]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/arm.c
Merge tag 'fixes-for-3.13a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension virt");
49 #endif
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 static unsigned long hyp_default_vectors;
54
55 /* Per-CPU variable containing the currently running vcpu. */
56 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u8 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 {
67 BUG_ON(preemptible());
68 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 }
70
71 /**
72 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
73 * Must be called from non-preemptible context
74 */
75 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 {
77 BUG_ON(preemptible());
78 return __this_cpu_read(kvm_arm_running_vcpu);
79 }
80
81 /**
82 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 */
84 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
85 {
86 return &kvm_arm_running_vcpu;
87 }
88
89 int kvm_arch_hardware_enable(void *garbage)
90 {
91 return 0;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 void kvm_arch_hardware_disable(void *garbage)
100 {
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_hardware_unsetup(void)
109 {
110 }
111
112 void kvm_arch_check_processor_compat(void *rtn)
113 {
114 *(int *)rtn = 0;
115 }
116
117 void kvm_arch_sync_events(struct kvm *kvm)
118 {
119 }
120
121 /**
122 * kvm_arch_init_vm - initializes a VM data structure
123 * @kvm: pointer to the KVM struct
124 */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127 int ret = 0;
128
129 if (type)
130 return -EINVAL;
131
132 ret = kvm_alloc_stage2_pgd(kvm);
133 if (ret)
134 goto out_fail_alloc;
135
136 ret = create_hyp_mappings(kvm, kvm + 1);
137 if (ret)
138 goto out_free_stage2_pgd;
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 return ret;
144 out_free_stage2_pgd:
145 kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147 return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152 return VM_FAULT_SIGBUS;
153 }
154
155 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
156 struct kvm_memory_slot *dont)
157 {
158 }
159
160 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
161 unsigned long npages)
162 {
163 return 0;
164 }
165
166 /**
167 * kvm_arch_destroy_vm - destroy the VM data structure
168 * @kvm: pointer to the KVM struct
169 */
170 void kvm_arch_destroy_vm(struct kvm *kvm)
171 {
172 int i;
173
174 kvm_free_stage2_pgd(kvm);
175
176 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177 if (kvm->vcpus[i]) {
178 kvm_arch_vcpu_free(kvm->vcpus[i]);
179 kvm->vcpus[i] = NULL;
180 }
181 }
182 }
183
184 int kvm_dev_ioctl_check_extension(long ext)
185 {
186 int r;
187 switch (ext) {
188 case KVM_CAP_IRQCHIP:
189 r = vgic_present;
190 break;
191 case KVM_CAP_USER_MEMORY:
192 case KVM_CAP_SYNC_MMU:
193 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
194 case KVM_CAP_ONE_REG:
195 case KVM_CAP_ARM_PSCI:
196 r = 1;
197 break;
198 case KVM_CAP_COALESCED_MMIO:
199 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
200 break;
201 case KVM_CAP_ARM_SET_DEVICE_ADDR:
202 r = 1;
203 break;
204 case KVM_CAP_NR_VCPUS:
205 r = num_online_cpus();
206 break;
207 case KVM_CAP_MAX_VCPUS:
208 r = KVM_MAX_VCPUS;
209 break;
210 default:
211 r = kvm_arch_dev_ioctl_check_extension(ext);
212 break;
213 }
214 return r;
215 }
216
217 long kvm_arch_dev_ioctl(struct file *filp,
218 unsigned int ioctl, unsigned long arg)
219 {
220 return -EINVAL;
221 }
222
223 void kvm_arch_memslots_updated(struct kvm *kvm)
224 {
225 }
226
227 int kvm_arch_prepare_memory_region(struct kvm *kvm,
228 struct kvm_memory_slot *memslot,
229 struct kvm_userspace_memory_region *mem,
230 enum kvm_mr_change change)
231 {
232 return 0;
233 }
234
235 void kvm_arch_commit_memory_region(struct kvm *kvm,
236 struct kvm_userspace_memory_region *mem,
237 const struct kvm_memory_slot *old,
238 enum kvm_mr_change change)
239 {
240 }
241
242 void kvm_arch_flush_shadow_all(struct kvm *kvm)
243 {
244 }
245
246 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
247 struct kvm_memory_slot *slot)
248 {
249 }
250
251 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
252 {
253 int err;
254 struct kvm_vcpu *vcpu;
255
