]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/coproc.c
Merge tag 'actions-drivers-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / coproc.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 #include "coproc.h"
38
39
40 /******************************************************************************
41 * Co-processor emulation
42 *****************************************************************************/
43
44 static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 const struct coproc_params *params)
46 {
47 WARN_ONCE(1, "CP15 write to read-only register\n");
48 print_cp_instr(params);
49 kvm_inject_undefined(vcpu);
50 return false;
51 }
52
53 static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 const struct coproc_params *params)
55 {
56 WARN_ONCE(1, "CP15 read to write-only register\n");
57 print_cp_instr(params);
58 kvm_inject_undefined(vcpu);
59 return false;
60 }
61
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels;
64
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66 #define CSSELR_MAX 12
67
68 /*
69 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70 * of cp15 registers can be viewed either as couple of two u32 registers
71 * or one u64 register. Current u64 register encoding is that least
72 * significant u32 word is followed by most significant u32 word.
73 */
74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 const struct coproc_reg *r,
76 u64 val)
77 {
78 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 }
81
82 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 const struct coproc_reg *r)
84 {
85 u64 val;
86
87 val = vcpu_cp15(vcpu, r->reg + 1);
88 val = val << 32;
89 val = val | vcpu_cp15(vcpu, r->reg);
90 return val;
91 }
92
93 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94 {
95 kvm_inject_undefined(vcpu);
96 return 1;
97 }
98
99 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100 {
101 /*
102 * We can get here, if the host has been built without VFPv3 support,
103 * but the guest attempted a floating point operation.
104 */
105 kvm_inject_undefined(vcpu);
106 return 1;
107 }
108
109 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110 {
111 kvm_inject_undefined(vcpu);
112 return 1;
113 }
114
115 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116 {
117 /*
118 * Compute guest MPIDR. We build a virtual cluster out of the
119 * vcpu_id, but we read the 'U' bit from the underlying
120 * hardware directly.
121 */
122 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 (vcpu->vcpu_id & 3));
125 }
126
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
128 static bool access_actlr(struct kvm_vcpu *vcpu,
129 const struct coproc_params *p,
130 const struct coproc_reg *r)
131 {
132 if (p->is_write)
133 return ignore_write(vcpu, p);
134
135 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 return true;
137 }
138
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
140 static bool access_cbar(struct kvm_vcpu *vcpu,
141 const struct coproc_params *p,
142 const struct coproc_reg *r)
143 {
144 if (p->is_write)
145 return write_to_read_only(vcpu, p);
146 return read_zero(vcpu, p);
147 }
148
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
150 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 const struct coproc_params *p,
152 const struct coproc_reg *r)
153 {
154 if (p->is_write)
155 return ignore_write(vcpu, p);
156
157 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 return true;
159 }
160
161 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162 {
163 u32 l2ctlr, ncores;
164
165 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 l2ctlr &= ~(3 << 24);
167 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 /* How many cores in the current cluster and the next ones */
169 ncores -= (vcpu->vcpu_id & ~3);
170 /* Cap it to the maximum number of cores in a single cluster */
171 ncores = min(ncores, 3U);
172 l2ctlr |= (ncores & 3) << 24;
173
174 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 }
176
177 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178 {
179 u32 actlr;
180
181 /* ACTLR contains SMP bit: make sure you create all cpus first! */
182 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 /* Make the SMP bit consistent with the guest configuration */
184 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 actlr |= 1U << 6;
186 else
187 actlr &= ~(1U << 6);
188
189 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 }
191
192 /*
193 * TRM entries: A7:4.3.50, A15:4.3.49
194 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195 */
196 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 const struct coproc_params *p,
198 const struct coproc_reg *r)
199 {
200 if (p->is_write)
201 return ignore_write(vcpu, p);
202
203 *vcpu_reg(vcpu, p->Rt1) = 0;
204 return true;
205 }
206
207 /*
208 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209 */
210 static bool access_dcsw(struct kvm_vcpu *vcpu,
211 const struct coproc_params *p,
212 const struct coproc_reg *r)
213 {
214 if (!p->is_write)
215 return read_from_write_only(vcpu, p);
216
217 kvm_set_way_flush(vcpu);
218 return true;
219 }
220
221 /*
222 * Generic accessor for VM registers. Only called as long as HCR_TVM
223 * is set. If the guest enables the MMU, we stop trapping the VM
224 * sys_regs and leave it in complete control of the caches.
