = 0; i < sizeof(init->features) * 8; i++) {
829 bool set = (init->features[i / 32] & (1 << (i % 32)));
830
831 if (set && i >= KVM_VCPU_MAX_FEATURES)
832 return -ENOENT;
833
834 /*
835 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
836 * use the same feature set.
837 */
838 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
839 test_bit(i, vcpu->arch.features) != set)
840 return -EINVAL;
841
842 if (set)
843 set_bit(i, vcpu->arch.features);
844 }
845
846 vcpu->arch.target = phys_target;
847
848 /* Now we know what it is, we can reset it. */
849 return kvm_reset_vcpu(vcpu);
850 }
851
852
853 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
854 struct kvm_vcpu_init *init)
855 {
856 int ret;
857
858 ret = kvm_vcpu_set_target(vcpu, init);
859 if (ret)
860 return ret;
861
862 /*
863 * Ensure a rebooted VM will fault in RAM pages and detect if the
864 * guest MMU is turned off and flush the caches as needed.
865 */
866 if (vcpu->arch.has_run_once)
867 stage2_unmap_vm(vcpu->kvm);
868
869 vcpu_reset_hcr(vcpu);
870
871 /*
872 * Handle the "start in power-off" case.
873 */
874 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
875 vcpu->arch.power_off = true;
876 else
877 vcpu->arch.power_off = false;
878
879 return 0;
880 }
881
882 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
883 struct kvm_device_attr *attr)
884 {
885 int ret = -ENXIO;
886
887 switch (attr->group) {
888 default:
889 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
890 break;
891 }
892
893 return ret;
894 }
895
896 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
897 struct kvm_device_attr *attr)
898 {
899 int ret = -ENXIO;
900
901 switch (attr->group) {
902 default:
903 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
904 break;
905 }
906
907 return ret;
908 }
909
910 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
911 struct kvm_device_attr *attr)
912 {
913 int ret = -ENXIO;
914
915 switch (attr->group) {
916 default:
917 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
918 break;
919 }
920
921 return ret;
922 }
923
924 long kvm_arch_vcpu_ioctl(struct file *filp,
925 unsigned int ioctl, unsigned long arg)
926 {
927 struct kvm_vcpu *vcpu = filp->private_data;
928 void __user *argp = (void __user *)arg;
929 struct kvm_device_attr attr;
930
931 switch (ioctl) {
932 case KVM_ARM_VCPU_INIT: {
933 struct kvm_vcpu_init init;
934
935 if (copy_from_user(&init, argp, sizeof(init)))
936 return -EFAULT;
937
938 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
939 }
940 case KVM_SET_ONE_REG:
941 case KVM_GET_ONE_REG: {
942 struct kvm_one_reg reg;
943
944 if (unlikely(!kvm_vcpu_initialized(vcpu)))
945 return -ENOEXEC;
946
947 if (copy_from_user(&reg, argp, sizeof(reg)))
948 return -EFAULT;
949 if (ioctl == KVM_SET_ONE_REG)
950 return kvm_arm_set_reg(vcpu, &reg);
951 else
952 return kvm_arm_get_reg(vcpu, &reg);
953 }
954 case KVM_GET_REG_LIST: {
955 struct kvm_reg_list __user *user_list = argp;
956 struct kvm_reg_list reg_list;
957 unsigned n;
958
959 if (unlikely(!kvm_vcpu_initialized(vcpu)))
960 return -ENOEXEC;
961
962 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
963 return -EFAULT;
964 n = reg_list.n;
965 reg_list.n = kvm_arm_num_regs(vcpu);
966 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
967 return -EFAULT;
968 if (n < reg_list.n)
969 return -E2BIG;
970 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
971 }
972 case KVM_SET_DEVICE_ATTR: {
973 if (copy_from_user(&attr, argp, sizeof(attr)))
974 return -EFAULT;
975 return kvm_arm_vcpu_set_attr(vcpu, &attr);
976 }
977 case KVM_GET_DEVICE_ATTR: {
978 if (copy_from_user(&attr, argp, sizeof(attr)))
979 return -EFAULT;
980 return kvm_arm_vcpu_get_attr(vcpu, &attr);
981 }
982 case KVM_HAS_DEVICE_ATTR: {
983 if (copy_from_user(&attr, argp, sizeof(attr)))
984 return -EFAULT;
985 return kvm_arm_vcpu_has_attr(vcpu, &attr);
986 }
987 default:
988 return -EINVAL;
989 }
990 }
991
992 /**
993 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
994 * @kvm: kvm instance
995 * @log: slot id and address to which we copy the log
996 *
997 * Steps 1-4 below provide general overview of dirty page logging. See
998 * kvm_get_dirty_log_protect() function description for additional details.