256 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
257 if (!vcpu) {
258 err = -ENOMEM;
259 goto out;
260 }
261
262 err = kvm_vcpu_init(vcpu, kvm, id);
263 if (err)
264 goto free_vcpu;
265
266 err = create_hyp_mappings(vcpu, vcpu + 1);
267 if (err)
268 goto vcpu_uninit;
269
270 return vcpu;
271 vcpu_uninit:
272 kvm_vcpu_uninit(vcpu);
273 free_vcpu:
274 kmem_cache_free(kvm_vcpu_cache, vcpu);
275 out:
276 return ERR_PTR(err);
277 }
278
279 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
280 {
281 return 0;
282 }
283
284 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
285 {
286 kvm_mmu_free_memory_caches(vcpu);
287 kvm_timer_vcpu_terminate(vcpu);
288 kmem_cache_free(kvm_vcpu_cache, vcpu);
289 }
290
291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
292 {
293 kvm_arch_vcpu_free(vcpu);
294 }
295
296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297 {
298 return 0;
299 }
300
301 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
302 {
303 int ret;
304
305 /* Force users to call KVM_ARM_VCPU_INIT */
306 vcpu->arch.target = -1;
307
308 /* Set up VGIC */
309 ret = kvm_vgic_vcpu_init(vcpu);
310 if (ret)
311 return ret;
312
313 /* Set up the timer */
314 kvm_timer_vcpu_init(vcpu);
315
316 return 0;
317 }
318
319 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
320 {
321 }
322
323 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
324 {
325 vcpu->cpu = cpu;
326 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
327
328 /*
329 * Check whether this vcpu requires the cache to be flushed on
330 * this physical CPU. This is a consequence of doing dcache
331 * operations by set/way on this vcpu. We do it here to be in
332 * a non-preemptible section.
333 */
334 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
335 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
336
337 kvm_arm_set_running_vcpu(vcpu);
338 }
339
340 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
341 {
342 kvm_arm_set_running_vcpu(NULL);
343 }
344
345 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
346 struct kvm_guest_debug *dbg)
347 {
348 return -EINVAL;
349 }
350
351
352 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
353 struct kvm_mp_state *mp_state)
354 {
355 return -EINVAL;
356 }
357
358 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
359 struct kvm_mp_state *mp_state)
360 {
361 return -EINVAL;
362 }
363
364 /**
365 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
366 * @v: The VCPU pointer
367 *
368 * If the guest CPU is not waiting for interrupts or an interrupt line is
369 * asserted, the CPU is by definition runnable.
370 */
371 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
372 {
373 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
374 }
375
376 /* Just ensure a guest exit from a particular CPU */
377 static void exit_vm_noop(void *info)
378 {
379 }
380
381 void force_vm_exit(const cpumask_t *mask)
382 {
383 smp_call_function_many(mask, exit_vm_noop, NULL, true);
384 }
385
386 /**
387 * need_new_vmid_gen - check that the VMID is still valid
388 * @kvm: The VM's VMID to checkt
389 *
390 * return true if there is a new generation of VMIDs being used
391 *
392 * The hardware supports only 256 values with the value zero reserved for the
393 * host, so we check if an assigned value belongs to a previous generation,
394 * which which requires us to assign a new value. If we're the first to use a
395 * VMID for the new generation, we must flush necessary caches and TLBs on all
396 * CPUs.
397 */
398 static bool need_new_vmid_gen(struct kvm *kvm)
399 {
400 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
401 }
402
403 /**
404 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
405 * @kvm The guest that we are about to run
406 *
407 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
408 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
409 * caches and TLBs.
410 */
411 static void update_vttbr(struct kvm *kvm)
412 {
413 phys_addr_t pgd_phys;
414 u64 vmid;
415
416 if (!need_new_vmid_gen(kvm))
417 return;
418
419 spin_lock(&kvm_vmid_lock);
420
421 /*
422 * We need to re-check the vmid_gen here to ensure that if another vcpu
423 * already allocated a valid vmid for this vm, then this vcpu should
424 * use the same vmid.
