]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/arm.c
f290b2250ed59c3508d470bc88dcc4d72146352c
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension virt");
49 #endif
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 static unsigned long hyp_default_vectors;
54
55 /* Per-CPU variable containing the currently running vcpu. */
56 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u8 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 {
67 BUG_ON(preemptible());
68 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 }
70
71 /**
72 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
73 * Must be called from non-preemptible context
74 */
75 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 {
77 BUG_ON(preemptible());
78 return __this_cpu_read(kvm_arm_running_vcpu);
79 }
80
81 /**
82 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 */
84 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
85 {
86 return &kvm_arm_running_vcpu;
87 }
88
89 int kvm_arch_hardware_enable(void *garbage)
90 {
91 return 0;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 void kvm_arch_hardware_disable(void *garbage)
100 {
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_hardware_unsetup(void)
109 {
110 }
111
112 void kvm_arch_check_processor_compat(void *rtn)
113 {
114 *(int *)rtn = 0;
115 }
116
117 void kvm_arch_sync_events(struct kvm *kvm)
118 {
119 }
120
121 /**
122 * kvm_arch_init_vm - initializes a VM data structure
123 * @kvm: pointer to the KVM struct
124 */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127 int ret = 0;
128
129 if (type)
130 return -EINVAL;
131
132 ret = kvm_alloc_stage2_pgd(kvm);
133 if (ret)
134 goto out_fail_alloc;
135
136 ret = create_hyp_mappings(kvm, kvm + 1);
137 if (ret)
138 goto out_free_stage2_pgd;
139
140 kvm_timer_init(kvm);
141
142 /* Mark the initial VMID generation invalid */
143 kvm->arch.vmid_gen = 0;
144
145 return ret;
146 out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 return ret;
150 }
151
152 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154 return VM_FAULT_SIGBUS;
155 }
156
157 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
158 struct kvm_memory_slot *dont)
159 {
160 }
161
162 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
163 unsigned long npages)
164 {
165 return 0;
166 }
167
168 /**
169 * kvm_arch_destroy_vm - destroy the VM data structure
170 * @kvm: pointer to the KVM struct
171 */
172 void kvm_arch_destroy_vm(struct kvm *kvm)
173 {
174 int i;
175
176 kvm_free_stage2_pgd(kvm);
177
178 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
179 if (kvm->vcpus[i]) {
180 kvm_arch_vcpu_free(kvm->vcpus[i]);
181 kvm->vcpus[i] = NULL;
182 }
183 }
184 }
185
186 int kvm_dev_ioctl_check_extension(long ext)
187 {
188 int r;
189 switch (ext) {
190 case KVM_CAP_IRQCHIP:
191 r = vgic_present;
192 break;
193 case KVM_CAP_DEVICE_CTRL:
194 case KVM_CAP_USER_MEMORY:
195 case KVM_CAP_SYNC_MMU:
196 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197 case KVM_CAP_ONE_REG:
198 case KVM_CAP_ARM_PSCI:
199 r = 1;
200 break;
201 case KVM_CAP_COALESCED_MMIO:
202 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
203 break;
204 case KVM_CAP_ARM_SET_DEVICE_ADDR:
205 r = 1;
206 break;
207 case KVM_CAP_NR_VCPUS:
208 r = num_online_cpus();
209 break;
210 case KVM_CAP_MAX_VCPUS:
211 r = KVM_MAX_VCPUS;
212 break;
213 default:
214 r = kvm_arch_dev_ioctl_check_extension(ext);
215 break;
216 }
217 return r;
218 }
219
220 long kvm_arch_dev_ioctl(struct file *filp,
221 unsigned int ioctl, unsigned long arg)
222 {
223 return -EINVAL;
224 }
225
226 void kvm_arch_memslots_updated(struct kvm *kvm)
227 {
228 }
229
230 int kvm_arch_prepare_memory_region(struct kvm *kvm,
231 struct kvm_memory_slot *memslot,
232 struct kvm_userspace_memory_region *mem,
233 enum kvm_mr_change change)
234 {
235 return 0;
236 }
237
238 void kvm_arch_commit_memory_region(struct kvm *kvm,
239 struct kvm_userspace_memory_region *mem,
240 const struct kvm_memory_slot *old,
241 enum kvm_mr_change change)
242 {
243 }
244
245 void kvm_arch_flush_shadow_all(struct kvm *kvm)
246 {
247 }
248