999 *
1000 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1001 * always flush the TLB (step 4) even if previous step failed and the dirty
1002 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1003 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1004 * writes will be marked dirty for next log read.
1005 *
1006 * 1. Take a snapshot of the bit and clear it if needed.
1007 * 2. Write protect the corresponding page.
1008 * 3. Copy the snapshot to the userspace.
1009 * 4. Flush TLB's if needed.
1010 */
1011 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1012 {
1013 bool is_dirty = false;
1014 int r;
1015
1016 mutex_lock(&kvm->slots_lock);
1017
1018 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1019
1020 if (is_dirty)
1021 kvm_flush_remote_tlbs(kvm);
1022
1023 mutex_unlock(&kvm->slots_lock);
1024 return r;
1025 }
1026
1027 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1028 struct kvm_arm_device_addr *dev_addr)
1029 {
1030 unsigned long dev_id, type;
1031
1032 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1033 KVM_ARM_DEVICE_ID_SHIFT;
1034 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1035 KVM_ARM_DEVICE_TYPE_SHIFT;
1036
1037 switch (dev_id) {
1038 case KVM_ARM_DEVICE_VGIC_V2:
1039 if (!vgic_present)
1040 return -ENXIO;
1041 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1042 default:
1043 return -ENODEV;
1044 }
1045 }
1046
1047 long kvm_arch_vm_ioctl(struct file *filp,
1048 unsigned int ioctl, unsigned long arg)
1049 {
1050 struct kvm *kvm = filp->private_data;
1051 void __user *argp = (void __user *)arg;
1052
1053 switch (ioctl) {
1054 case KVM_CREATE_IRQCHIP: {
1055 int ret;
1056 if (!vgic_present)
1057 return -ENXIO;
1058 mutex_lock(&kvm->lock);
1059 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1060 mutex_unlock(&kvm->lock);
1061 return ret;
1062 }
1063 case KVM_ARM_SET_DEVICE_ADDR: {
1064 struct kvm_arm_device_addr dev_addr;
1065
1066 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1067 return -EFAULT;
1068 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1069 }
1070 case KVM_ARM_PREFERRED_TARGET: {
1071 int err;
1072 struct kvm_vcpu_init init;
1073
1074 err = kvm_vcpu_preferred_target(&init);
1075 if (err)
1076 return err;
1077
1078 if (copy_to_user(argp, &init, sizeof(init)))
1079 return -EFAULT;
1080
1081 return 0;
1082 }
1083 default:
1084 return -EINVAL;
1085 }
1086 }
1087
1088 static void cpu_init_hyp_mode(void *dummy)
1089 {
1090 phys_addr_t pgd_ptr;
1091 unsigned long hyp_stack_ptr;
1092 unsigned long stack_page;
1093 unsigned long vector_ptr;
1094
1095 /* Switch from the HYP stub to our own HYP init vector */
1096 __hyp_set_vectors(kvm_get_idmap_vector());
1097
1098 pgd_ptr = kvm_mmu_get_httbr();
1099 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1100 hyp_stack_ptr = stack_page + PAGE_SIZE;
1101 vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1102
1103 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1104 __cpu_init_stage2();
1105
1106 if (is_kernel_in_hyp_mode())
1107 kvm_timer_init_vhe();
1108
1109 kvm_arm_init_debug();
1110 }
1111
1112 static void cpu_hyp_reinit(void)
1113 {
1114 if (is_kernel_in_hyp_mode()) {
1115 /*
1116 * __cpu_init_stage2() is safe to call even if the PM
1117 * event was cancelled before the CPU was reset.