225 *
226 * Used by the cpu-specific code.
227 */
228 bool access_vm_reg(struct kvm_vcpu *vcpu,
229 const struct coproc_params *p,
230 const struct coproc_reg *r)
231 {
232 bool was_enabled = vcpu_has_cache_enabled(vcpu);
233
234 BUG_ON(!p->is_write);
235
236 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237 if (p->is_64bit)
238 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239
240 kvm_toggle_cache(vcpu, was_enabled);
241 return true;
242 }
243
244 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 const struct coproc_params *p,
246 const struct coproc_reg *r)
247 {
248 u64 reg;
249
250 if (!p->is_write)
251 return read_from_write_only(vcpu, p);
252
253 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
254 reg |= *vcpu_reg(vcpu, p->Rt1) ;
255
256 vgic_v3_dispatch_sgi(vcpu, reg);
257
258 return true;
259 }
260
261 static bool access_gic_sre(struct kvm_vcpu *vcpu,
262 const struct coproc_params *p,
263 const struct coproc_reg *r)
264 {
265 if (p->is_write)
266 return ignore_write(vcpu, p);
267
268 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
269
270 return true;
271 }
272
273 /*
274 * We could trap ID_DFR0 and tell the guest we don't support performance
275 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
276 * NAKed, so it will read the PMCR anyway.
277 *
278 * Therefore we tell the guest we have 0 counters. Unfortunately, we
279 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
280 * all PM registers, which doesn't crash the guest kernel at least.
281 */
282 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
283 const struct coproc_params *p,
284 const struct coproc_reg *r)
285 {
286 if (p->is_write)
287 return ignore_write(vcpu, p);
288 else
289 return read_zero(vcpu, p);
290 }
291
292 #define access_pmcr trap_raz_wi
293 #define access_pmcntenset trap_raz_wi
294 #define access_pmcntenclr trap_raz_wi
295 #define access_pmovsr trap_raz_wi
296 #define access_pmselr trap_raz_wi
297 #define access_pmceid0 trap_raz_wi
298 #define access_pmceid1 trap_raz_wi
299 #define access_pmccntr trap_raz_wi
300 #define access_pmxevtyper trap_raz_wi
301 #define access_pmxevcntr trap_raz_wi
302 #define access_pmuserenr trap_raz_wi
303 #define access_pmintenset trap_raz_wi
304 #define access_pmintenclr trap_raz_wi
305
306 /* Architected CP15 registers.
307 * CRn denotes the primary register number, but is copied to the CRm in the
308 * user space API for 64-bit register access in line with the terminology used
309 * in the ARM ARM.
310 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
311 * registers preceding 32-bit ones.
312 */
313 static const struct coproc_reg cp15_regs[] = {
314 /* MPIDR: we use VMPIDR for guest access. */
315 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
316 NULL, reset_mpidr, c0_MPIDR },
317
318 /* CSSELR: swapped by interrupt.S. */
319 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
320 NULL, reset_unknown, c0_CSSELR },
321
322 /* ACTLR: trapped by HCR.TAC bit. */
323 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
324 access_actlr, reset_actlr, c1_ACTLR },
325
326 /* CPACR: swapped by interrupt.S. */
327 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
328 NULL, reset_val, c1_CPACR, 0x00000000 },
329
330 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
331 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
332 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
333 access_vm_reg, reset_unknown, c2_TTBR0 },
334 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
335 access_vm_reg, reset_unknown, c2_TTBR1 },
336 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
337 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
338 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
339
340
341 /* DACR: swapped by interrupt.S. */
342 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
343 access_vm_reg, reset_unknown, c3_DACR },
344
345 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
346 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
347 access_vm_reg, reset_unknown, c5_DFSR },
348 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
349 access_vm_reg, reset_unknown, c5_IFSR },
350 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
351 access_vm_reg, reset_unknown, c5_ADFSR },
352 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
353 access_vm_reg, reset_unknown, c5_AIFSR },
354
355 /* DFAR/IFAR: swapped by interrupt.S. */
356 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
357 access_vm_reg, reset_unknown, c6_DFAR },
358 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
359 access_vm_reg, reset_unknown, c6_IFAR },
360
361 /* PAR swapped by interrupt.S */
362 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
363
364 /*
365 * DC{C,I,CI}SW operations:
366 */
367 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
368 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
369 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
370 /*
371 * L2CTLR access (guest wants to know #CPUs).