249 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
250 struct kvm_memory_slot *slot)
251 {
252 }
253
254 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
255 {
256 int err;
257 struct kvm_vcpu *vcpu;
258
259 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
260 if (!vcpu) {
261 err = -ENOMEM;
262 goto out;
263 }
264
265 err = kvm_vcpu_init(vcpu, kvm, id);
266 if (err)
267 goto free_vcpu;
268
269 err = create_hyp_mappings(vcpu, vcpu + 1);
270 if (err)
271 goto vcpu_uninit;
272
273 return vcpu;
274 vcpu_uninit:
275 kvm_vcpu_uninit(vcpu);
276 free_vcpu:
277 kmem_cache_free(kvm_vcpu_cache, vcpu);
278 out:
279 return ERR_PTR(err);
280 }
281
282 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
283 {
284 return 0;
285 }
286
287 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
288 {
289 kvm_mmu_free_memory_caches(vcpu);
290 kvm_timer_vcpu_terminate(vcpu);
291 kmem_cache_free(kvm_vcpu_cache, vcpu);
292 }
293
294 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
295 {
296 kvm_arch_vcpu_free(vcpu);
297 }
298
299 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
300 {
301 return 0;
302 }
303
304 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
305 {
306 int ret;
307
308 /* Force users to call KVM_ARM_VCPU_INIT */
309 vcpu->arch.target = -1;
310
311 /* Set up VGIC */
312 ret = kvm_vgic_vcpu_init(vcpu);
313 if (ret)
314 return ret;
315
316 /* Set up the timer */
317 kvm_timer_vcpu_init(vcpu);
318
319 return 0;
320 }
321
322 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
323 {
324 }
325
326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
327 {
328 vcpu->cpu = cpu;
329 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
330
331 /*
332 * Check whether this vcpu requires the cache to be flushed on
333 * this physical CPU. This is a consequence of doing dcache
334 * operations by set/way on this vcpu. We do it here to be in
335 * a non-preemptible section.
336 */
337 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
338 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
339
340 kvm_arm_set_running_vcpu(vcpu);
341 }
342
343 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
344 {
345 kvm_arm_set_running_vcpu(NULL);
346 }
347
348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
349 struct kvm_guest_debug *dbg)
350 {
351 return -EINVAL;
352 }
353
354
355 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
356 struct kvm_mp_state *mp_state)
357 {
358 return -EINVAL;
359 }
360
361 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
362 struct kvm_mp_state *mp_state)
363 {
364 return -EINVAL;
365 }
366
367 /**
368 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
369 * @v: The VCPU pointer
370 *
371 * If the guest CPU is not waiting for interrupts or an interrupt line is
372 * asserted, the CPU is by definition runnable.
373 */
374 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
375 {
376 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
377 }
378
379 /* Just ensure a guest exit from a particular CPU */
380 static void exit_vm_noop(void *info)
381 {
382 }
383
384 void force_vm_exit(const cpumask_t *mask)
385 {
386 smp_call_function_many(mask, exit_vm_noop, NULL, true);
387 }
388
389 /**
390 * need_new_vmid_gen - check that the VMID is still valid
391 * @kvm: The VM's VMID to checkt
392 *
393 * return true if there is a new generation of VMIDs being used
394 *
395 * The hardware supports only 256 values with the value zero reserved for the
396 * host, so we check if an assigned value belongs to a previous generation,
397 * which which requires us to assign a new value. If we're the first to use a
398 * VMID for the new generation, we must flush necessary caches and TLBs on all
399 * CPUs.
400 */
401 static bool need_new_vmid_gen(struct kvm *kvm)
402 {
403 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
404 }
405
406 /**
407 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
408 * @kvm The guest that we are about to run
409 *
410 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
411 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
412 * caches and TLBs.