425 */
426 if (!need_new_vmid_gen(kvm)) {
427 spin_unlock(&kvm_vmid_lock);
428 return;
429 }
430
431 /* First user of a new VMID generation? */
432 if (unlikely(kvm_next_vmid == 0)) {
433 atomic64_inc(&kvm_vmid_gen);
434 kvm_next_vmid = 1;
435
436 /*
437 * On SMP we know no other CPUs can use this CPU's or each
438 * other's VMID after force_vm_exit returns since the
439 * kvm_vmid_lock blocks them from reentry to the guest.
440 */
441 force_vm_exit(cpu_all_mask);
442 /*
443 * Now broadcast TLB + ICACHE invalidation over the inner
444 * shareable domain to make sure all data structures are
445 * clean.
446 */
447 kvm_call_hyp(__kvm_flush_vm_context);
448 }
449
450 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
451 kvm->arch.vmid = kvm_next_vmid;
452 kvm_next_vmid++;
453
454 /* update vttbr to be used with the new vmid */
455 pgd_phys = virt_to_phys(kvm->arch.pgd);
456 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
457 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
458 kvm->arch.vttbr |= vmid;
459
460 spin_unlock(&kvm_vmid_lock);
461 }
462
463 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
464 {
465 if (likely(vcpu->arch.has_run_once))
466 return 0;
467
468 vcpu->arch.has_run_once = true;
469
470 /*
471 * Initialize the VGIC before running a vcpu the first time on
472 * this VM.
473 */
474 if (irqchip_in_kernel(vcpu->kvm) &&
475 unlikely(!vgic_initialized(vcpu->kvm))) {
476 int ret = kvm_vgic_init(vcpu->kvm);
477 if (ret)
478 return ret;
479 }
480
481 /*
482 * Handle the "start in power-off" case by calling into the
483 * PSCI code.
484 */
485 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
486 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
487 kvm_psci_call(vcpu);
488 }
489
490 return 0;
491 }
492
493 static void vcpu_pause(struct kvm_vcpu *vcpu)
494 {
495 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
496
497 wait_event_interruptible(*wq, !vcpu->arch.pause);
498 }
499
500 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
501 {
502 return vcpu->arch.target >= 0;
503 }
504
505 /**
506 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
507 * @vcpu: The VCPU pointer
508 * @run: The kvm_run structure pointer used for userspace state exchange
509 *
510 * This function is called through the VCPU_RUN ioctl called from user space. It
511 * will execute VM code in a loop until the time slice for the process is used
512 * or some emulation is needed from user space in which case the function will
513 * return with return value 0 and with the kvm_run structure filled in with the
514 * required data for the requested emulation.
515 */
516 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
517 {
518 int ret;
519 sigset_t sigsaved;
520
521 if (unlikely(!kvm_vcpu_initialized(vcpu)))
522 return -ENOEXEC;
523
524 ret = kvm_vcpu_first_run_init(vcpu);
525 if (ret)
526 return ret;
527
528 if (run->exit_reason == KVM_EXIT_MMIO) {
529 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
530 if (ret)
531 return ret;
532 }
533
534 if (vcpu->sigset_active)
535 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
536
537 ret = 1;
538 run->exit_reason = KVM_EXIT_UNKNOWN;
539 while (ret > 0) {
540 /*
541 * Check conditions before entering the guest
542 */
543 cond_resched();
544
545 update_vttbr(vcpu->kvm);
546
547 if (vcpu->arch.pause)
548 vcpu_pause(vcpu);
549
550 kvm_vgic_flush_hwstate(vcpu);
551 kvm_timer_flush_hwstate(vcpu);
552
553 local_irq_disable();
554
555 /*
556 * Re-check atomic conditions
557 */
558 if (signal_pending(current)) {
559 ret = -EINTR;
560 run->exit_reason = KVM_EXIT_INTR;
561 }
562
563 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
564 local_irq_enable();
565 kvm_timer_sync_hwstate(vcpu);
566 kvm_vgic_sync_hwstate(vcpu);
567 continue;
568 }
569
570 /**************************************************************
571 * Enter the guest
572 */
573 trace_kvm_entry(*vcpu_pc(vcpu));
574 kvm_guest_enter();
575 vcpu->mode = IN_GUEST_MODE;
576
577 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
578
579 vcpu->mode = OUTSIDE_GUEST_MODE;
580 vcpu->arch.last_pcpu = smp_processor_id();
581 kvm_guest_exit();
582 trace_kvm_exit(*vcpu_pc(vcpu));
583 /*
584 * We may have taken a host interrupt in HYP mode (ie
585 * while executing the guest). This interrupt is still
586 * pending, as we haven't serviced it yet!