372 */
373 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
374 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
375 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
376
377 /*
378 * Dummy performance monitor implementation.
379 */
380 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
381 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
382 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
383 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
384 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
385 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
386 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
387 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
388 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
389 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
390 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
391 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
392 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
393
394 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
395 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
396 access_vm_reg, reset_unknown, c10_PRRR},
397 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
398 access_vm_reg, reset_unknown, c10_NMRR},
399
400 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
401 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
402 access_vm_reg, reset_unknown, c10_AMAIR0},
403 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
404 access_vm_reg, reset_unknown, c10_AMAIR1},
405
406 /* ICC_SGI1R */
407 { CRm64(12), Op1( 0), is64, access_gic_sgi},
408
409 /* VBAR: swapped by interrupt.S. */
410 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
411 NULL, reset_val, c12_VBAR, 0x00000000 },
412
413 /* ICC_SRE */
414 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
415
416 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
417 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
418 access_vm_reg, reset_val, c13_CID, 0x00000000 },
419 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
420 NULL, reset_unknown, c13_TID_URW },
421 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
422 NULL, reset_unknown, c13_TID_URO },
423 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
424 NULL, reset_unknown, c13_TID_PRIV },
425
426 /* CNTKCTL: swapped by interrupt.S. */
427 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
428 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
429
430 /* The Configuration Base Address Register. */
431 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
432 };
433
434 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
435 {
436 unsigned int i;
437
438 for (i = 1; i < n; i++) {
439 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
440 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
441 return 1;
442 }
443 }
444
445 return 0;
446 }
447
448 /* Target specific emulation tables */
449 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
450
451 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
452 {
453 BUG_ON(check_reg_table(table->table, table->num));
454 target_tables[table->target] = table;
455 }
456
457 /* Get specific register table for this target. */
458 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
459 {
460 struct kvm_coproc_target_table *table;
461
462 table = target_tables[target];
463 *num = table->num;
464 return table->table;
465 }
466
467 #define reg_to_match_value(x) \
468 ({ \
469 unsigned long val; \
470 val = (x)->CRn << 11; \
471 val |= (x)->CRm << 7; \
472 val |= (x)->Op1 << 4; \
473 val |= (x)->Op2 << 1; \
474 val |= !(x)->is_64bit; \
475 val; \
476 })
477
478 static int match_reg(const void *key, const void *elt)
479 {
480 const unsigned long pval = (unsigned long)key;
481 const struct coproc_reg *r = elt;
482
483 return pval - reg_to_match_value(r);
484 }
485
486 static const struct coproc_reg *find_reg(const struct coproc_params *params,
487 const struct coproc_reg table[],
488 unsigned int num)
489 {
490 unsigned long pval = reg_to_match_value(params);
491
492 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
493 }
494
495 static int emulate_cp15(struct kvm_vcpu *vcpu,
496 const struct coproc_params *params)
497 {
498 size_t num;
499 const struct coproc_reg *table, *r;
500
501 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
502 params->CRm, params->Op2, params->is_write);
503
504 table = get_target_table(vcpu->arch.target, &num);
505
506 /* Search target-specific then generic table. */
507 r = find_reg(params, table, num);
508 if (!r)
509 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
510
511 if (likely(r)) {
512 /* If we don't have an accessor, we should never get here! */
513 BUG_ON(!r->access);
514
515 if (likely(r->access(vcpu, params, r))) {
516 /* Skip instruction, since it was emulated */
517 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
518 }
519 } else {
520 /* If access function fails, it should complain. */
521 kvm_err("Unsupported guest CP15 access at: %08lx\n",
522 *vcpu_pc(vcpu));
523 print_cp_instr(params);
524 kvm_inject_undefined(vcpu);
525 }
526
527 return 1;
528 }
529
530 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
531 {
532 struct coproc_params params;
