]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/arm.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100 return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 *(int *)rtn = 0;
106 }
107
108
109 /**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
112 */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_vgic_early_init(kvm);
129 kvm_timer_init(kvm);
130
131 /* Mark the initial VMID generation invalid */
132 kvm->arch.vmid_gen = 0;
133
134 /* The maximum number of VCPUs is limited by the host's GIC model */
135 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
136
137 return ret;
138 out_free_stage2_pgd:
139 kvm_free_stage2_pgd(kvm);
140 out_fail_alloc:
141 return ret;
142 }
143
144 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
145 {
146 return VM_FAULT_SIGBUS;
147 }
148
149
150 /**
151 * kvm_arch_destroy_vm - destroy the VM data structure
152 * @kvm: pointer to the KVM struct
153 */
154 void kvm_arch_destroy_vm(struct kvm *kvm)
155 {
156 int i;
157
158 kvm_free_stage2_pgd(kvm);
159
160 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
161 if (kvm->vcpus[i]) {
162 kvm_arch_vcpu_free(kvm->vcpus[i]);
163 kvm->vcpus[i] = NULL;
164 }
165 }
166
167 kvm_vgic_destroy(kvm);
168 }
169
170 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
171 {
172 int r;
173 switch (ext) {
174 case KVM_CAP_IRQCHIP:
175 case KVM_CAP_IOEVENTFD:
176 case KVM_CAP_DEVICE_CTRL:
177 case KVM_CAP_USER_MEMORY:
178 case KVM_CAP_SYNC_MMU:
179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 case KVM_CAP_ONE_REG:
181 case KVM_CAP_ARM_PSCI:
182 case KVM_CAP_ARM_PSCI_0_2:
183 case KVM_CAP_READONLY_MEM:
184 case KVM_CAP_MP_STATE:
185 r = 1;
186 break;
187 case KVM_CAP_COALESCED_MMIO:
188 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 break;
190 case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 r = 1;
192 break;
193 case KVM_CAP_NR_VCPUS:
194 r = num_online_cpus();
195 break;
196 case KVM_CAP_MAX_VCPUS:
197 r = KVM_MAX_VCPUS;
198 break;
199 default:
200 r = kvm_arch_dev_ioctl_check_extension(ext);
201 break;
202 }
203 return r;
204 }
205
206 long kvm_arch_dev_ioctl(struct file *filp,
207 unsigned int ioctl, unsigned long arg)
208 {
209 return -EINVAL;
210 }
211
212
213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 {
215 int err;
216 struct kvm_vcpu *vcpu;
217
218 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 err = -EBUSY;
220 goto out;
221 }
222
223 if (id >= kvm->arch.max_vcpus) {
224 err = -EINVAL;
225 goto out;
226 }
227
228 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 if (!vcpu) {
230 err = -ENOMEM;
231 goto out;
232 }
233
234 err = kvm_vcpu_init(vcpu, kvm, id);
235 if (err)
236 goto free_vcpu;
237
238 err = create_hyp_mappings(vcpu, vcpu + 1);
239 if (err)
240 goto vcpu_uninit;
241
242 return vcpu;
243 vcpu_uninit:
244 kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246 kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248 return ERR_PTR(err);
249 }
250
251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252 {
253 kvm_vgic_vcpu_early_init(vcpu);
254 }
255
256 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
257 {
258 kvm_mmu_free_memory_caches(vcpu);
259 kvm_timer_vcpu_terminate(vcpu);
260 kvm_vgic_vcpu_destroy(vcpu);
261 kmem_cache_free(kvm_vcpu_cache, vcpu);
262 }
263
264 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
265 {
266 kvm_arch_vcpu_free(vcpu);
267 }
268
269 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
270 {
271 return kvm_timer_should_fire(vcpu);
272 }
273
274 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
275 {
276 kvm_timer_schedule(vcpu);
277 }
278
279 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
280 {
281 kvm_timer_unschedule(vcpu);
282 }
283
284 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
285 {
286 /* Force users to call KVM_ARM_VCPU_INIT */
287 vcpu->arch.target = -1;
288 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
289
290 /* Set up the timer */
291 kvm_timer_vcpu_init(vcpu);
292
293 kvm_arm_reset_debug_ptr(vcpu);
294
295 return 0;
296 }
297
298 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
299 {
300 vcpu->cpu = cpu;
301 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
302
303 kvm_arm_set_running_vcpu(vcpu);
304 }
305
306 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
307 {
308 /*
309 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
310 * if the vcpu is no longer assigned to a cpu. This is used for the
311 * optimized make_all_cpus_request path.