587 *
588 * We're now back in SVC mode, with interrupts
589 * disabled. Enabling the interrupts now will have
590 * the effect of taking the interrupt again, in SVC
591 * mode this time.
592 */
593 local_irq_enable();
594
595 /*
596 * Back from guest
597 *************************************************************/
598
599 kvm_timer_sync_hwstate(vcpu);
600 kvm_vgic_sync_hwstate(vcpu);
601
602 ret = handle_exit(vcpu, run, ret);
603 }
604
605 if (vcpu->sigset_active)
606 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
607 return ret;
608 }
609
610 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
611 {
612 int bit_index;
613 bool set;
614 unsigned long *ptr;
615
616 if (number == KVM_ARM_IRQ_CPU_IRQ)
617 bit_index = __ffs(HCR_VI);
618 else /* KVM_ARM_IRQ_CPU_FIQ */
619 bit_index = __ffs(HCR_VF);
620
621 ptr = (unsigned long *)&vcpu->arch.irq_lines;
622 if (level)
623 set = test_and_set_bit(bit_index, ptr);
624 else
625 set = test_and_clear_bit(bit_index, ptr);
626
627 /*
628 * If we didn't change anything, no need to wake up or kick other CPUs
629 */
630 if (set == level)
631 return 0;
632
633 /*
634 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
635 * trigger a world-switch round on the running physical CPU to set the
636 * virtual IRQ/FIQ fields in the HCR appropriately.
637 */
638 kvm_vcpu_kick(vcpu);
639
640 return 0;
641 }
642
643 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
644 bool line_status)
645 {
646 u32 irq = irq_level->irq;
647 unsigned int irq_type, vcpu_idx, irq_num;
648 int nrcpus = atomic_read(&kvm->online_vcpus);
649 struct kvm_vcpu *vcpu = NULL;
650 bool level = irq_level->level;
651
652 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
653 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
654 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
655
656 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
657
658 switch (irq_type) {
659 case KVM_ARM_IRQ_TYPE_CPU:
660 if (irqchip_in_kernel(kvm))
661 return -ENXIO;
662
663 if (vcpu_idx >= nrcpus)
664 return -EINVAL;
665
666 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
667 if (!vcpu)
668 return -EINVAL;
669
670 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
671 return -EINVAL;
672
673 return vcpu_interrupt_line(vcpu, irq_num, level);
674 case KVM_ARM_IRQ_TYPE_PPI:
675 if (!irqchip_in_kernel(kvm))
676 return -ENXIO;
677
678 if (vcpu_idx >= nrcpus)
679 return -EINVAL;
680
681 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
682 if (!vcpu)
683 return -EINVAL;
684
685 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
686 return -EINVAL;
687
688 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
689 case KVM_ARM_IRQ_TYPE_SPI:
690 if (!irqchip_in_kernel(kvm))
691 return -ENXIO;
692
693 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
694 irq_num > KVM_ARM_IRQ_GIC_MAX)
695 return -EINVAL;
696
697 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
698 }
699
700 return -EINVAL;
701 }
702
703 long kvm_arch_vcpu_ioctl(struct file *filp,
704 unsigned int ioctl, unsigned long arg)
705 {
706 struct kvm_vcpu *vcpu = filp->private_data;
707 void __user *argp = (void __user *)arg;
708
709 switch (ioctl) {
710 case KVM_ARM_VCPU_INIT: {
711 struct kvm_vcpu_init init;
712
713 if (copy_from_user(&init, argp, sizeof(init)))
714 return -EFAULT;
715
716 return kvm_vcpu_set_target(vcpu, &init);
717
718 }
719 case KVM_SET_ONE_REG:
720 case KVM_GET_ONE_REG: {
721 struct kvm_one_reg reg;
722
723 if (unlikely(!kvm_vcpu_initialized(vcpu)))
724 return -ENOEXEC;
725
726 if (copy_from_user(&reg, argp, sizeof(reg)))