533
534 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
535 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
536 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
537 params.is_64bit = true;
538
539 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
540 params.Op2 = 0;
541 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
542 params.CRm = 0;
543
544 return params;
545 }
546
547 /**
548 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
549 * @vcpu: The VCPU pointer
550 * @run: The kvm_run struct
551 */
552 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
553 {
554 struct coproc_params params = decode_64bit_hsr(vcpu);
555
556 return emulate_cp15(vcpu, &params);
557 }
558
559 /**
560 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
561 * @vcpu: The VCPU pointer
562 * @run: The kvm_run struct
563 */
564 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
565 {
566 struct coproc_params params = decode_64bit_hsr(vcpu);
567
568 /* raz_wi cp14 */
569 trap_raz_wi(vcpu, &params, NULL);
570
571 /* handled */
572 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
573 return 1;
574 }
575
576 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
577 const struct coproc_reg *table, size_t num)
578 {
579 unsigned long i;
580
581 for (i = 0; i < num; i++)
582 if (table[i].reset)
583 table[i].reset(vcpu, &table[i]);
584 }
585
586 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
587 {
588 struct coproc_params params;
589
590 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
591 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
592 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
593 params.is_64bit = false;
594
595 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
596 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
597 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
598 params.Rt2 = 0;
599
600 return params;
601 }
602
603 /**
604 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
605 * @vcpu: The VCPU pointer
606 * @run: The kvm_run struct
607 */
608 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
609 {
610 struct coproc_params params = decode_32bit_hsr(vcpu);
611 return emulate_cp15(vcpu, &params);
612 }
613
614 /**
615 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
616 * @vcpu: The VCPU pointer
617 * @run: The kvm_run struct
618 */
619 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
620 {
621 struct coproc_params params = decode_32bit_hsr(vcpu);
622
623 /* raz_wi cp14 */
624 trap_raz_wi(vcpu, &params, NULL);
625
626 /* handled */
627 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
628 return 1;
629 }
630
631 /******************************************************************************
632 * Userspace API
633 *****************************************************************************/
634
635 static bool index_to_params(u64 id, struct coproc_params *params)
636 {
637 switch (id & KVM_REG_SIZE_MASK) {
638 case KVM_REG_SIZE_U32:
639 /* Any unused index bits means it's not valid. */
640 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
641 | KVM_REG_ARM_COPROC_MASK
642 | KVM_REG_ARM_32_CRN_MASK
643 | KVM_REG_ARM_CRM_MASK
644 | KVM_REG_ARM_OPC1_MASK
645 | KVM_REG_ARM_32_OPC2_MASK))
646 return false;
647
648 params->is_64bit = false;
649 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
650 >> KVM_REG_ARM_32_CRN_SHIFT);
651 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
652 >> KVM_REG_ARM_CRM_SHIFT);
653 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
654 >> KVM_REG_ARM_OPC1_SHIFT);
655 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
656 >> KVM_REG_ARM_32_OPC2_SHIFT);
657 return true;
658 case KVM_REG_SIZE_U64:
659 /* Any unused index bits means it's not valid. */
660 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
661 | KVM_REG_ARM_COPROC_MASK
662 | KVM_REG_ARM_CRM_MASK
663 | KVM_REG_ARM_OPC1_MASK))
664 return false;
665 params->is_64bit = true;
666 /* CRm to CRn: see cp15_to_index for details */
667 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
668 >> KVM_REG_ARM_CRM_SHIFT);
669 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
670 >> KVM_REG_ARM_OPC1_SHIFT);
671 params->Op2 = 0;
672 params->CRm = 0;
673 return true;
674 default:
675 return false;
676 }
677 }
678
679 /* Decode an index value, and find the cp15 coproc_reg entry. */
680 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
681 u64 id)
682 {
683 size_t num;
684 const struct coproc_reg *table, *r;
685 struct coproc_params params;
686
687 /* We only do cp15 for now. */
688 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
689 return NULL;
690
691 if (!index_to_params(id, &params))
692 return NULL;
693
694 table = get_target_table(vcpu->arch.target, &num);
695 r = find_reg(&params, table, num);
696 if (!r)
697 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
698
699 /* Not saved in the cp15 array? */
700 if (r && !r->reg)
701 r = NULL;
702
703 return r;
704 }
705
706 /*
707 * These are the invariant cp15 registers: we let the guest see the host
708 * versions of these, so they're part of the guest state.
709 *
710 * A future CPU may provide a mechanism to present different values to
711 * the guest, or a future kvm may trap them.