312 */
313 vcpu->cpu = -1;
314
315 kvm_arm_set_running_vcpu(NULL);
316 }
317
318 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
319 struct kvm_mp_state *mp_state)
320 {
321 if (vcpu->arch.power_off)
322 mp_state->mp_state = KVM_MP_STATE_STOPPED;
323 else
324 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
325
326 return 0;
327 }
328
329 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
330 struct kvm_mp_state *mp_state)
331 {
332 switch (mp_state->mp_state) {
333 case KVM_MP_STATE_RUNNABLE:
334 vcpu->arch.power_off = false;
335 break;
336 case KVM_MP_STATE_STOPPED:
337 vcpu->arch.power_off = true;
338 break;
339 default:
340 return -EINVAL;
341 }
342
343 return 0;
344 }
345
346 /**
347 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
348 * @v: The VCPU pointer
349 *
350 * If the guest CPU is not waiting for interrupts or an interrupt line is
351 * asserted, the CPU is by definition runnable.
352 */
353 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
354 {
355 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
356 && !v->arch.power_off && !v->arch.pause);
357 }
358
359 /* Just ensure a guest exit from a particular CPU */
360 static void exit_vm_noop(void *info)
361 {
362 }
363
364 void force_vm_exit(const cpumask_t *mask)
365 {
366 smp_call_function_many(mask, exit_vm_noop, NULL, true);
367 }
368
369 /**
370 * need_new_vmid_gen - check that the VMID is still valid
371 * @kvm: The VM's VMID to checkt
372 *
373 * return true if there is a new generation of VMIDs being used
374 *
375 * The hardware supports only 256 values with the value zero reserved for the
376 * host, so we check if an assigned value belongs to a previous generation,
377 * which which requires us to assign a new value. If we're the first to use a
378 * VMID for the new generation, we must flush necessary caches and TLBs on all
379 * CPUs.
380 */
381 static bool need_new_vmid_gen(struct kvm *kvm)
382 {
383 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
384 }
385
386 /**
387 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
388 * @kvm The guest that we are about to run
389 *
390 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
391 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
392 * caches and TLBs.
393 */
394 static void update_vttbr(struct kvm *kvm)
395 {
396 phys_addr_t pgd_phys;
397 u64 vmid;
398
399 if (!need_new_vmid_gen(kvm))
400 return;
401
402 spin_lock(&kvm_vmid_lock);
403
404 /*
405 * We need to re-check the vmid_gen here to ensure that if another vcpu
406 * already allocated a valid vmid for this vm, then this vcpu should
407 * use the same vmid.
408 */
409 if (!need_new_vmid_gen(kvm)) {
410 spin_unlock(&kvm_vmid_lock);
411 return;
412 }
413
414 /* First user of a new VMID generation? */
415 if (unlikely(kvm_next_vmid == 0)) {
416 atomic64_inc(&kvm_vmid_gen);
417 kvm_next_vmid = 1;
418
419 /*
420 * On SMP we know no other CPUs can use this CPU's or each
421 * other's VMID after force_vm_exit returns since the
422 * kvm_vmid_lock blocks them from reentry to the guest.
423 */
424 force_vm_exit(cpu_all_mask);
425 /*
426 * Now broadcast TLB + ICACHE invalidation over the inner
427 * shareable domain to make sure all data structures are
428 * clean.
429 */
430 kvm_call_hyp(__kvm_flush_vm_context);
431 }
432
433 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
434 kvm->arch.vmid = kvm_next_vmid;
435 kvm_next_vmid++;
436
437 /* update vttbr to be used with the new vmid */
438 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
439 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
440 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
441 kvm->arch.vttbr = pgd_phys | vmid;
442
443 spin_unlock(&kvm_vmid_lock);
444 }
445
446 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
447 {
448 struct kvm *kvm = vcpu->kvm;
449 int ret;
450
451 if (likely(vcpu->arch.has_run_once))
452 return 0;
453
454 vcpu->arch.has_run_once = true;
455
456 /*
457 * Map the VGIC hardware resources before running a vcpu the first
458 * time on this VM.