413 */
414 static void update_vttbr(struct kvm *kvm)
415 {
416 phys_addr_t pgd_phys;
417 u64 vmid;
418
419 if (!need_new_vmid_gen(kvm))
420 return;
421
422 spin_lock(&kvm_vmid_lock);
423
424 /*
425 * We need to re-check the vmid_gen here to ensure that if another vcpu
426 * already allocated a valid vmid for this vm, then this vcpu should
427 * use the same vmid.
428 */
429 if (!need_new_vmid_gen(kvm)) {
430 spin_unlock(&kvm_vmid_lock);
431 return;
432 }
433
434 /* First user of a new VMID generation? */
435 if (unlikely(kvm_next_vmid == 0)) {
436 atomic64_inc(&kvm_vmid_gen);
437 kvm_next_vmid = 1;
438
439 /*
440 * On SMP we know no other CPUs can use this CPU's or each
441 * other's VMID after force_vm_exit returns since the
442 * kvm_vmid_lock blocks them from reentry to the guest.
443 */
444 force_vm_exit(cpu_all_mask);
445 /*
446 * Now broadcast TLB + ICACHE invalidation over the inner
447 * shareable domain to make sure all data structures are
448 * clean.
449 */
450 kvm_call_hyp(__kvm_flush_vm_context);
451 }
452
453 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
454 kvm->arch.vmid = kvm_next_vmid;
455 kvm_next_vmid++;
456
457 /* update vttbr to be used with the new vmid */
458 pgd_phys = virt_to_phys(kvm->arch.pgd);
459 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
460 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
461 kvm->arch.vttbr |= vmid;
462
463 spin_unlock(&kvm_vmid_lock);
464 }
465
466 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
467 {
468 int ret;
469
470 if (likely(vcpu->arch.has_run_once))
471 return 0;
472
473 vcpu->arch.has_run_once = true;
474
475 /*
476 * Initialize the VGIC before running a vcpu the first time on
477 * this VM.
478 */
479 if (unlikely(!vgic_initialized(vcpu->kvm))) {
480 ret = kvm_vgic_init(vcpu->kvm);
481 if (ret)
482 return ret;
483 }
484
485 /*
486 * Handle the "start in power-off" case by calling into the
487 * PSCI code.
488 */
489 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
490 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
491 kvm_psci_call(vcpu);
492 }
493
494 return 0;
495 }
496
497 static void vcpu_pause(struct kvm_vcpu *vcpu)
498 {
499 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
500
501 wait_event_interruptible(*wq, !vcpu->arch.pause);
502 }
503
504 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
505 {
506 return vcpu->arch.target >= 0;
507 }
508
509 /**
510 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
511 * @vcpu: The VCPU pointer
512 * @run: The kvm_run structure pointer used for userspace state exchange
513 *
514 * This function is called through the VCPU_RUN ioctl called from user space. It
515 * will execute VM code in a loop until the time slice for the process is used
516 * or some emulation is needed from user space in which case the function will
517 * return with return value 0 and with the kvm_run structure filled in with the
518 * required data for the requested emulation.
519 */
520 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
521 {
522 int ret;
523 sigset_t sigsaved;
524
525 if (unlikely(!kvm_vcpu_initialized(vcpu)))
526 return -ENOEXEC;
527
528 ret = kvm_vcpu_first_run_init(vcpu);
529 if (ret)
530 return ret;
531
532 if (run->exit_reason == KVM_EXIT_MMIO) {
533 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
534 if (ret)
535 return ret;
536 }
537
538 if (vcpu->sigset_active)
539 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
540
541 ret = 1;
542 run->exit_reason = KVM_EXIT_UNKNOWN;
543 while (ret > 0) {
544 /*
545 * Check conditions before entering the guest
546 */
547 cond_resched();
548
549 update_vttbr(vcpu->kvm);
550
551 if (vcpu->arch.pause)
552 vcpu_pause(vcpu);
553
554 kvm_vgic_flush_hwstate(vcpu);
555 kvm_timer_flush_hwstate(vcpu);
556
557 local_irq_disable();
558
559 /*
560 * Re-check atomic conditions
561 */
562 if (signal_pending(current)) {
563 ret = -EINTR;
564 run->exit_reason = KVM_EXIT_INTR;
565 }
566
567 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
568 local_irq_enable();
569 kvm_timer_sync_hwstate(vcpu);
570 kvm_vgic_sync_hwstate(vcpu);
571 continue;
572 }
573
574 /**************************************************************
575 * Enter the guest
576 */
577 trace_kvm_entry(*vcpu_pc(vcpu));
578 kvm_guest_enter();
579 vcpu->mode = IN_GUEST_MODE;
580
581 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
582
583 vcpu->mode = OUTSIDE_GUEST_MODE;
584 vcpu->arch.last_pcpu = smp_processor_id();
585 kvm_guest_exit();
586 trace_kvm_exit(*vcpu_pc(vcpu));
587 /*
588 * We may have taken a host interrupt in HYP mode (ie
589 * while executing the guest). This interrupt is still
590 * pending, as we haven't serviced it yet!