1118 */
1119 __cpu_init_stage2();
1120 } else {
1121 if (__hyp_get_vectors() == hyp_default_vectors)
1122 cpu_init_hyp_mode(NULL);
1123 }
1124 }
1125
1126 static void cpu_hyp_reset(void)
1127 {
1128 if (!is_kernel_in_hyp_mode())
1129 __cpu_reset_hyp_mode(hyp_default_vectors,
1130 kvm_get_idmap_start());
1131 }
1132
1133 static void _kvm_arch_hardware_enable(void *discard)
1134 {
1135 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1136 cpu_hyp_reinit();
1137 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1138 }
1139 }
1140
1141 int kvm_arch_hardware_enable(void)
1142 {
1143 _kvm_arch_hardware_enable(NULL);
1144 return 0;
1145 }
1146
1147 static void _kvm_arch_hardware_disable(void *discard)
1148 {
1149 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1150 cpu_hyp_reset();
1151 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1152 }
1153 }
1154
1155 void kvm_arch_hardware_disable(void)
1156 {
1157 _kvm_arch_hardware_disable(NULL);
1158 }
1159
1160 #ifdef CONFIG_CPU_PM
1161 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1162 unsigned long cmd,
1163 void *v)
1164 {
1165 /*
1166 * kvm_arm_hardware_enabled is left with its old value over
1167 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1168 * re-enable hyp.
1169 */
1170 switch (cmd) {
1171 case CPU_PM_ENTER:
1172 if (__this_cpu_read(kvm_arm_hardware_enabled))
1173 /*
1174 * don't update kvm_arm_hardware_enabled here
1175 * so that the hardware will be re-enabled
1176 * when we resume. See below.
1177 */
1178 cpu_hyp_reset();
1179
1180 return NOTIFY_OK;
1181 case CPU_PM_EXIT:
1182 if (__this_cpu_read(kvm_arm_hardware_enabled))
1183 /* The hardware was enabled before suspend. */
1184 cpu_hyp_reinit();
1185
1186 return NOTIFY_OK;
1187
1188 default:
1189 return NOTIFY_DONE;
1190 }
1191 }
1192
1193 static struct notifier_block hyp_init_cpu_pm_nb = {
1194 .notifier_call = hyp_init_cpu_pm_notifier,
1195 };
1196
1197 static void __init hyp_cpu_pm_init(void)
1198 {
1199 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1200 }
1201 static void __init hyp_cpu_pm_exit(void)
1202 {
1203 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1204 }
1205 #else
1206 static inline void hyp_cpu_pm_init(void)
1207 {
1208 }
1209 static inline void hyp_cpu_pm_exit(void)
1210 {
1211 }
1212 #endif
1213
1214 static void teardown_common_resources(void)
1215 {
1216 free_percpu(kvm_host_cpu_state);
1217 }
1218
1219 static int init_common_resources(void)
1220 {
1221 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1222 if (!kvm_host_cpu_state) {
1223 kvm_err("Cannot allocate host CPU state\n");
1224 return -ENOMEM;
1225 }
1226
1227 /* set size of VMID supported by CPU */
1228 kvm_vmid_bits = kvm_get_vmid_bits();
1229 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1230
1231 return 0;
1232 }
1233
1234 static int init_subsystems(void)
1235 {
1236 int err = 0;
1237
1238 /*
1239 * Enable hardware so that subsystem initialisation can access EL2.
1240 */
1241 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1242
1243 /*
1244 * Register CPU lower-power notifier
1245 */
1246 hyp_cpu_pm_init();
1247
1248 /*
1249 * Init HYP view of VGIC
1250 */
1251 err = kvm_vgic_hyp_init();
1252 switch (err) {
1253 case 0:
1254 vgic_present = true;
1255 break;
1256 case -ENODEV:
1257 case -ENXIO:
1258 vgic_present = false;
1259 err = 0;
1260 break;
1261 default:
1262 goto out;
1263 }
1264
1265 /*
1266 * Init HYP architected timer support
1267 */
1268 err = kvm_timer_hyp_init();
1269 if (err)
1270 goto out;
1271
1272 kvm_perf_init();
1273 kvm_coproc_table_init();
1274
1275 out:
1276 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1277
1278 return err;
1279 }
1280
1281 static void teardown_hyp_mode(void)
1282 {
1283 int cpu;
1284
1285 if (is_kernel_in_hyp_mode())
1286 return;
1287
1288 free_hyp_pgds();
1289 for_each_possible_cpu(cpu)
1290 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1291 hyp_cpu_pm_exit();
1292 }
1293
1294 static int init_vhe_mode(void)
1295 {
1296 kvm_info("VHE mode initialized successfully\n");
1297 return 0;
1298 }
1299
1300 /**
1301 * Inits Hyp-mode on all online CPUs
1302 */
1303 static int init_hyp_mode(void)
1304 {
1305 int cpu;
1306 int err = 0;
1307
1308 /*
1309 * Allocate Hyp PGD and setup Hyp identity mapping
1310 */
1311 err = kvm_mmu_init();
1312 if (err)
1313 goto out_err;
1314
1315 /*
1316 * It is probably enough to obtain the default on one
1317 * CPU. It's unlikely to be different on the others.