459 */
460 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
461 ret = kvm_vgic_map_resources(kvm);
462 if (ret)
463 return ret;
464 }
465
466 /*
467 * Enable the arch timers only if we have an in-kernel VGIC
468 * and it has been properly initialized, since we cannot handle
469 * interrupts from the virtual timer with a userspace gic.
470 */
471 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
472 kvm_timer_enable(kvm);
473
474 return 0;
475 }
476
477 bool kvm_arch_intc_initialized(struct kvm *kvm)
478 {
479 return vgic_initialized(kvm);
480 }
481
482 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
483 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
484
485 static void kvm_arm_halt_guest(struct kvm *kvm)
486 {
487 int i;
488 struct kvm_vcpu *vcpu;
489
490 kvm_for_each_vcpu(i, vcpu, kvm)
491 vcpu->arch.pause = true;
492 force_vm_exit(cpu_all_mask);
493 }
494
495 static void kvm_arm_resume_guest(struct kvm *kvm)
496 {
497 int i;
498 struct kvm_vcpu *vcpu;
499
500 kvm_for_each_vcpu(i, vcpu, kvm) {
501 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
502
503 vcpu->arch.pause = false;
504 wake_up_interruptible(wq);
505 }
506 }
507
508 static void vcpu_sleep(struct kvm_vcpu *vcpu)
509 {
510 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
511
512 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
513 (!vcpu->arch.pause)));
514 }
515
516 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
517 {
518 return vcpu->arch.target >= 0;
519 }
520
521 /**
522 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
523 * @vcpu: The VCPU pointer
524 * @run: The kvm_run structure pointer used for userspace state exchange
525 *
526 * This function is called through the VCPU_RUN ioctl called from user space. It
527 * will execute VM code in a loop until the time slice for the process is used
528 * or some emulation is needed from user space in which case the function will
529 * return with return value 0 and with the kvm_run structure filled in with the
530 * required data for the requested emulation.
531 */
532 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
533 {
534 int ret;
535 sigset_t sigsaved;
536
537 if (unlikely(!kvm_vcpu_initialized(vcpu)))
538 return -ENOEXEC;
539
540 ret = kvm_vcpu_first_run_init(vcpu);
541 if (ret)
542 return ret;
543
544 if (run->exit_reason == KVM_EXIT_MMIO) {
545 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
546 if (ret)
547 return ret;
548 }
549
550 if (vcpu->sigset_active)
551 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
552
553 ret = 1;
554 run->exit_reason = KVM_EXIT_UNKNOWN;
555 while (ret > 0) {
556 /*
557 * Check conditions before entering the guest
558 */
559 cond_resched();
560
561 update_vttbr(vcpu->kvm);
562
563 if (vcpu->arch.power_off || vcpu->arch.pause)
564 vcpu_sleep(vcpu);
565
566 /*
567 * Disarming the background timer must be done in a
568 * preemptible context, as this call may sleep.
569 */
570 kvm_timer_flush_hwstate(vcpu);
571
572 /*
573 * Preparing the interrupts to be injected also
574 * involves poking the GIC, which must be done in a
575 * non-preemptible context.
576 */
577 preempt_disable();
578 kvm_vgic_flush_hwstate(vcpu);
579
580 local_irq_disable();
581
582 /*
583 * Re-check atomic conditions
584 */
585 if (signal_pending(current)) {
586 ret = -EINTR;
587 run->exit_reason = KVM_EXIT_INTR;
588 }
589
590 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
591 vcpu->arch.power_off || vcpu->arch.pause) {
592 local_irq_enable();
593 kvm_timer_sync_hwstate(vcpu);
594 kvm_vgic_sync_hwstate(vcpu);
595 preempt_enable();
596 continue;
597 }
598
599 kvm_arm_setup_debug(vcpu);
600
601 /**************************************************************
602 * Enter the guest
603 */
604 trace_kvm_entry(*vcpu_pc(vcpu));
605 __kvm_guest_enter();
606 vcpu->mode = IN_GUEST_MODE;
607
608 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
609
610 vcpu->mode = OUTSIDE_GUEST_MODE;
611 /*
612 * Back from guest
613 *************************************************************/
614
615 kvm_arm_clear_debug(vcpu);
616
617 /*
618 * We may have taken a host interrupt in HYP mode (ie
619 * while executing the guest). This interrupt is still
620 * pending, as we haven't serviced it yet!