727 return -EFAULT;
728 if (ioctl == KVM_SET_ONE_REG)
729 return kvm_arm_set_reg(vcpu, &reg);
730 else
731 return kvm_arm_get_reg(vcpu, &reg);
732 }
733 case KVM_GET_REG_LIST: {
734 struct kvm_reg_list __user *user_list = argp;
735 struct kvm_reg_list reg_list;
736 unsigned n;
737
738 if (unlikely(!kvm_vcpu_initialized(vcpu)))
739 return -ENOEXEC;
740
741 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
742 return -EFAULT;
743 n = reg_list.n;
744 reg_list.n = kvm_arm_num_regs(vcpu);
745 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
746 return -EFAULT;
747 if (n < reg_list.n)
748 return -E2BIG;
749 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
750 }
751 default:
752 return -EINVAL;
753 }
754 }
755
756 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
757 {
758 return -EINVAL;
759 }
760
761 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
762 struct kvm_arm_device_addr *dev_addr)
763 {
764 unsigned long dev_id, type;
765
766 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
767 KVM_ARM_DEVICE_ID_SHIFT;
768 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
769 KVM_ARM_DEVICE_TYPE_SHIFT;
770
771 switch (dev_id) {
772 case KVM_ARM_DEVICE_VGIC_V2:
773 if (!vgic_present)
774 return -ENXIO;
775 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
776 default:
777 return -ENODEV;
778 }
779 }
780
781 long kvm_arch_vm_ioctl(struct file *filp,
782 unsigned int ioctl, unsigned long arg)
783 {
784 struct kvm *kvm = filp->private_data;
785 void __user *argp = (void __user *)arg;
786
787 switch (ioctl) {
788 case KVM_CREATE_IRQCHIP: {
789 if (vgic_present)
790 return kvm_vgic_create(kvm);
791 else
792 return -ENXIO;
793 }
794 case KVM_ARM_SET_DEVICE_ADDR: {
795 struct kvm_arm_device_addr dev_addr;
796
797 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
798 return -EFAULT;
799 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
800 }
801 case KVM_ARM_PREFERRED_TARGET: {
802 int err;
803 struct kvm_vcpu_init init;
804
805 err = kvm_vcpu_preferred_target(&init);
806 if (err)
807 return err;
808
809 if (copy_to_user(argp, &init, sizeof(init)))
810 return -EFAULT;
811
812 return 0;
813 }
814 default:
815 return -EINVAL;
816 }
817 }
818
819 static void cpu_init_hyp_mode(void *dummy)
820 {
821 phys_addr_t boot_pgd_ptr;
822 phys_addr_t pgd_ptr;
823 unsigned long hyp_stack_ptr;
824 unsigned long stack_page;
825 unsigned long vector_ptr;
826
827 /* Switch from the HYP stub to our own HYP init vector */
828 __hyp_set_vectors(kvm_get_idmap_vector());
829
830 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
831 pgd_ptr = kvm_mmu_get_httbr();
832 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
833 hyp_stack_ptr = stack_page + PAGE_SIZE;
834 vector_ptr = (unsigned long)__kvm_hyp_vector;
835
836 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
837 }
838
839 static int hyp_init_cpu_notify(struct notifier_block *self,
840 unsigned long action, void *cpu)
841 {
842 switch (action) {
843 case CPU_STARTING:
844 case CPU_STARTING_FROZEN:
845 cpu_init_hyp_mode(NULL);
846 break;
847 }
848
849 return NOTIFY_OK;
850 }
851
852 static struct notifier_block hyp_init_cpu_nb = {
853 .notifier_call = hyp_init_cpu_notify,
854 };
855
856 /**
857 * Inits Hyp-mode on all online CPUs
858 */
859 static int init_hyp_mode(void)
860 {
861 int cpu;
862 int err = 0;
863
864 /*
865 * Allocate Hyp PGD and setup Hyp identity mapping
866 */
867 err = kvm_mmu_init();
868 if (err)
869 goto out_err;
870
871 /*
872 * It is probably enough to obtain the default on one
873 * CPU. It's unlikely to be different on the others.