591 *
592 * We're now back in SVC mode, with interrupts
593 * disabled. Enabling the interrupts now will have
594 * the effect of taking the interrupt again, in SVC
595 * mode this time.
596 */
597 local_irq_enable();
598
599 /*
600 * Back from guest
601 *************************************************************/
602
603 kvm_timer_sync_hwstate(vcpu);
604 kvm_vgic_sync_hwstate(vcpu);
605
606 ret = handle_exit(vcpu, run, ret);
607 }
608
609 if (vcpu->sigset_active)
610 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
611 return ret;
612 }
613
614 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
615 {
616 int bit_index;
617 bool set;
618 unsigned long *ptr;
619
620 if (number == KVM_ARM_IRQ_CPU_IRQ)
621 bit_index = __ffs(HCR_VI);
622 else /* KVM_ARM_IRQ_CPU_FIQ */
623 bit_index = __ffs(HCR_VF);
624
625 ptr = (unsigned long *)&vcpu->arch.irq_lines;
626 if (level)
627 set = test_and_set_bit(bit_index, ptr);
628 else
629 set = test_and_clear_bit(bit_index, ptr);
630
631 /*
632 * If we didn't change anything, no need to wake up or kick other CPUs
633 */
634 if (set == level)
635 return 0;
636
637 /*
638 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
639 * trigger a world-switch round on the running physical CPU to set the
640 * virtual IRQ/FIQ fields in the HCR appropriately.
641 */
642 kvm_vcpu_kick(vcpu);
643
644 return 0;
645 }
646
647 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
648 bool line_status)
649 {
650 u32 irq = irq_level->irq;
651 unsigned int irq_type, vcpu_idx, irq_num;
652 int nrcpus = atomic_read(&kvm->online_vcpus);
653 struct kvm_vcpu *vcpu = NULL;
654 bool level = irq_level->level;
655
656 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
657 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
658 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
659
660 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
661
662 switch (irq_type) {
663 case KVM_ARM_IRQ_TYPE_CPU:
664 if (irqchip_in_kernel(kvm))
665 return -ENXIO;
666
667 if (vcpu_idx >= nrcpus)
668 return -EINVAL;
669
670 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
671 if (!vcpu)
672 return -EINVAL;
673
674 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
675 return -EINVAL;
676
677 return vcpu_interrupt_line(vcpu, irq_num, level);
678 case KVM_ARM_IRQ_TYPE_PPI:
679 if (!irqchip_in_kernel(kvm))
680 return -ENXIO;
681
682 if (vcpu_idx >= nrcpus)
683 return -EINVAL;
684
685 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
686 if (!vcpu)
687 return -EINVAL;
688
689 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
690 return -EINVAL;
691
692 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
693 case KVM_ARM_IRQ_TYPE_SPI:
694 if (!irqchip_in_kernel(kvm))
695 return -ENXIO;
696
697 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
698 irq_num > KVM_ARM_IRQ_GIC_MAX)
699 return -EINVAL;
700
701 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
702 }
703
704 return -EINVAL;
705 }
706
707 long kvm_arch_vcpu_ioctl(struct file *filp,
708 unsigned int ioctl, unsigned long arg)
709 {
710 struct kvm_vcpu *vcpu = filp->private_data;
711 void __user *argp = (void __user *)arg;
712
713 switch (ioctl) {
714 case KVM_ARM_VCPU_INIT: {
715 struct kvm_vcpu_init init;
716
717 if (copy_from_user(&init, argp, sizeof(init)))
718 return -EFAULT;
719
720 return kvm_vcpu_set_target(vcpu, &init);
721
722 }
723 case KVM_SET_ONE_REG:
724 case KVM_GET_ONE_REG: {
725 struct kvm_one_reg reg;
726
727 if (unlikely(!kvm_vcpu_initialized(vcpu)))
728 return -ENOEXEC;
729
730 if (copy_from_user(&reg, argp, sizeof(reg)))