621 *
622 * We're now back in SVC mode, with interrupts
623 * disabled. Enabling the interrupts now will have
624 * the effect of taking the interrupt again, in SVC
625 * mode this time.
626 */
627 local_irq_enable();
628
629 /*
630 * We do local_irq_enable() before calling kvm_guest_exit() so
631 * that if a timer interrupt hits while running the guest we
632 * account that tick as being spent in the guest. We enable
633 * preemption after calling kvm_guest_exit() so that if we get
634 * preempted we make sure ticks after that is not counted as
635 * guest time.
636 */
637 kvm_guest_exit();
638 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
639
640 /*
641 * We must sync the timer state before the vgic state so that
642 * the vgic can properly sample the updated state of the
643 * interrupt line.
644 */
645 kvm_timer_sync_hwstate(vcpu);
646
647 kvm_vgic_sync_hwstate(vcpu);
648
649 preempt_enable();
650
651 ret = handle_exit(vcpu, run, ret);
652 }
653
654 if (vcpu->sigset_active)
655 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
656 return ret;
657 }
658
659 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
660 {
661 int bit_index;
662 bool set;
663 unsigned long *ptr;
664
665 if (number == KVM_ARM_IRQ_CPU_IRQ)
666 bit_index = __ffs(HCR_VI);
667 else /* KVM_ARM_IRQ_CPU_FIQ */
668 bit_index = __ffs(HCR_VF);
669
670 ptr = (unsigned long *)&vcpu->arch.irq_lines;
671 if (level)
672 set = test_and_set_bit(bit_index, ptr);
673 else
674 set = test_and_clear_bit(bit_index, ptr);
675
676 /*
677 * If we didn't change anything, no need to wake up or kick other CPUs
678 */
679 if (set == level)
680 return 0;
681
682 /*
683 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
684 * trigger a world-switch round on the running physical CPU to set the
685 * virtual IRQ/FIQ fields in the HCR appropriately.
686 */
687 kvm_vcpu_kick(vcpu);
688
689 return 0;
690 }
691
692 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
693 bool line_status)
694 {
695 u32 irq = irq_level->irq;
696 unsigned int irq_type, vcpu_idx, irq_num;
697 int nrcpus = atomic_read(&kvm->online_vcpus);
698 struct kvm_vcpu *vcpu = NULL;
699 bool level = irq_level->level;
700
701 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
702 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
703 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
704
705 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
706
707 switch (irq_type) {
708 case KVM_ARM_IRQ_TYPE_CPU:
709 if (irqchip_in_kernel(kvm))
710 return -ENXIO;
711
712 if (vcpu_idx >= nrcpus)
713 return -EINVAL;
714
715 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
716 if (!vcpu)
717 return -EINVAL;
718
719 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
720 return -EINVAL;
721
722 return vcpu_interrupt_line(vcpu, irq_num, level);
723 case KVM_ARM_IRQ_TYPE_PPI:
724 if (!irqchip_in_kernel(kvm))
725 return -ENXIO;
726
727 if (vcpu_idx >= nrcpus)
728 return -EINVAL;
729
730 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
731 if (!vcpu)
732 return -EINVAL;
733
734 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
735 return -EINVAL;
736
737 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
738 case KVM_ARM_IRQ_TYPE_SPI:
739 if (!irqchip_in_kernel(kvm))
740 return -ENXIO;
741
742 if (irq_num < VGIC_NR_PRIVATE_IRQS)
743 return -EINVAL;
744
745 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
746 }
747
748 return -EINVAL;
749 }
750
751 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
752 const struct kvm_vcpu_init *init)
753 {
754 unsigned int i;
755 int phys_target = kvm_target_cpu();
756
757 if (init->target != phys_target)
758 return -EINVAL;
759
760 /*
761 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
762 * use the same target.