712 */
713 /* Unfortunately, there's no register-argument for mrc, so generate. */
714 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
715 static void get_##name(struct kvm_vcpu *v, \
716 const struct coproc_reg *r) \
717 { \
718 u32 val; \
719 \
720 asm volatile("mrc p15, " __stringify(op1) \
721 ", %0, c" __stringify(crn) \
722 ", c" __stringify(crm) \
723 ", " __stringify(op2) "\n" : "=r" (val)); \
724 ((struct coproc_reg *)r)->val = val; \
725 }
726
727 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
728 FUNCTION_FOR32(0, 0, 0, 1, CTR)
729 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
730 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
731 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
732 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
733 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
734 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
735 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
736 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
737 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
738 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
739 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
740 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
741 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
742 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
743 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
744 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
745 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
746 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
747 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
748
749 /* ->val is filled in by kvm_invariant_coproc_table_init() */
750 static struct coproc_reg invariant_cp15[] = {
751 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
752 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
753 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
754 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
755 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
756
757 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
758 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
759
760 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
761 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
762 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
763 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
764 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
765 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
766 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
767 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
768
769 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
770 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
771 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
772 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
773 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
774 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
775 };
776
777 /*
778 * Reads a register value from a userspace address to a kernel
779 * variable. Make sure that register size matches sizeof(*__val).
780 */
781 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
782 {
783 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
784 return -EFAULT;
785 return 0;
786 }
787
788 /*
789 * Writes a register value to a userspace address from a kernel variable.
790 * Make sure that register size matches sizeof(*__val).
791 */
792 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
793 {
794 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
795 return -EFAULT;
796 return 0;
797 }
798
799 static int get_invariant_cp15(u64 id, void __user *uaddr)
800 {
801 struct coproc_params params;
802 const struct coproc_reg *r;
803 int ret;
804
805 if (!index_to_params(id, &params))
806 return -ENOENT;
807
808 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
809 if (!r)
810 return -ENOENT;
811
812 ret = -ENOENT;
813 if (KVM_REG_SIZE(id) == 4) {
814 u32 val = r->val;
815
816 ret = reg_to_user(uaddr, &val, id);
817 } else if (KVM_REG_SIZE(id) == 8) {
818 ret = reg_to_user(uaddr, &r->val, id);
819 }
820 return ret;
821 }
822
823 static int set_invariant_cp15(u64 id, void __user *uaddr)
824 {
825 struct coproc_params params;
826 const struct coproc_reg *r;
827 int err;
828 u64 val;
829
830 if (!index_to_params(id, &params))
831 return -ENOENT;
832 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
833 if (!r)
834 return -ENOENT;
835
836 err = -ENOENT;
837 if (KVM_REG_SIZE(id) == 4) {
838 u32 val32;
839
840 err = reg_from_user(&val32, uaddr, id);
841 if (!err)
842 val = val32;
843 } else if (KVM_REG_SIZE(id) == 8) {
844 err = reg_from_user(&val, uaddr, id);
845 }
846 if (err)
847 return err;
848
849 /* This is what we mean by invariant: you can't change it. */