874 */
875 hyp_default_vectors = __hyp_get_vectors();
876
877 /*
878 * Allocate stack pages for Hypervisor-mode
879 */
880 for_each_possible_cpu(cpu) {
881 unsigned long stack_page;
882
883 stack_page = __get_free_page(GFP_KERNEL);
884 if (!stack_page) {
885 err = -ENOMEM;
886 goto out_free_stack_pages;
887 }
888
889 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
890 }
891
892 /*
893 * Map the Hyp-code called directly from the host
894 */
895 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
896 if (err) {
897 kvm_err("Cannot map world-switch code\n");
898 goto out_free_mappings;
899 }
900
901 /*
902 * Map the Hyp stack pages
903 */
904 for_each_possible_cpu(cpu) {
905 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
906 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
907
908 if (err) {
909 kvm_err("Cannot map hyp stack\n");
910 goto out_free_mappings;
911 }
912 }
913
914 /*
915 * Map the host CPU structures
916 */
917 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
918 if (!kvm_host_cpu_state) {
919 err = -ENOMEM;
920 kvm_err("Cannot allocate host CPU state\n");
921 goto out_free_mappings;
922 }
923
924 for_each_possible_cpu(cpu) {
925 kvm_cpu_context_t *cpu_ctxt;
926
927 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
928 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
929
930 if (err) {
931 kvm_err("Cannot map host CPU state: %d\n", err);
932 goto out_free_context;
933 }
934 }
935
936 /*
937 * Execute the init code on each CPU.
938 */
939 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
940
941 /*
942 * Init HYP view of VGIC
943 */
944 err = kvm_vgic_hyp_init();
945 if (err)
946 goto out_free_context;
947
948 #ifdef CONFIG_KVM_ARM_VGIC
949 vgic_present = true;
950 #endif
951
952 /*
953 * Init HYP architected timer support
954 */
955 err = kvm_timer_hyp_init();
956 if (err)
957 goto out_free_mappings;
958
959 #ifndef CONFIG_HOTPLUG_CPU
960 free_boot_hyp_pgd();
961 #endif
962
963 kvm_perf_init();
964
965 kvm_info("Hyp mode initialized successfully\n");
966
967 return 0;
968 out_free_context:
969 free_percpu(kvm_host_cpu_state);
970 out_free_mappings:
971 free_hyp_pgds();
972 out_free_stack_pages:
973 for_each_possible_cpu(cpu)
974 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
975 out_err:
976 kvm_err("error initializing Hyp mode: %d\n", err);
977 return err;
978 }
979
980 static void check_kvm_target_cpu(void *ret)
981 {
982 *(int *)ret = kvm_target_cpu();
983 }
984
985 /**
986 * Initialize Hyp-mode and memory mappings on all CPUs.
987 */
988 int kvm_arch_init(void *opaque)
989 {
990 int err;
991 int ret, cpu;
992
993 if (!is_hyp_mode_available()) {
994 kvm_err("HYP mode not available\n");
995 return -ENODEV;
996 }
997
998 for_each_online_cpu(cpu) {
999 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1000 if (ret < 0) {
1001 kvm_err("Error, CPU %d not supported!\n", cpu);
1002 return -ENODEV;
1003 }
1004 }
1005
1006 err = init_hyp_mode();
1007 if (err)
1008 goto out_err;
1009
1010 err = register_cpu_notifier(&hyp_init_cpu_nb);
1011 if (err) {
1012 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1013 goto out_err;
1014 }
1015
1016 kvm_coproc_table_init();
1017 return 0;
1018 out_err:
1019 return err;
1020 }
1021
1022 /* NOP: Compiling as a module not supported */
1023 void kvm_arch_exit(void)
1024 {
1025 kvm_perf_teardown();
1026 }
1027
1028 static int arm_init(void)
1029 {
1030 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1031 return rc;
1032 }
1033
1034 module_init(arm_init);