731 return -EFAULT;
732 if (ioctl == KVM_SET_ONE_REG)
733 return kvm_arm_set_reg(vcpu, &reg);
734 else
735 return kvm_arm_get_reg(vcpu, &reg);
736 }
737 case KVM_GET_REG_LIST: {
738 struct kvm_reg_list __user *user_list = argp;
739 struct kvm_reg_list reg_list;
740 unsigned n;
741
742 if (unlikely(!kvm_vcpu_initialized(vcpu)))
743 return -ENOEXEC;
744
745 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
746 return -EFAULT;
747 n = reg_list.n;
748 reg_list.n = kvm_arm_num_regs(vcpu);
749 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
750 return -EFAULT;
751 if (n < reg_list.n)
752 return -E2BIG;
753 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
754 }
755 default:
756 return -EINVAL;
757 }
758 }
759
760 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
761 {
762 return -EINVAL;
763 }
764
765 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
766 struct kvm_arm_device_addr *dev_addr)
767 {
768 unsigned long dev_id, type;
769
770 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
771 KVM_ARM_DEVICE_ID_SHIFT;
772 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
773 KVM_ARM_DEVICE_TYPE_SHIFT;
774
775 switch (dev_id) {
776 case KVM_ARM_DEVICE_VGIC_V2:
777 if (!vgic_present)
778 return -ENXIO;
779 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
780 default:
781 return -ENODEV;
782 }
783 }
784
785 long kvm_arch_vm_ioctl(struct file *filp,
786 unsigned int ioctl, unsigned long arg)
787 {
788 struct kvm *kvm = filp->private_data;
789 void __user *argp = (void __user *)arg;
790
791 switch (ioctl) {
792 case KVM_CREATE_IRQCHIP: {
793 if (vgic_present)
794 return kvm_vgic_create(kvm);
795 else
796 return -ENXIO;
797 }
798 case KVM_ARM_SET_DEVICE_ADDR: {
799 struct kvm_arm_device_addr dev_addr;
800
801 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
802 return -EFAULT;
803 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
804 }
805 case KVM_ARM_PREFERRED_TARGET: {
806 int err;
807 struct kvm_vcpu_init init;
808
809 err = kvm_vcpu_preferred_target(&init);
810 if (err)
811 return err;
812
813 if (copy_to_user(argp, &init, sizeof(init)))
814 return -EFAULT;
815
816 return 0;
817 }
818 default:
819 return -EINVAL;
820 }
821 }
822
823 static void cpu_init_hyp_mode(void *dummy)
824 {
825 phys_addr_t boot_pgd_ptr;
826 phys_addr_t pgd_ptr;
827 unsigned long hyp_stack_ptr;
828 unsigned long stack_page;
829 unsigned long vector_ptr;
830
831 /* Switch from the HYP stub to our own HYP init vector */
832 __hyp_set_vectors(kvm_get_idmap_vector());
833
834 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
835 pgd_ptr = kvm_mmu_get_httbr();
836 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
837 hyp_stack_ptr = stack_page + PAGE_SIZE;
838 vector_ptr = (unsigned long)__kvm_hyp_vector;
839
840 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
841 }
842
843 static int hyp_init_cpu_notify(struct notifier_block *self,
844 unsigned long action, void *cpu)
845 {
846 switch (action) {
847 case CPU_STARTING:
848 case CPU_STARTING_FROZEN:
849 cpu_init_hyp_mode(NULL);
850 break;
851 }
852
853 return NOTIFY_OK;
854 }
855
856 static struct notifier_block hyp_init_cpu_nb = {
857 .notifier_call = hyp_init_cpu_notify,
858 };
859
860 /**
861 * Inits Hyp-mode on all online CPUs
862 */
863 static int init_hyp_mode(void)
864 {
865 int cpu;
866 int err = 0;
867
868 /*
869 * Allocate Hyp PGD and setup Hyp identity mapping
870 */
871 err = kvm_mmu_init();
872 if (err)
873 goto out_err;
874
875 /*
876 * It is probably enough to obtain the default on one
877 * CPU. It's unlikely to be different on the others.