763 */
764 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
765 return -EINVAL;
766
767 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
768 for (i = 0; i < sizeof(init->features) * 8; i++) {
769 bool set = (init->features[i / 32] & (1 << (i % 32)));
770
771 if (set && i >= KVM_VCPU_MAX_FEATURES)
772 return -ENOENT;
773
774 /*
775 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
776 * use the same feature set.
777 */
778 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
779 test_bit(i, vcpu->arch.features) != set)
780 return -EINVAL;
781
782 if (set)
783 set_bit(i, vcpu->arch.features);
784 }
785
786 vcpu->arch.target = phys_target;
787
788 /* Now we know what it is, we can reset it. */
789 return kvm_reset_vcpu(vcpu);
790 }
791
792
793 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
794 struct kvm_vcpu_init *init)
795 {
796 int ret;
797
798 ret = kvm_vcpu_set_target(vcpu, init);
799 if (ret)
800 return ret;
801
802 /*
803 * Ensure a rebooted VM will fault in RAM pages and detect if the
804 * guest MMU is turned off and flush the caches as needed.
805 */
806 if (vcpu->arch.has_run_once)
807 stage2_unmap_vm(vcpu->kvm);
808
809 vcpu_reset_hcr(vcpu);
810
811 /*
812 * Handle the "start in power-off" case.
813 */
814 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
815 vcpu->arch.power_off = true;
816 else
817 vcpu->arch.power_off = false;
818
819 return 0;
820 }
821
822 long kvm_arch_vcpu_ioctl(struct file *filp,
823 unsigned int ioctl, unsigned long arg)
824 {
825 struct kvm_vcpu *vcpu = filp->private_data;
826 void __user *argp = (void __user *)arg;
827
828 switch (ioctl) {
829 case KVM_ARM_VCPU_INIT: {
830 struct kvm_vcpu_init init;
831
832 if (copy_from_user(&init, argp, sizeof(init)))
833 return -EFAULT;
834
835 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
836 }
837 case KVM_SET_ONE_REG:
838 case KVM_GET_ONE_REG: {
839 struct kvm_one_reg reg;
840
841 if (unlikely(!kvm_vcpu_initialized(vcpu)))
842 return -ENOEXEC;
843
844 if (copy_from_user(&reg, argp, sizeof(reg)))
845 return -EFAULT;
846 if (ioctl == KVM_SET_ONE_REG)
847 return kvm_arm_set_reg(vcpu, &reg);
848 else
849 return kvm_arm_get_reg(vcpu, &reg);
850 }
851 case KVM_GET_REG_LIST: {
852 struct kvm_reg_list __user *user_list = argp;
853 struct kvm_reg_list reg_list;
854 unsigned n;
855
856 if (unlikely(!kvm_vcpu_initialized(vcpu)))
857 return -ENOEXEC;
858
859 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
860 return -EFAULT;
861 n = reg_list.n;
862 reg_list.n = kvm_arm_num_regs(vcpu);
863 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
864 return -EFAULT;
865 if (n < reg_list.n)
866 return -E2BIG;
867 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
868 }
869 default:
870 return -EINVAL;
871 }
872 }
873
874 /**
875 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
876 * @kvm: kvm instance
877 * @log: slot id and address to which we copy the log
878 *
879 * Steps 1-4 below provide general overview of dirty page logging. See
880 * kvm_get_dirty_log_protect() function description for additional details.
881 *
882 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
883 * always flush the TLB (step 4) even if previous step failed and the dirty
884 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
885 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
886 * writes will be marked dirty for next log read.
887 *
888 * 1. Take a snapshot of the bit and clear it if needed.
889 * 2. Write protect the corresponding page.
890 * 3. Copy the snapshot to the userspace.
891 * 4. Flush TLB's if needed.