850 if (r->val != val)
851 return -EINVAL;
852
853 return 0;
854 }
855
856 static bool is_valid_cache(u32 val)
857 {
858 u32 level, ctype;
859
860 if (val >= CSSELR_MAX)
861 return false;
862
863 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
864 level = (val >> 1);
865 ctype = (cache_levels >> (level * 3)) & 7;
866
867 switch (ctype) {
868 case 0: /* No cache */
869 return false;
870 case 1: /* Instruction cache only */
871 return (val & 1);
872 case 2: /* Data cache only */
873 case 4: /* Unified cache */
874 return !(val & 1);
875 case 3: /* Separate instruction and data caches */
876 return true;
877 default: /* Reserved: we can't know instruction or data. */
878 return false;
879 }
880 }
881
882 /* Which cache CCSIDR represents depends on CSSELR value. */
883 static u32 get_ccsidr(u32 csselr)
884 {
885 u32 ccsidr;
886
887 /* Make sure noone else changes CSSELR during this! */
888 local_irq_disable();
889 /* Put value into CSSELR */
890 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
891 isb();
892 /* Read result out of CCSIDR */
893 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
894 local_irq_enable();
895
896 return ccsidr;
897 }
898
899 static int demux_c15_get(u64 id, void __user *uaddr)
900 {
901 u32 val;
902 u32 __user *uval = uaddr;
903
904 /* Fail if we have unknown bits set. */
905 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
906 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
907 return -ENOENT;
908
909 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
910 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
911 if (KVM_REG_SIZE(id) != 4)
912 return -ENOENT;
913 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
914 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
915 if (!is_valid_cache(val))
916 return -ENOENT;
917
918 return put_user(get_ccsidr(val), uval);
919 default:
920 return -ENOENT;
921 }
922 }
923
924 static int demux_c15_set(u64 id, void __user *uaddr)
925 {
926 u32 val, newval;
927 u32 __user *uval = uaddr;
928
929 /* Fail if we have unknown bits set. */
930 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
931 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
932 return -ENOENT;
933
934 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
935 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
936 if (KVM_REG_SIZE(id) != 4)
937 return -ENOENT;
938 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
939 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
940 if (!is_valid_cache(val))
941 return -ENOENT;
942
943 if (get_user(newval, uval))
944 return -EFAULT;
945
946 /* This is also invariant: you can't change it. */
947 if (newval != get_ccsidr(val))
948 return -EINVAL;
949 return 0;
950 default:
951 return -ENOENT;
952 }
953 }
954
955 #ifdef CONFIG_VFPv3
956 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
957 KVM_REG_ARM_VFP_FPSCR,
958 KVM_REG_ARM_VFP_FPINST,
959 KVM_REG_ARM_VFP_FPINST2,
960 KVM_REG_ARM_VFP_MVFR0,
961 KVM_REG_ARM_VFP_MVFR1,
962 KVM_REG_ARM_VFP_FPSID };
963
964 static unsigned int num_fp_regs(void)
965 {
966 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
967 return 32;
968 else
969 return 16;
970 }
971
972 static unsigned int num_vfp_regs(void)
973 {
974 /* Normal FP regs + control regs. */
975 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
976 }
977
978 static int copy_vfp_regids(u64 __user *uindices)
979 {
980 unsigned int i;
981 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
982 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
983
984 for (i = 0; i < num_fp_regs(); i++) {
985 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
986 uindices))
987 return -EFAULT;
988 uindices++;
989 }
990
991 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
992 if (put_user(u32reg | vfp_sysregs[i], uindices))
993 return -EFAULT;
994 uindices++;
995 }
996
997 return num_vfp_regs();
998 }
999
1000 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1001 {
1002 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1003 u32 val;
1004
1005 /* Fail if we have unknown bits set. */
1006 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1007 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1008 return -ENOENT;
1009
1010 if (vfpid < num_fp_regs()) {
1011 if (KVM_REG_SIZE(id) != 8)
1012 return -ENOENT;
1013 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1014 id);
1015 }
1016
1017 /* FP control registers are all 32 bit. */
1018 if (KVM_REG_SIZE(id) != 4)
1019 return -ENOENT;
1020
1021 switch (vfpid) {
1022 case KVM_REG_ARM_VFP_FPEXC:
1023 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1024 case KVM_REG_ARM_VFP_FPSCR:
1025 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1026 case KVM_REG_ARM_VFP_FPINST:
1027 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1028 case KVM_REG_ARM_VFP_FPINST2:
1029 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1030 case KVM_REG_ARM_VFP_MVFR0:
1031 val = fmrx(MVFR0);
1032 return reg_to_user(uaddr, &val, id);
1033 case KVM_REG_ARM_VFP_MVFR1:
1034 val = fmrx(MVFR1);
1035 return reg_to_user(uaddr, &val, id);
1036 case KVM_REG_ARM_VFP_FPSID:
1037 val = fmrx(FPSID);
1038 return reg_to_user(uaddr, &val, id);
1039 default:
1040 return -ENOENT;
1041 }
1042 }
1043
1044 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1045 {
1046 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1047 u32 val;
1048
1049 /* Fail if we have unknown bits set. */
1050 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1051 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1052 return -ENOENT;
1053
1054 if (vfpid < num_fp_regs()) {
1055 if (KVM_REG_SIZE(id) != 8)
1056 return -ENOENT;
1057 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1058 uaddr, id);
1059 }
1060
1061 /* FP control registers are all 32 bit. */
1062 if (KVM_REG_SIZE(id) != 4)
1063 return -ENOENT;
1064
1065 switch (vfpid) {
1066 case KVM_REG_ARM_VFP_FPEXC:
1067 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1068 case KVM_REG_ARM_VFP_FPSCR:
1069 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1070 case KVM_REG_ARM_VFP_FPINST:
1071 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1072 case KVM_REG_ARM_VFP_FPINST2:
1073 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1074 /* These are invariant. */
1075 case KVM_REG_ARM_VFP_MVFR0:
1076 if (reg_from_user(&val, uaddr, id))
1077 return -EFAULT;
1078 if (val != fmrx(MVFR0))
1079 return -EINVAL;
1080 return 0;
1081 case KVM_REG_ARM_VFP_MVFR1:
1082 if (reg_from_user(&val, uaddr, id))
1083 return -EFAULT;
1084 if (val != fmrx(MVFR1))
1085 return -EINVAL;
1086 return 0;
1087 case KVM_REG_ARM_VFP_FPSID:
1088 if (reg_from_user(&val, uaddr, id))
1089 return -EFAULT;
1090 if (val != fmrx(FPSID))
1091 return -EINVAL;
1092 return 0;
1093 default:
1094 return -ENOENT;
1095 }
1096 }
1097 #else /* !CONFIG_VFPv3 */
1098 static unsigned int num_vfp_regs(void)
1099 {
1100 return 0;
1101 }
1102
1103 static int copy_vfp_regids(u64 __user *uindices)
1104 {
1105 return 0;
1106 }
1107
1108 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1109 {
1110 return -ENOENT;
1111 }
1112
1113 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1114 {
1115 return -ENOENT;
1116 }
1117 #endif /* !CONFIG_VFPv3 */
1118
1119 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1120 {
1121 const struct coproc_reg *r;
1122 void __user *uaddr = (void __user *)(long)reg->addr;
1123 int ret;
1124
1125 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1126 return demux_c15_get(reg->id, uaddr);
1127
1128 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1129 return vfp_get_reg(vcpu, reg->id, uaddr);
1130
1131 r = index_to_coproc_reg(vcpu, reg->id);
1132 if (!r)
1133 return get_invariant_cp15(reg->id, uaddr);
1134
1135 ret = -ENOENT;
1136 if (KVM_REG_SIZE(reg->id) == 8) {
1137 u64 val;
1138
1139 val = vcpu_cp15_reg64_get(vcpu, r);
1140 ret = reg_to_user(uaddr, &val, reg->id);
1141 } else if (KVM_REG_SIZE(reg->id) == 4) {
1142 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1143 }
1144
1145 return ret;
1146 }
1147
1148 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1149 {
1150 const struct coproc_reg *r;
1151 void __user *uaddr = (void __user *)(long)reg->addr;
1152 int ret;
1153
1154 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1155 return demux_c15_set(reg->id, uaddr);
1156
1157 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1158 return vfp_set_reg(vcpu, reg->id, uaddr);
1159
1160 r = index_to_coproc_reg(vcpu, reg->id);
1161 if (!r)
1162 return set_invariant_cp15(reg->id, uaddr);
1163
1164 ret = -ENOENT;
1165 if (KVM_REG_SIZE(reg->id) == 8) {
1166 u64 val;
1167
1168 ret = reg_from_user(&val, uaddr, reg->id);
1169 if (!ret)
1170 vcpu_cp15_reg64_set(vcpu, r, val);
1171 } else if (KVM_REG_SIZE(reg->id) == 4) {
1172 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1173 }
1174
1175 return ret;
1176 }
1177
1178 static unsigned int num_demux_regs(void)
1179 {
1180 unsigned int i, count = 0;
1181
1182 for (i = 0; i < CSSELR_MAX; i++)
1183 if (is_valid_cache(i))
1184 count++;
1185
1186 return count;
1187 }
1188
1189 static int write_demux_regids(u64 __user *uindices)
1190 {
1191 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1192 unsigned int i;
1193
1194 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1195 for (i = 0; i < CSSELR_MAX; i++) {
1196 if (!is_valid_cache(i))
1197 continue;
1198 if (put_user(val | i, uindices))
1199 return -EFAULT;
1200 uindices++;
1201 }
1202 return 0;
1203 }
1204
1205 static u64 cp15_to_index(const struct coproc_reg *reg)
1206 {
1207 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1208 if (reg->is_64bit) {
1209 val |= KVM_REG_SIZE_U64;
1210 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1211 /*