1318 */
1319 hyp_default_vectors = __hyp_get_vectors();
1320
1321 /*
1322 * Allocate stack pages for Hypervisor-mode
1323 */
1324 for_each_possible_cpu(cpu) {
1325 unsigned long stack_page;
1326
1327 stack_page = __get_free_page(GFP_KERNEL);
1328 if (!stack_page) {
1329 err = -ENOMEM;
1330 goto out_err;
1331 }
1332
1333 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1334 }
1335
1336 /*
1337 * Map the Hyp-code called directly from the host
1338 */
1339 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1340 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1341 if (err) {
1342 kvm_err("Cannot map world-switch code\n");
1343 goto out_err;
1344 }
1345
1346 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1347 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1348 if (err) {
1349 kvm_err("Cannot map rodata section\n");
1350 goto out_err;
1351 }
1352
1353 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1354 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1355 if (err) {
1356 kvm_err("Cannot map bss section\n");
1357 goto out_err;
1358 }
1359
1360 /*
1361 * Map the Hyp stack pages
1362 */
1363 for_each_possible_cpu(cpu) {
1364 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1365 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1366 PAGE_HYP);
1367
1368 if (err) {
1369 kvm_err("Cannot map hyp stack\n");
1370 goto out_err;
1371 }
1372 }
1373
1374 for_each_possible_cpu(cpu) {
1375 kvm_cpu_context_t *cpu_ctxt;
1376
1377 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1378 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1379
1380 if (err) {
1381 kvm_err("Cannot map host CPU state: %d\n", err);
1382 goto out_err;
1383 }
1384 }
1385
1386 kvm_info("Hyp mode initialized successfully\n");
1387
1388 return 0;
1389
1390 out_err:
1391 teardown_hyp_mode();
1392 kvm_err("error initializing Hyp mode: %d\n", err);
1393 return err;
1394 }
1395
1396 static void check_kvm_target_cpu(void *ret)
1397 {
1398 *(int *)ret = kvm_target_cpu();
1399 }
1400
1401 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1402 {
1403 struct kvm_vcpu *vcpu;
1404 int i;
1405
1406 mpidr &= MPIDR_HWID_BITMASK;
1407 kvm_for_each_vcpu(i, vcpu, kvm) {
1408 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1409 return vcpu;
1410 }
1411 return NULL;
1412 }
1413
1414 /**
1415 * Initialize Hyp-mode and memory mappings on all CPUs.
1416 */
1417 int kvm_arch_init(void *opaque)
1418 {
1419 int err;
1420 int ret, cpu;
1421
1422 if (!is_hyp_mode_available()) {
1423 kvm_err("HYP mode not available\n");
1424 return -ENODEV;
1425 }
1426
1427 for_each_online_cpu(cpu) {
1428 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1429 if (ret < 0) {
1430 kvm_err("Error, CPU %d not supported!\n", cpu);
1431 return -ENODEV;
1432 }
1433 }
1434
1435 err = init_common_resources();
1436 if (err)
1437 return err;
1438
1439 if (is_kernel_in_hyp_mode())
1440 err = init_vhe_mode();
1441 else
1442 err = init_hyp_mode();
1443 if (err)
1444 goto out_err;
1445
1446 err = init_subsystems();
1447 if (err)
1448 goto out_hyp;
1449
1450 return 0;
1451
1452 out_hyp:
1453 teardown_hyp_mode();
1454 out_err:
1455 teardown_common_resources();
1456 return err;
1457 }
1458
1459 /* NOP: Compiling as a module not supported */
1460 void kvm_arch_exit(void)
1461 {
1462 kvm_perf_teardown();
1463 }
1464
1465 static int arm_init(void)
1466 {
1467 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1468 return rc;
1469 }
1470
1471 module_init(arm_init);