892 */
893 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
894 {
895 bool is_dirty = false;
896 int r;
897
898 mutex_lock(&kvm->slots_lock);
899
900 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
901
902 if (is_dirty)
903 kvm_flush_remote_tlbs(kvm);
904
905 mutex_unlock(&kvm->slots_lock);
906 return r;
907 }
908
909 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
910 struct kvm_arm_device_addr *dev_addr)
911 {
912 unsigned long dev_id, type;
913
914 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
915 KVM_ARM_DEVICE_ID_SHIFT;
916 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
917 KVM_ARM_DEVICE_TYPE_SHIFT;
918
919 switch (dev_id) {
920 case KVM_ARM_DEVICE_VGIC_V2:
921 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
922 default:
923 return -ENODEV;
924 }
925 }
926
927 long kvm_arch_vm_ioctl(struct file *filp,
928 unsigned int ioctl, unsigned long arg)
929 {
930 struct kvm *kvm = filp->private_data;
931 void __user *argp = (void __user *)arg;
932
933 switch (ioctl) {
934 case KVM_CREATE_IRQCHIP: {
935 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
936 }
937 case KVM_ARM_SET_DEVICE_ADDR: {
938 struct kvm_arm_device_addr dev_addr;
939
940 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
941 return -EFAULT;
942 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
943 }
944 case KVM_ARM_PREFERRED_TARGET: {
945 int err;
946 struct kvm_vcpu_init init;
947
948 err = kvm_vcpu_preferred_target(&init);
949 if (err)
950 return err;
951
952 if (copy_to_user(argp, &init, sizeof(init)))
953 return -EFAULT;
954
955 return 0;
956 }
957 default:
958 return -EINVAL;
959 }
960 }
961
962 static void cpu_init_hyp_mode(void *dummy)
963 {
964 phys_addr_t boot_pgd_ptr;
965 phys_addr_t pgd_ptr;
966 unsigned long hyp_stack_ptr;
967 unsigned long stack_page;
968 unsigned long vector_ptr;
969
970 /* Switch from the HYP stub to our own HYP init vector */
971 __hyp_set_vectors(kvm_get_idmap_vector());
972
973 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
974 pgd_ptr = kvm_mmu_get_httbr();
975 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
976 hyp_stack_ptr = stack_page + PAGE_SIZE;
977 vector_ptr = (unsigned long)__kvm_hyp_vector;
978
979 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
980
981 kvm_arm_init_debug();
982 }
983
984 static int hyp_init_cpu_notify(struct notifier_block *self,
985 unsigned long action, void *cpu)
986 {
987 switch (action) {
988 case CPU_STARTING:
989 case CPU_STARTING_FROZEN:
990 if (__hyp_get_vectors() == hyp_default_vectors)
991 cpu_init_hyp_mode(NULL);
992 break;
993 }
994
995 return NOTIFY_OK;
996 }
997
998 static struct notifier_block hyp_init_cpu_nb = {
999 .notifier_call = hyp_init_cpu_notify,
1000 };
1001
1002 #ifdef CONFIG_CPU_PM
1003 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1004 unsigned long cmd,
1005 void *v)
1006 {
1007 if (cmd == CPU_PM_EXIT &&
1008 __hyp_get_vectors() == hyp_default_vectors) {
1009 cpu_init_hyp_mode(NULL);
1010 return NOTIFY_OK;
1011 }
1012
1013 return NOTIFY_DONE;
1014 }
1015
1016 static struct notifier_block hyp_init_cpu_pm_nb = {
1017 .notifier_call = hyp_init_cpu_pm_notifier,
1018 };
1019
1020 static void __init hyp_cpu_pm_init(void)
1021 {
1022 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1023 }
1024 #else
1025 static inline void hyp_cpu_pm_init(void)
1026 {
1027 }
1028 #endif
1029
1030 /**
1031 * Inits Hyp-mode on all online CPUs
1032 */
1033 static int init_hyp_mode(void)
1034 {
1035 int cpu;
1036 int err = 0;
1037
1038 /*
1039 * Allocate Hyp PGD and setup Hyp identity mapping
1040 */
1041 err = kvm_mmu_init();
1042 if (err)
1043 goto out_err;
1044
1045 /*
1046 * It is probably enough to obtain the default on one
1047 * CPU. It's unlikely to be different on the others.