878 */
879 hyp_default_vectors = __hyp_get_vectors();
880
881 /*
882 * Allocate stack pages for Hypervisor-mode
883 */
884 for_each_possible_cpu(cpu) {
885 unsigned long stack_page;
886
887 stack_page = __get_free_page(GFP_KERNEL);
888 if (!stack_page) {
889 err = -ENOMEM;
890 goto out_free_stack_pages;
891 }
892
893 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
894 }
895
896 /*
897 * Map the Hyp-code called directly from the host
898 */
899 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
900 if (err) {
901 kvm_err("Cannot map world-switch code\n");
902 goto out_free_mappings;
903 }
904
905 /*
906 * Map the Hyp stack pages
907 */
908 for_each_possible_cpu(cpu) {
909 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
910 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
911
912 if (err) {
913 kvm_err("Cannot map hyp stack\n");
914 goto out_free_mappings;
915 }
916 }
917
918 /*
919 * Map the host CPU structures
920 */
921 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
922 if (!kvm_host_cpu_state) {
923 err = -ENOMEM;
924 kvm_err("Cannot allocate host CPU state\n");
925 goto out_free_mappings;
926 }
927
928 for_each_possible_cpu(cpu) {
929 kvm_cpu_context_t *cpu_ctxt;
930
931 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
932 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
933
934 if (err) {
935 kvm_err("Cannot map host CPU state: %d\n", err);
936 goto out_free_context;
937 }
938 }
939
940 /*
941 * Execute the init code on each CPU.
942 */
943 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
944
945 /*
946 * Init HYP view of VGIC
947 */
948 err = kvm_vgic_hyp_init();
949 if (err)
950 goto out_free_context;
951
952 #ifdef CONFIG_KVM_ARM_VGIC
953 vgic_present = true;
954 #endif
955
956 /*
957 * Init HYP architected timer support
958 */
959 err = kvm_timer_hyp_init();
960 if (err)
961 goto out_free_mappings;
962
963 #ifndef CONFIG_HOTPLUG_CPU
964 free_boot_hyp_pgd();
965 #endif
966
967 kvm_perf_init();
968
969 kvm_info("Hyp mode initialized successfully\n");
970
971 return 0;
972 out_free_context:
973 free_percpu(kvm_host_cpu_state);
974 out_free_mappings:
975 free_hyp_pgds();
976 out_free_stack_pages:
977 for_each_possible_cpu(cpu)
978 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
979 out_err:
980 kvm_err("error initializing Hyp mode: %d\n", err);
981 return err;
982 }
983
984 static void check_kvm_target_cpu(void *ret)
985 {
986 *(int *)ret = kvm_target_cpu();
987 }
988
989 /**
990 * Initialize Hyp-mode and memory mappings on all CPUs.
991 */
992 int kvm_arch_init(void *opaque)
993 {
994 int err;
995 int ret, cpu;
996
997 if (!is_hyp_mode_available()) {
998 kvm_err("HYP mode not available\n");
999 return -ENODEV;
1000 }
1001
1002 for_each_online_cpu(cpu) {
1003 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1004 if (ret < 0) {
1005 kvm_err("Error, CPU %d not supported!\n", cpu);
1006 return -ENODEV;
1007 }
1008 }
1009
1010 err = init_hyp_mode();
1011 if (err)
1012 goto out_err;
1013
1014 err = register_cpu_notifier(&hyp_init_cpu_nb);
1015 if (err) {
1016 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1017 goto out_err;
1018 }
1019
1020 kvm_coproc_table_init();
1021 return 0;
1022 out_err:
1023 return err;
1024 }
1025
1026 /* NOP: Compiling as a module not supported */
1027 void kvm_arch_exit(void)
1028 {
1029 kvm_perf_teardown();
1030 }
1031
1032 static int arm_init(void)
1033 {
1034 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1035 return rc;
1036 }
1037
1038 module_init(arm_init);