1212 * CRn always denotes the primary coproc. reg. nr. for the
1213 * in-kernel representation, but the user space API uses the
1214 * CRm for the encoding, because it is modelled after the
1215 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1216 * B3-1445
1217 */
1218 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1219 } else {
1220 val |= KVM_REG_SIZE_U32;
1221 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1222 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1223 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1224 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1225 }
1226 return val;
1227 }
1228
1229 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1230 {
1231 if (!*uind)
1232 return true;
1233
1234 if (put_user(cp15_to_index(reg), *uind))
1235 return false;
1236
1237 (*uind)++;
1238 return true;
1239 }
1240
1241 /* Assumed ordered tables, see kvm_coproc_table_init. */
1242 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1243 {
1244 const struct coproc_reg *i1, *i2, *end1, *end2;
1245 unsigned int total = 0;
1246 size_t num;
1247
1248 /* We check for duplicates here, to allow arch-specific overrides. */
1249 i1 = get_target_table(vcpu->arch.target, &num);
1250 end1 = i1 + num;
1251 i2 = cp15_regs;
1252 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1253
1254 BUG_ON(i1 == end1 || i2 == end2);
1255
1256 /* Walk carefully, as both tables may refer to the same register. */
1257 while (i1 || i2) {
1258 int cmp = cmp_reg(i1, i2);
1259 /* target-specific overrides generic entry. */
1260 if (cmp <= 0) {
1261 /* Ignore registers we trap but don't save. */
1262 if (i1->reg) {
1263 if (!copy_reg_to_user(i1, &uind))
1264 return -EFAULT;
1265 total++;
1266 }
1267 } else {
1268 /* Ignore registers we trap but don't save. */
1269 if (i2->reg) {
1270 if (!copy_reg_to_user(i2, &uind))
1271 return -EFAULT;
1272 total++;
1273 }
1274 }
1275
1276 if (cmp <= 0 && ++i1 == end1)
1277 i1 = NULL;
1278 if (cmp >= 0 && ++i2 == end2)
1279 i2 = NULL;
1280 }
1281 return total;
1282 }
1283
1284 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1285 {
1286 return ARRAY_SIZE(invariant_cp15)
1287 + num_demux_regs()
1288 + num_vfp_regs()
1289 + walk_cp15(vcpu, (u64 __user *)NULL);
1290 }
1291
1292 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1293 {
1294 unsigned int i;
1295 int err;
1296
1297 /* Then give them all the invariant registers' indices. */
1298 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1299 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1300 return -EFAULT;
1301 uindices++;
1302 }
1303
1304 err = walk_cp15(vcpu, uindices);
1305 if (err < 0)
1306 return err;
1307 uindices += err;
1308
1309 err = copy_vfp_regids(uindices);
1310 if (err < 0)
1311 return err;
1312 uindices += err;
1313
1314 return write_demux_regids(uindices);
1315 }
1316
1317 void kvm_coproc_table_init(void)
1318 {
1319 unsigned int i;
1320
1321 /* Make sure tables are unique and in order. */
1322 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1323 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1324
1325 /* We abuse the reset function to overwrite the table itself. */
1326 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1327 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1328
1329 /*
1330 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1331 *
1332 * If software reads the Cache Type fields from Ctype1
1333 * upwards, once it has seen a value of 0b000, no caches
1334 * exist at further-out levels of the hierarchy. So, for
1335 * example, if Ctype3 is the first Cache Type field with a
1336 * value of 0b000, the values of Ctype4 to Ctype7 must be
1337 * ignored.
1338 */
1339 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1340 for (i = 0; i < 7; i++)
1341 if (((cache_levels >> (i*3)) & 7) == 0)
1342 break;
1343 /* Clear all higher bits. */
1344 cache_levels &= (1 << (i*3))-1;
1345 }
1346
1347 /**
1348 * kvm_reset_coprocs - sets cp15 registers to reset value
1349 * @vcpu: The VCPU pointer
1350 *
1351 * This function finds the right table above and sets the registers on the
1352 * virtual CPU struct to their architecturally defined reset values.
1353 */
1354 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1355 {
1356 size_t num;
1357 const struct coproc_reg *table;
1358
1359 /* Catch someone adding a register without putting in reset entry. */
1360 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1361
1362 /* Generic chip reset first (so target could override). */
1363 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1364
1365 table = get_target_table(vcpu->arch.target, &num);
1366 reset_coproc_regs(vcpu, table, num);
1367
1368 for (num = 1; num < NR_CP15_REGS; num++)
1369 if (vcpu_cp15(vcpu, num) == 0x42424242)
1370 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1371 }