1048 */
1049 hyp_default_vectors = __hyp_get_vectors();
1050
1051 /*
1052 * Allocate stack pages for Hypervisor-mode
1053 */
1054 for_each_possible_cpu(cpu) {
1055 unsigned long stack_page;
1056
1057 stack_page = __get_free_page(GFP_KERNEL);
1058 if (!stack_page) {
1059 err = -ENOMEM;
1060 goto out_free_stack_pages;
1061 }
1062
1063 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1064 }
1065
1066 /*
1067 * Map the Hyp-code called directly from the host
1068 */
1069 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1070 if (err) {
1071 kvm_err("Cannot map world-switch code\n");
1072 goto out_free_mappings;
1073 }
1074
1075 /*
1076 * Map the Hyp stack pages
1077 */
1078 for_each_possible_cpu(cpu) {
1079 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1080 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1081
1082 if (err) {
1083 kvm_err("Cannot map hyp stack\n");
1084 goto out_free_mappings;
1085 }
1086 }
1087
1088 /*
1089 * Map the host CPU structures
1090 */
1091 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1092 if (!kvm_host_cpu_state) {
1093 err = -ENOMEM;
1094 kvm_err("Cannot allocate host CPU state\n");
1095 goto out_free_mappings;
1096 }
1097
1098 for_each_possible_cpu(cpu) {
1099 kvm_cpu_context_t *cpu_ctxt;
1100
1101 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1102 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1103
1104 if (err) {
1105 kvm_err("Cannot map host CPU state: %d\n", err);
1106 goto out_free_context;
1107 }
1108 }
1109
1110 /*
1111 * Execute the init code on each CPU.
1112 */
1113 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1114
1115 /*
1116 * Init HYP view of VGIC
1117 */
1118 err = kvm_vgic_hyp_init();
1119 if (err)
1120 goto out_free_context;
1121
1122 /*
1123 * Init HYP architected timer support
1124 */
1125 err = kvm_timer_hyp_init();
1126 if (err)
1127 goto out_free_context;
1128
1129 #ifndef CONFIG_HOTPLUG_CPU
1130 free_boot_hyp_pgd();
1131 #endif
1132
1133 kvm_perf_init();
1134
1135 kvm_info("Hyp mode initialized successfully\n");
1136
1137 return 0;
1138 out_free_context:
1139 free_percpu(kvm_host_cpu_state);
1140 out_free_mappings:
1141 free_hyp_pgds();
1142 out_free_stack_pages:
1143 for_each_possible_cpu(cpu)
1144 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1145 out_err:
1146 kvm_err("error initializing Hyp mode: %d\n", err);
1147 return err;
1148 }
1149
1150 static void check_kvm_target_cpu(void *ret)
1151 {
1152 *(int *)ret = kvm_target_cpu();
1153 }
1154
1155 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1156 {
1157 struct kvm_vcpu *vcpu;
1158 int i;
1159
1160 mpidr &= MPIDR_HWID_BITMASK;
1161 kvm_for_each_vcpu(i, vcpu, kvm) {
1162 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1163 return vcpu;
1164 }
1165 return NULL;
1166 }
1167
1168 /**
1169 * Initialize Hyp-mode and memory mappings on all CPUs.
1170 */
1171 int kvm_arch_init(void *opaque)
1172 {
1173 int err;
1174 int ret, cpu;
1175
1176 if (!is_hyp_mode_available()) {
1177 kvm_err("HYP mode not available\n");
1178 return -ENODEV;
1179 }
1180
1181 for_each_online_cpu(cpu) {
1182 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1183 if (ret < 0) {
1184 kvm_err("Error, CPU %d not supported!\n", cpu);
1185 return -ENODEV;
1186 }
1187 }
1188
1189 cpu_notifier_register_begin();
1190
1191 err = init_hyp_mode();
1192 if (err)
1193 goto out_err;
1194
1195 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1196 if (err) {
1197 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1198 goto out_err;
1199 }
1200
1201 cpu_notifier_register_done();
1202
1203 hyp_cpu_pm_init();
1204
1205 kvm_coproc_table_init();
1206 return 0;
1207 out_err:
1208 cpu_notifier_register_done();
1209 return err;
1210 }
1211
1212 /* NOP: Compiling as a module not supported */
1213 void kvm_arch_exit(void)
1214 {
1215 kvm_perf_teardown();
1216 }
1217
1218 static int arm_init(void)
1219 {
1220 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1221 return rc;
1222 }
1223
1224 module_init(arm_init);